

Communication-Avoiding Sparse Matrix Algorithms for Large Graph and Machine Learning Problems

Aydın Buluç Computational Research Division, LBNL EECS Department, UC Berkeley

New Architectures and Algorithms IPAM (UCLA), Nov 28, 2018

Large Graphs in Scientific Discoveries

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

Graph partitioning: *Dynamic load balancing* in parallel simulations

Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse linear system to be solved or the simulation to be performed

Large Graphs in Scientific Discoveries

Whole genome assembly

A Read Layout B Overlap Graph Vertices: reads GACCTACA R. : R.;: ACCTACAA R1: CCTACAAG R. : CTACAAGT TACAAGTT A : B: ACAAGTTA C: CAAGTTAG Χ: TACAAGTC ACAAGTCC Υ: Z : CAAGTCCG C de Bruijn Graph Vertices: k-mers TAC ACA ACA AAG AAG GTC TCC 26 billion (8B of which are non-erroneous) unique k-mers (vertices) in the hexaploit wheat genome W7984 for k=51

Schatz et al. (2010) Perspective: Assembly of Large Genomes w/2nd-Gen Seq. Genome Res. (figure reference)

Graph Theoretical analysis of Brain Connectivity

Potentially millions of neurons and billions of edges with developing technologies

Sparse Matrices

"I observed that most of the coefficients in our matrices were zero; i.e., the nonzeros were 'sparse' in the matrix, and that typically the triangular matrices associated with the forward and back solution provided by Gaussian elimination would remain sparse if pivot elements were chosen with care"

- Harry Markowitz, describing the 1950s work on portfolio theory that won the 1990 Nobel Prize for Economics

Graphs in the language of matrices

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Highly-parallel implementation for Betweenness Centrality*
 *: A measure of influence in graphs, based on shortest paths

Graph coarsening via sparse matrix-matrix products

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments. *SIAM Journal of Scientific Computing (SISC), 2012*.

The GraphBLAS effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee), Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert (University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation), Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of graph algorithms in terms of linear algebraic operations is mature enough to support the emergence of a standard set of primitive building blocks. This paper is a position paper defining the problem and announcing our intention to launch an open effort to define this standard.

- The GraphBLAS Forum: <u>http://graphblas.org</u>
- Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS): <u>http://hpc.pnl.gov/grapl/</u>

GraphBLAS Status: C API 1.2 released and in use

- Implementations of the GraphBLAS C specification:
 - SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
 - IBM <u>https://github.com/IBM/ibmgraphblas</u>
 - Test suite for validating an implementation of the C-spec from SEI/CMU
 ... to be released "soon"
- Systems using the GraphBLAS
 - RedisGraph v1.0 preview release:
 - RedisGraph is a graph database architecture implemented as a Redis Module, using GraphBLAS sparse matrices for internal data representation and linear algebra for query execution.
 - o <u>https://redislabs.com/blog/release-redisgraph-v1-0-preview/</u>
 - Lincoln Labs GraphProcessor designed around the GraphBLAS.
- C++ bindings to the GraphBLAS
 - GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
 - Gunrock for GPUs: <u>https://github.com/gunrock/gunrock-grb</u>

GraphBLAS C API Spec (http://graphblas.org)

- **Goal:** A crucial piece of the GraphBLAS effort is to translate the mathematical specification to an actual Application Programming Interface (API) that
 - i. is faithful to the mathematics as much as possible, and
 - ii. enables efficient implementations on modern hardware.
- Impact: All graph and machine learning algorithms that can be expressed in the language of linear algebra
- Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs (blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a hierarchy of algebras (functions, monoids, and semiring)

GrB_info GrB_mxm(GrB_Matrix	*C,	<pre>// destination</pre>
const GrB_Matrix	Mask,	
const GrB_BinaryOp	accum,	
const GrB_Semiring	op,	$(\neg N) \oplus = \Delta^{T} \oplus \otimes B^{T}$
const GrB_Matrix	A,	
const GrB_Matrix	в	
[, const Descriptor	<pre>desc]);</pre>	

A. Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. "The GraphBLAS C API Specification", version 1.2.0

Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

Traditional graph	Graphs in the language of
computations	linear algebra
Data driven, unpredictable communication.	Fixed communication patterns
Irregular and unstructured, poor locality of reference	Operations on matrix blocks exploit memory hierarchy
Fine grained data accesses,	Coarse grained parallelism,
dominated by latency	bandwidth limited

Linear-algebraic primitives for graphs

Sparse matrix X sparse vector

Is **think-like-a-vertex** really more productive?

"Our mission is to build up a linear algebra sense to the extent that vector-level thinking becomes as natural as scalar-level thinking."

- Charles Van Loan

Graph Algorithms on GraphBLAS

GraphBLAS primitives in increasing arithmetic intensity

Examples of semirings in graph algorithms

Real field: (R, +, X)	Classical numerical linear algebra		
Boolean algebra: ({0 1}, , &)	Graph connectivity		
Tropical semiring: (R U {∞}, min, +)	Shortest paths		
(S, select, select)	Select subgraph, or contract nodes to form quotient graph		
(edge/vertex attributes, vertex data aggregation, edge data processing)	Schema for user-specified computation at vertices and edges		
(R, max, +)	Graph matching &network alignment		
(R, min, times)	Maximal independent set		

- Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
- Add: Traverses edges, Multiply: Combines edges/paths at a vertex
- Neither add nor multiply needs to have an inverse.
- Both add and multiply are associative, multiply distributes over add

BFS in GraphBLAS with Masks

```
GrB_Vector q;
GrB_Vector_new(&q,GrB_BOOL,n);
GrB_Vector_setElement(q,(bool)true,s);
```

GrB_Monoid Lor; GrB_Monoid_new(&Lor,GrB_LOR,false);

```
GrB_Semiring Boolean;
GrB_Semiring_new(&Boolean, Lor, GrB_LAND);
```

// vertices visited in each level
// Vector<bool> q(n) = false
// q[s] = true, false everywhere else

// Logical-or monoid

// Boolean semiring

GrB_Descriptor desc; // Descriptor for vxm GrB_Descriptor_new(&desc); GrB_Descriptor_set(desc,GrB_MASK,GrB_SCMP); // invert the mask GrB_Descriptor_set(desc,GrB_OUTP,GrB_REPLACE); // clear the output before assignment

```
GrB_UnaryOp apply_level;
GrB_UnaryOp_new(&apply_level, return_level, GrB_INT32, GrB_BOOL);
```

Push-pull ≡ column-row matvec!

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP'18

Masks make "pull" implementable in GraphBLAS

Row-based matvec w/ mask

Column-based matvec w/ mask

Complexity: $O(dN) \rightarrow O(d nnz(m))$

- d: average vertex degree
- *nnz(m)* is the number nonzeros in the mask
- N is the matrix/vector length

A work-efficient parallel algorithm for sparse matrix-sparse vector multiplication (SpMSpV)

- Goal: A scalable SpMSpV algorithm without doing more work on higher concurrency
- Application: Breadth-first search, graph matching, support vector machines, etc.
- Algorithmic innovation:
 - Attains work-efficiency by arranging necessary columns of the matrix into buckets where each bucket is processed by a single thread
 - Avoids synchronization by row-wise partitioning of the matrix on the fly
- Performance:
 - First ever Work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24core Intel by Bridge processor and aptro 49x speedup on a 64-core KNL processor
 - Up to an order of magnitude faster than its competitors, especially for sparser vector

Performance of Linear Algebraic Graph Algorithms

Combinatorial BLAS fastest among all tested graph processing frameworks on 3 out of 4 benchmarks in an independent study by Intel.

The linear algebra abstraction enables high performance, within 4X of native performance for PageRank and Collaborative filtering.

Satish, Nadathur, et al. "Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets", in SIGMOD'14

Machine Learning for Science

Classification

Classification + Localization

Object Detection

Instance Segmentation

Slide source: Prabhat

Machine Learning relies a lot on Linear Algebra

Graph/Sparse/Dense BLAS functions (in increasing arithmetic intensity)

Implicit Parallelization: Keep the overall algorithm structure (the sequence of operations) intact and parallelize the individual operations.

Example: parallelizing the BLAS operations in previous figure + Often achieves exactly the same accuracy (e.g., model parallelism in DNN training)

- Scalability can be limited if the critical path of the algorithm is long

Explicit Parallelization: Modify the algorithm to extract more parallelism, such as working on individual pieces whose results can later be combined

Examples: CA-SVM and data parallelism in DNNs

- + Significantly better scalability can be achieved
- No longer the same algorithmic properties (e.g. HogWild!).

Philosophy of the Markov Cluster Algorithm (MCL)

The number of **edges or higher-length paths** between two arbitrary nodes in a cluster is greater than the number of paths between nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm **computes the probability** of random walks through the graph and **removes lower probability terms** to form clusters₇

Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for discovering clusters in protein interaction and protein similarity networks

At each iteration:

Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

A combined expansion and pruning step

□ b: number of columns in the output constructed at once

- Smaller b: less parallelism, memory efficient (b=1 is equivalent to sparse matrix-sparse vector multiplication used in MCL)
- Larger b: more parallelism, memory intensive

A combined expansion and pruning step

□ b: number of columns in the output constructed at once

- HipMCL selects b dynamically as permitted by the available memory
- The algorithm works in h=N/b phases where N is the number of columns (vertices in the network) in the matrix

HipMCL: High-performance MCL

- MCL process is both computationally expensive and memory hungry, limiting the sizes of networks that can be clustered
- HipMCL overcomes such limitation via sparse parallel algorithms.
- Up to 1000X times faster than original MCL with same accuracy.

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks, *Nucleic Acids Research, 2018*

Data	Proteins	Edges	#Clusters	HipMCL time	platform
Isolate-1	47M	7 B	1.6M	1 hr	1024 nodes Edison
Isolate-2	69M	12 B	3.4M	1.66 hr	1024 nodes Edison
Isolate-3	70M	68 B	2.9M	2.41 hr	2048 nodes Cori KNL
MetaClust50	282M	37B	41.5M	3.23 hr	2048 nodes Cori KNL

MCL can not cluster these networks

The computation cube of matrix-matrix multiplication

Matrix multiplication: $\forall (i,j) \in n \times n$, $C(i,j) = \Sigma_k A(i,k)B(k,j)$,

The computation (discrete) cube:

- A face for each (input/output) matrix
- A grid point for each multiplication •

How about sparse algorithms?

1D algorithms

2D algorithms

3D algorithms

3D parallel SpGEMM in a nutshell

Azad, A., Ballard, G., Buluc, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S. and Williams, S., 2016. Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication. *SIAM Journal on Scientific Computing*, *38*(6), pp.C624-C651.

3D SpGEMM performance

Strong scaling of different variants of 2D and 3D algorithms when squaring of nlpkkt160 matrix on Edison.

New shared-memory SpGEMM kernels

- Compression ratio (CR): flops/nnz(C)
- Combinatorial BLAS and HipMCL uses heap
- Stable performance but significant gap in high CR
- HipMCL inputs have high CR

We will integrate hash algorithms to CombBLAS and HipMCL

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Buluc. High-performance sparse matrix-matrix products on intel KNL and multicore architectures. In ICPPW, 2018. **Sparse Inverse Covariance Matrix Estimation**

- ° Precision matrix = Inverse covariance matrix
- [°] **Goal**: Estimating <u>graphical model structure</u>
- ° "The zeros of a precision matrix correspond to zero partial correlation, a necessary and sufficient condition for conditional independence (Lauritzen, 1996)"
- ° Sparsity often enforced by regularization
- ° One algorithm (HP-CONCORD)'s objective function:

 $\underset{\Omega \in \mathbf{R}^{p \times p}}{\text{minimize}} \quad -\log \det(\Omega_D^2) + \mathbf{tr}(\Omega S \Omega) + \lambda_1 \|\Omega_X\|_1 + \frac{\lambda_2}{2} \|\Omega\|_F^2,$

 $^\circ$ Ω is the sparse inverse covariance matrix we are trying to estimate

Partial Correlation (a.k.a. sparse inverse covariance estimation): direct association without confounders

- Gene Regulatory Network (GRN) estimation
- Joint modeling of SNPs and GRN
- Linkage Disequilibrium (LD) estimation
- Canonical Correlation Analysis (CCA)
- Genome-wide association studies (GWAS)

Data-driven hypothesis generation!

Fig. 1. Conditionally on the height of snow, the number of snowmen is independent of the intensity of traffic jams. This is represented by a two edges graph.

- Computationally challenging;
- HP-CONCORD on distributed memory increases scalability

HP-CONCORD Advantages

- HP-CONCORD makes fewer assumptions about the data (in particular, no Gaussianity is assumed) compared to competitors
- Thanks to communication-avoiding matrix algorithms, it reaches
 unprecedented scales
 - BigQUIC: previous state-of-the-art
 - Obs-K are our HP-CONCORD algorithm (K: number of nodes)
 - Experiment is trying to recover a random graph structure.

P. Koanantakool, A. Ali, A. Azad, A. Buluç, D. Morozov, S. Oh, L.Oliker, and K. Yelick "Communication-Avoiding Optimization Methods for Massive-Scale Graphical Model Structure Learning". In: International Conference on Artificial Intelligence and Statistics (AISTATS). 2018.

SpDM³: Sparse x Dense Matrix: The workhorse of HP-CONCORD

- The best algorithm when multiplying two matrices with unequal nonzero counts?
- ° Depends on the concurrency!

Training Neural Networks

• Training is to **adjust the weights (W)** in the connections of the neural network, in order to change the function it represents.

Only parameters are weights for simplicity (i.e. ignore bias parameters)

W: the matrix of weights

A "shallow" neural network with only one hidden layer (nodes 3,4,5), two inputs and one output.

$$W^{t+1} \leftarrow W^t - \alpha \cdot \nabla_W f(W^t, x)$$

- Also called the steepest descent algorithm
- In order to minimize a function, move towards the opposite direction of the gradient at a rate of α.
- α is the step size (also called the learning rate)
- Used as the *optimization backend* of many other machine learning methods (example: NMF)

42

Stochastic Gradient Descent (SGD)

Assume
$$f(W^t, x) = \frac{1}{n} \sum_{i=1}^n f_i(W^t, x)$$

 $W^{t+1} \leftarrow W^t - \alpha \cdot \nabla_w f_i(W^t, x)$

Pure SGD: compute gradient using 1 sample

$$W^{t+1} \leftarrow W^t - \alpha \cdot \frac{1}{b} \sum_{i=k+1}^{k+b} \nabla_W f_i(W^t, x)$$

Mini-batch: compute gradient using b samples

f is not going down for every iteration

- Actually the name is a misnomer, this is not a "descent" method
- But we will stick to it anyway to avoid confusion.
- Performance and parallelism requires batch training
- Larger batch sizes hurt convergence as they get trapped easily
- SGD escapes sharp local minima due to its "noisy" gradients

SGD training of NNs as matrix operations

X_{in}: inputs to this layer

The impact to parallelism:

- W is replicated to processor, so it doesn't change
- X_{in} and X_{out} gets skinnier if we only use data parallelism, i.e. distributing b=B/p mini-batches per processor
- GEMM performance suffers as *matrix dimensions get smaller* and *more skewed*
- **Result:** Data parallelism can hurt single-node performance

Data Parallel SGD training of NNs as matrix operations

Model Parallel SGD training of NNs as matrix operations

- 1. Which matrices are replicated?
- 2. Where is the communication?
- 3. How can matrix algebra capture both model and data parallelism?

Combinations of various parallelism opportunities

- There are various different ways to combine DNN training parallelism opportunities.
 - It helps to think in terms of matrices again.
- We will exploit *communication-avoiding matrix algorithms*; which trade off some storage (judicious replication) at the expense of reduced communication.
 - Deep Learning community is already OK with data or model replication in many cases

A succinct classification of parallel matrix multiplication algorithms

Data & Model Parallel SGD training of NNs as matrix operations

A. Gholami, A. Azad, P. Jin, K. Keutzer, A. Buluç. Integrated Model, Batch, and Domain Parallelism in Training Neural Networks. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'18)

For large processes integrated could provide up to 2x speedup

Conclusions

- Both graph algorithms and machine learning have growing importance in scientific applications
- Not everything is [sparse] linear algebra, but a lot of things are!
- Transfer of techniques and knowledge is easier when your scientific base is not domain specific
- Communication-avoiding [sparse] linear algebra algorithms provide unprecedented scaling for problems outside traditional scientific computing, such as computational biology, graph analysis, and machine learning.
- Check out http://graphblas.org, HipMCL, and HP-CONCORD

My lab website: <u>http://passion.lbl.gov</u>

Alnur Ali, Ariful Azad, David Bader, Grey Ballard, Scott Beamer, James Demmel, Amir Gholami, John Gilbert, Giulia Guidi, Laura Grigori, Peter Jin, Jeremy Kepner, Kurt Keutzer, Penporn Koanantakool, Nikos Kyrpides, Tim Mattson, Scott McMillan, Dmitriy Morozov, Jose Moreira, Yusuke Nagasaka, Sang-Yun Oh, Lenny Oliker, John Owens, Christos Ouzounis, Georgios Pavlopoulos, Prabhat, Dan Rokhsar, Oded Schwartz, Sivan Toledo, Sam Williams, Carl Yang, Kathy Yelick.

My work is funded by

