
Communication-Avoiding Sparse Matrix
Algorithms for Large Graph and Machine
Learning Problems

Aydın	Buluç
Computational	Research	Division,	LBNL
EECS	Department,	UC	Berkeley

New Architectures and Algorithms
IPAM	(UCLA),	Nov	28,	2018

Large	Graphs	in	Scientific	Discoveries

1 52 3 4
1

5

2
3
4

A

1

5

2

3

4

1

5

2

3

4

1 52 3 4
4

2

5
3
1

PA
Matching	in	bipartite	graphs:	Permuting	to	heavy	diagonal	or	block	triangular	form	

Graph	partitioning:	Dynamic	load	
balancing	in	parallel	simulations	

Picture	(left)	credit:	Sanders	and	Schulz

Problem	size:	as	big	as	the	sparse	
linear	system	to	be	solved	or	the	
simulation	to	be	performed

Large	Graphs	in	Scientific	Discoveries

Schatz et al. (2010) Perspective: Assembly of Large Genomes
w/2nd-Gen Seq. Genome Res. (figure reference)

Whole genome assembly
Graph Theoretical
analysis of Brain

Connectivity

Potentially	millions	of	
neurons	and	billions	of	edges	
with	developing	technologies

26	billion	(8B	of	which	are	non-erroneous)	
unique	k-mers (vertices)	in	the	hexaploit
wheat	genome	W7984	for	k=51

Vertices:	k-mers

Vertices:	reads

Sparse	Matrices

“I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were ‘sparse’
in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Graphs	in	the	language	of	matrices

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism: searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*:	A	measure	of	influence	in	graphs,	based	on	shortest	paths

FAT

à

AT F
6

1 2

3

4 7 5

Graph	coarsening	via	sparse	
matrix-matrix	products

1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =
2

1
2 1

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.

The	GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

GraphBLAS Status: C API 1.2 released and in use
• Implementations of the GraphBLAS C specification:
– SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.html
– IBM https://github.com/IBM/ibmgraphblas
– Test suite for validating an implementation of the C-spec from SEI/CMU

… to be released “soon”

• Systems using the GraphBLAS
– RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis
Module, using GraphBLAS sparse matrices for internal data representation
and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/
– Lincoln Labs GraphProcessor designed around the GraphBLAS.

• C++ bindings to the GraphBLAS
– GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
– Gunrock for GPUs: https://github.com/gunrock/gunrock-grb

8

GraphBLAS C	API	Spec	(http://graphblas.org)

• Goal:	A	crucial	piece	of	the	GraphBLAS effort	is	to	translate	the	mathematical	
specification	to	an	actual	Application	Programming	Interface	(API)	that	
i. is	faithful	to	the	mathematics	as	much	as	possible,	and
ii. enables	efficient	implementations	on	modern	hardware.	

• Impact:	All	graph	and	machine	learning	algorithms	that	can	be	expressed	in	the	
language	of	linear	algebra

• Innovation:	Function	signatures	(e.g.	mxm,	vxm,	assign,	extract), parallelism	constructs	
(blocking	v.	non-blocking),	fundamental	objects	(masks,	matrices,	vectors,	descriptors),	a	
hierarchy	of	algebras	(functions,	monoids,	and	semiring)

A.	Buluç,	T.	Mattson,	S.	McMillan,	J.	Moreira,	C.	Yang.	“The	GraphBLAS	C	API	Specification”,	version	1.2.0

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M)	⊕=	AT ⊕.⊗ BT

The	case	for	sparse	matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

Traditional	graph	
computations

Graphs	in	the	language	of	
linear	algebra

Data	driven,
unpredictable	communication.

Fixed	communication	patterns

Irregular	and	unstructured,	
poor	locality	of	reference

Operations	on	matrix	blocks	exploit	
memory	hierarchy

Fine	grained	data	accesses,	
dominated	by	latency

Coarse	grained	parallelism,	
bandwidth	limited

Sparse	matrix X	sparse	matrix

x

Sparse	matrix	X	sparse	vector

x

.*

Linear-algebraic	primitives	for	graphs

Element-wise	operations Sparse	matrix	indexing

Is	think-like-a-vertex	really	more	productive?	
“Our	mission	is	to	build	up	a	linear	algebra	sense	to	the	extent	that	
vector-level	thinking	becomes	as	natural	as	scalar-level	thinking.”
- Charles	Van	Loan

Graph	Algorithms	on	GraphBLAS

Sparse	-
Dense	Matrix	

Product
(SpDM3)

Sparse	-
Sparse	Matrix	

Product
(SpGEMM)

Sparse	Matrix	
Times	Multiple	
Dense	Vectors

(SpMM)

Sparse	Matrix-
Dense	Vector	

(SpMV)

Sparse	Matrix-
Sparse	Vector	
(SpMSpV)

GraphBLAS primitives	in	increasing	arithmetic	intensity

Shortest	paths	
(all-pairs,	

single-source,	
temporal)

Graph	clustering	
(Markov	cluster,	
peer	pressure,	
spectral,	local)

Miscellaneous:	
connectivity,	traversal	
(BFS),	independent	sets	
(MIS),	graph	matching	

Centrality
(PageRank,	

betweenness,	
closeness)

Examples	of	semirings	in	graph	algorithms

Real	field:	 (R,	+,	x) Classical	numerical	linear	algebra

Boolean	algebra:		({0 1},	|, &) Graph	connectivity

Tropical	semiring:	(R	U	{∞}, min, +) Shortest	paths

(S, select, select) Select subgraph,	or	contract	nodes	to	
form	quotient	graph

(edge/vertex attributes, vertex	data	
aggregation,	edge data	processing)

Schema	for	user-specified	
computation	at	vertices	and	edges

(R,	max,	+) Graph	matching	&network alignment

(R, min,	times) Maximal	independent	set

• Shortened	semiring	notation:	(Set,	Add,	Multiply).	Both	identities	omitted.	
• Add:	Traverses	edges,	Multiply:	Combines	edges/paths	at	a	vertex
• Neither	add	nor	multiply	needs	to	have	an	inverse.		
• Both	add and	multiply are	associative,	multiply distributes over	add

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first	search	in	
the	language	of	matrices

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Particular	semiring	operations:	
Multiply:	select
Add:	minimum

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select	vertex	with
minimum label	as	parent

1

1parents:
4

2

2

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7

3

1

1parents:
4

2

2

5

3

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

BFS	in	GraphBLAS with	Masks

Push-pull ≡ column-row matvec!

Pull Push

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

Masks	make	“pull”	implementable
in	GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

Complexity: O(dN) à O(d nnz(m))
• d: average vertex degree
• nnz(m) is the number nonzeros in the mask
• N is the matrix/vector length

A	work-efficient	parallel	algorithm	for	
sparse	matrix-sparse	vector	multiplication	(SpMSpV)	

• Goal:	A	scalable	SpMSpV algorithm	without	doing	more	work	on	higher	concurrency
• Application:	Breadth-first	search,	graph	matching,	support	vector	machines,	etc.	
• Algorithmic	innovation:

§ Attains	work-efficiency	by	arranging	necessary	columns	of	the	matrix	into	buckets	
where	each	bucket	is	processed	by	a	single	thread

§ Avoids	synchronization	by	row-wise	partitioning	of	the	matrix	on	the	fly
• Performance:	

– First	ever	work-efficient	algorithm	for	SpMSpV that	attains	up	to	15x	speedup	on	a	24-
core	Intel	Ivy	Bridge	processor	and	up	to	49x	speedup	on	a	64-core	KNL	processor

– Up	to	an	order	of	magnitude	faster	than	its	competitors,	especially	for	sparser	vector1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

X-axis:	Number	of	cores	
(Intel	Ivy	Bridge)

Ti
m
e	
(m

ill
ise

co
nd

s)

A.Azad,	A.	Buluç.	A	work-efficient	parallel	sparse	matrix-sparse	vector	
multiplication	algorithm.	IPDPS’17	

Performance	of	Linear	Algebraic
Graph	Algorithms

Combinatorial	BLAS	fastest	among	all	
tested	graph	processing	frameworks	
on	3	out	of	4	benchmarks	in	an	
independent	study	by	Intel.	

The	linear	algebra	abstraction	
enables	high	performance,	within	4X	
of	native	performance	for	PageRank	
and	Collaborative	filtering.

Satish,	Nadathur,	et	al.	"Navigating	the	Maze	of	Graph	
Analytics	Frameworks	using	Massive	Graph	Datasets”,	
in	SIGMOD’14

Machine	Learning	for	Science

Slide source: Prabhat

Sparse	x	
Dense	
Matrix
(SpDM3)

Sparse	x	
Sparse	
Matrix

(SpGEMM)

Sparse	Matrix-
Multiple	

Dense	Vectors
(SpMM)

Sparse	
Matrix-

Dense	Vector	
(SpMV)

Sparse	
Matrix-
Sparse	
Vector	

(SpMSpV)

Graph/Sparse/Dense	BLAS	functions	(in	increasing	arithmetic	intensity)

Partial	
Correlation	
Estimation	
(CONCORD)

Clustering	
(e.g.,	MCL,	
Spectral	

Clustering)

Logistic	
Regression,	

Support	Vector	
Machines

Dimensionality	
Reduction	

(NMF,	CX,	PCA)

Higher-level	machine	learning	tasks

Deep	Learning	
(Neural	Nets)

Dense	
Matrix-
Vector
(BLAS2)

Dense	
Matrix-
Matrix
(BLAS3)

Machine Learning relies a lot on Linear Algebra

Parallelism in Machine Learning

Implicit Parallelization: Keep the overall algorithm structure
(the sequence of operations) intact and parallelize the
individual operations.
Example: parallelizing the BLAS operations in previous figure
+ Often achieves exactly the same accuracy (e.g., model parallelism
in DNN training)
- Scalability can be limited if the critical path of the algorithm is long

Explicit Parallelization: Modify the algorithm to extract more
parallelism, such as working on individual pieces whose
results can later be combined
Examples: CA-SVM and data parallelism in DNNs
+ Significantly better scalability can be achieved
- No longer the same algorithmic properties (e.g. HogWild!).

26

27

Philosophy of the Markov Cluster Algorithm (MCL)

The	number	of	edges	or	higher-length	paths	between	two	arbitrary	
nodes	in	a	cluster	is	greater	than	the	number	of	paths	between	
nodes	from	different	clusters

Random	walks on	the	graph	will	frequently	remains	within	a	cluster

The	algorithm	computes	the	probability	of		random	walks	through	
the	graph	and	removes	lower	probability	terms	to	form	clusters

Markov Cluster Algorithm (MCL)

28

Iteration	1 Iteration	2 Iteration	3Initial	network

Widely	popular	and	successful	algorithm	for	discovering	
clusters	in	protein	interaction	and	protein	similarity	networks

At	each	iteration:
Step	1	(Expansion):	Squaring	the	matrix	while	

pruning	(a)	small	entries,	(b)	denser	columns
Naïve	implementation:	sparse	matrix-matrix	product	(SpGEMM),	
followed	by	column-wise	top-K	selection	and	column-wise	pruning
Step	2 (Inflation)	:	taking	powers	entry-wise

A	combined	expansion	and	pruning	step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b:	number	of	columns	in	the	output	constructed	at	once
– Smaller	b:	less	parallelism,	memory	efficient	(b=1	is	equivalent	
to	sparse	matrix-sparse	vector	multiplication	used	in	MCL)

– Larger	b:	more	parallelism,	memory	intensive	

A	combined	expansion	and	pruning	step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b:	number	of	columns	in	the	output	constructed	at	once
– HipMCL	selects	b	dynamically	as	permitted	by	the	available	
memory	

– The	algorithm	works	in	h=N/b	phases	where	N	is	the	number	of	
columns	(vertices	in	the	network)	in	the	matrix

HipMCL:	High-performance	MCL

• MCL	process	is	both	computationally	expensive	and	memory	
hungry,	limiting	the	sizes	of	networks	that	can	be	clustered

• HipMCL overcomes	such	limitation	via	sparse	parallel	algorithms.	
• Up	to	1000X	times	faster than	original	MCL	with	same	accuracy.	

A.	Azad,	G.	Pavlopoulos,	C.	Ouzounis,	N.	Kyrpides,	A.	Buluç; HipMCL:	a	high-performance	parallel	
implementation	of	the	Markov	clustering	algorithm	for	large-scale	networks, Nucleic	Acids	Research,	2018

x =

𝐴"## 𝐴"$#

𝐴### 𝐴#$#

𝐴$## 𝐴$$#

𝐴""#

𝐴#"#

𝐴$"#

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process	Gridp × p

HipMCL on	large	networks

32

Data Proteins Edges	 #Clusters HipMCL
time platform

Isolate-1 47M 7	B 1.6M 1	hr 1024	nodes	
Edison

Isolate-2 69M 12	B 3.4M 1.66	hr 1024	nodes
Edison

Isolate-3 70M 68	B 2.9M 2.41	hr 2048	nodes	
Cori	KNL

MetaClust50 282M 37B 41.5M 3.23	hr 2048	nodes	
Cori	KNL

MCL can not cluster these networks

The	computation	cube	of
matrix-matrix	multiplication

Matrix multiplication: "(i,j)	Î n	x	n,	 C(i,j)	=	Sk A(i,k)B(k,j),

A B
C

The	computation	(discrete)	cube:

• A	face	for	each	(input/output)	matrix	

• A	grid	point	for	each	multiplication

1D	algorithms 2D	algorithms 3D	algorithms

How	about	sparse	algorithms?

3D	parallel	SpGEMM	in	a	nutshell

Azad,	A.,	Ballard,	G.,	Buluc,	A.,	Demmel,	J.,	Grigori,	L.,	Schwartz,	O.,	Toledo,	S.	and	Williams,	S.,	2016.	Exploiting	multiple	
levels	of	parallelism	in	sparse	matrix-matrix	multiplication. SIAM	Journal	on	Scientific	Computing, 38(6),	pp.C624-C651.

A::1$

A::2$

A::3$

n pc

Al
lto

Al
l%

Al
lto

Al
l%

C int
ijk = Ailk

l=1

p/c

∑ Bljk

A$ B$ Cintermediate$ Cfinal%

x$

x$

x$

=$

=$

=$

!$

!$

!$

3D	SpGEMM	performance

64 256 1024 4096 163840.25

1

4

16

Number of Cores

Ti
m

e
(s

ec
)

nlpkkt160 x nlpkkt160 (on Edison)

2D (t=1)
2D (t=3)
2D (t=6)
3D (c=4, t=1)
3D (c=4, t=3)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

2D
#threads

increasing

3D
#layers &
#threads

 increasing

Strong	scaling	of	different	variants	of	2D	and	3D	algorithms	when	squaring	of	nlpkkt160	matrix	on	Edison.

2D	(non-threaded)	
is	the	previous	
state-of-the	art

3D	(threaded)	– first	
presented	here	– beats	
it	by	8X	at	large	
concurrencies

New	shared-memory	SpGEMM kernels

• Compression	ratio	(CR):	
flops/nnz(C)

• Combinatorial BLAS	and
HipMCL uses heap

• Stable performance but	
significant gap in	high	CR

• HipMCL inputs have high	CR

Yusuke	Nagasaka,	Satoshi	Matsuoka,	Ariful
Azad,	and	Aydin	Buluc.	High-performance	
sparse	matrix-matrix	products	on	intel	KNL	and	
multicore	architectures.	In	ICPPW,	2018.

• We	will	integrate	hash	
algorithms	to	CombBLAS
and	HipMCL

Sparse Inverse Covariance Matrix Estimation

° Precision matrix = Inverse covariance matrix
° Goal: Estimating graphical model structure

° “The zeros of a precision matrix correspond to zero
partial correlation, a necessary and sufficient condition
for conditional independence (Lauritzen, 1996)”

° Sparsity often enforced by regularization
° One algorithm (HP-CONCORD)’s objective function:

° Ω is the sparse inverse covariance matrix we are trying
to estimate

Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

tion is vast, so we cannot possibly give a complete
coverage of it here; some influential papers include
[32, 48, 19, 36, 9]. On the computational side, a lot of
the recent work has looked at developing scalable algo-
rithms, specifically for a shared memory environment.
However, in a “massive-scale” setting, where p, n are
so large that using a single machine/node is infeasi-
ble, it may be more suitable to consider a distributed
memory approach; e.g., functional magnetic resonance
imaging (fMRI) data sets easily run into the hundreds
of gigabytes and require fitting billions of parameters.
In these cases, the literature is somewhat lacking, with
a few exceptions that we return to later [42, 22].

With this motivation in mind, we propose a new,
highly scalable parallel proximal gradient method, for
obtaining a sparse estimate of the inverse covariance
matrix, in shared and/or distributed memory settings.
The method, called HP-CONCORD (“HP” stands
for “high-performance”), builds on the recently intro-
duced CONCORD [23, 34] and PseudoNet [3] esti-
mators, and explicitly minimizes the communication
costs between nodes by leveraging ideas from the lit-
erature on communication-avoiding algorithms [14].
Highlighting some of our findings: on a single node,
HP-CONCORD is about an order of magnitude faster
at fitting ⇡800 million parameters than BigQUIC, a
well-known method for scalable sparse inverse covari-
ance estimation [21], and also demonstrates good scal-
ability on a cluster with 1,024 nodes, where it is able
to fit ⇡819 billion parameters in ⇡17 minutes.

Here is an outline for the rest of the paper. In the
next section, we give background on the CONCORD
and PseudoNet estimators, as well as communication-
avoiding algorithms, required to understand our
method; in Section 3, we describe our method, HP-
CONCORD. In Section 4, we evaluate HP-CONCORD
on high-dimensional synthetic data, comparing it to
BigQUIC. In Section 5, we present an in-depth em-
pirical study, where we use HP-CONCORD to esti-
mate the underlying partial correlation structure of
the brain from high-dimensional fMRI data, requiring
fitting ⇡4 billion parameters. We wrap-up in Sec. 6.

2 BACKGROUND

CONCORD. Recent work [23] proposed the CON-
CORD estimator; CONCORD is a pseudolikelihood -
based [10] estimator of the inverse covariance ma-
trix, meaning (roughly) that it obtains an estimate
by solving a sequence of lasso-like problems, rather
than explicitly minimizing an `1-penalized Gaussian
likelihood, making CONCORD suitable for situations
where the underlying distribution is suspected to be
non-Gaussian. Along these lines, CONCORD outper-

formed a number of strong competitors, including the
graphical lasso [19], on several real-world data sets
[23, 34, 3]. CONCORD also enjoys favorable estima-
tion error and support recovery guarantees [23, 3].

PseudoNet. Follow-up work [3] proposed the
PseudoNet estimator, which generalizes CONCORD,
and attains much better statistical and empirical per-
formance. The PseudoNet estimate is defined as the
solution to the convex optimization problem,

minimize
⌦2Rp⇥p

�log det(⌦2
D)+tr(⌦S⌦)+�1k⌦Xk1+

�2

2
k⌦k2F ,
(1)

where ⌦D,⌦X 2 R
p⇥p denote the matrices containing

just the diagonal and o↵-diagonal entries of ⌦, respec-
tively; S = 1

nX
T
X 2 S

p
+ is the sample covariance ma-

trix; X 2 R
n⇥p is the observation matrix; �1,�2 � 0

are tuning parameters; and k · k1, k · kF denote the el-
ementwise `1- and Frobenius norms, respectively. As
far as the criterions are concerned, the only di↵erence
between PseudoNet and CONCORD is the presence
of the squared Frobenius norm penalty, i.e., setting
�2 = 0 recovers the CONCORD criterion, analogous
to the relationship between the elastic net [49] and the
lasso. Thus, to keep things simple, we use the names
CONCORD and PseudoNet interchangeably.

As the criterion (1) is the sum of smooth and nons-
mooth convex functions, optimizing (1) with a proxi-
mal gradient method [35] is natural. Applying a proxi-
mal gradient method to (1), as in [3], yields Algorithm
1. A comment on notation: we use S↵(Z) to denote
elementwise soft-thresholding operator (i.e., the proxi-
mal operator of the `1-norm) at Z 2 R

p⇥p with ↵ > 0,

[S↵(Z)]ij =

8
><

>:

Zij � ↵, Zij > ↵

Zij + ↵, Zij < �↵

0, otherwise

, i, j = 1, . . . , p.

(2)

Key bottlenecks. Algorithm 1 has some key com-
putational bottlenecks that are especially problematic
in a high-dimensional setting. First and foremost, as-
suming dense matrices, computing the matrix product
⌦(k)

S, on each proximal gradient and line search iter-
ation, costs O(p3). Computing the covariance matrix
S has the one-time upfront cost of O(p2n). Finally,
transposing ⌦(k)

S swaps O(p2) entries each iteration.

Thus, despite CONCORD’s many favorable statisti-
cal properties, these bottlenecks make scaling CON-
CORD to massive data sets challenging. For example,
Algorithm 1 can reconstruct the underlying gene-gene
associations in a breast cancer data set, where p ⇡ 4k,
in just ⇡10 minutes, but it quickly becomes extremely
slow or even intractable when analyzing the complete

Why care? Finding Direct Associations

Partial Correlation (a.k.a. sparse inverse covariance estimation):
direct association without confounders

• Gene Regulatory Network (GRN) estimation

• Joint modeling of SNPs and GRN

• Linkage Disequilibrium (LD) estimation

• Canonical Correlation Analysis (CCA)

• Genome-wide association studies (GWAS)

Data-driven hypothesis generation!

o Computationally challenging;

o HP-CONCORD on distributed memory increases scalability

HP-CONCORD Advantages

• HP-CONCORD makes fewer assumptions about the data (in particular,
no Gaussianity is assumed) compared to competitors

• Thanks to communication-avoiding matrix algorithms, it reaches
unprecedented scales

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

10k 20k 40k 80k 160k 320k

T
im

e
 (

se
co

n
d

s)

p (#features)

BigQUIC
Obs-1
Obs-4
Obs-16
Obs-64
Obs-256

o BigQUIC: previous
state-of-the-art

o Obs-K are our HP-
CONCORD algorithm
(K: number of nodes)

o Experiment is trying to
recover a random graph
structure.

P.	Koanantakool,	A.	Ali,	A.	Azad,	A.	Buluç,	D.	Morozov,	S.	Oh,	L.Oliker,	and	K.	Yelick “Communication-
Avoiding	Optimization	Methods	for	Massive-Scale	Graphical	Model	Structure	Learning”.	In:	
International	Conference	on	Artificial	Intelligence	and	Statistics	(AISTATS).	2018.	

SpDM3: Sparse x Dense Matrix: The workhorse of HP-CONCORD

°The best algorithm
when multiplying two
matrices with unequal
nonzero counts?
°Depends on the

concurrency!

Koanantakool,	Penporn,	et	al.	"Communication-avoiding	parallel	sparse-dense	matrix-matrix	
multiplication."	IPDPS,	2016

Matrix Multiplication Algorithms

5Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication

A A A

B B B

C C C
1D 2D 3D

2.5D1.5D

p0

p0

A (sparse) C (dense)

B (dense)

A (sparse) C (dense)

B (dense)

2D
(SUMMA)

1D
Optimal for

dense-dense/
sparse-sparse

matmul

[Solomonik and
Demmel 2011]

[Ballard et al. 2013]

*2D and 3D images
courtesy of Grey Ballard

0 20 40 60 80 100

65,536
32,768
16,384
8,192
4,096
2,048
1,024

512
256
128
64
32
16
8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC

3D SUMMA ABC
c=16
c=8
c=4
c=2
c=1

(a) 1:1

0 20 40 60 80 100

65,536
32,768
16,384
8,192
4,096
2,048
1,024

512
256
128
64
32
16
8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC 3D SUMMA ABC

(b) 200,200:17,160 = 11.67:1

0 20 40 60 80 100

65,536
32,768
16,384
8,192
4,096
2,048
1,024

512
256
128
64
32
16
8
4

N
um

be
r o

f p
ro

ce
ss

or
s

nnz(A)/nnz(B) (%)

1.5D Col A

1.5D ABC

3D SUMMA ABC

(c) 66,185:172,431 = 0.38:1
Fig. 4: Illustrating areas that each algorithm has theoretically lowest overall bandwidth cost. X-axis is the ratio of nnz(A) versus nnz(B). Y-axis is the
number of processors. There are three subgraphs for three different nnz(C) : nnz(B) ratios. 1.5D ABC stands for both Col ABC and InnerABC. The area
for 1.5D ABC includes the area for 1.5D Col A. Best replication factors for each data point are shown in colors. General observation is that ColA is best for
sparser matrices or lower concurrency while SummaABC is the opposite. 1.5D ABC algorithms help improve scalability of ColA.

to be considerably large for this trade-off to pay off. When
ColABC and InnerABC are not replicating, they have equal
overall bandwidth costs to ColA. SummaABC moves the dense
matrix B in every phase so it is unlikely to beat any of the 1.5D
algorithms in terms of bandwidth when A is very sparse. It
will become preferable again when nnz(A) becomes closer to
nnz(B), decreasing the message-size imbalance, or when the
number of processors grows large (since it minimizes latency).

It is best to obtain hardware parameters to determine this
latency-bandwidth trade-off. However, it would be great to
see the big picture of where each algorithm is most suitable
for without being specific to any particular machine. We
found that the bandwidth costs are more prominent in our
experiments, so we focus our analysis on just them for sim-
plicity. Dividing the bandwidth costs in Table I with nnz(B)
and representing nonzero ratios nnz(A)/ nnz(B) = f and
nnz(C)/ nnz(B) = g eliminate one variable off the table.
Knowing g, we can plot a graph with p and f as axes and
search for the best algorithm over all possible c’s at each
point. We picked three different nnz(C) : nnz(B) ratios (g),
1:1 in Figure 4a, 11.67:1 in Figure 4b, and 0.38:1 in Figure 4c.
For an SpDM3 problem, nnz(C) : nnz(B) ⇡ m : ` and can
be interpreted as the tallness of matrix A. For example, 1:1
means square A’s, 11.67:1 applies to tall A’s, and 0.38:1 refers
to rather fat A’s. We draw black lines to separate between
algorithms and use colors to show the best replication factors.
The best replication factor for ColA is always 1 because it
does not reduce bandwidth with increasing c. The area that
ColA wins is a subset of the area that ColABC and InnerABC
win. The graphs confirm the intuition from earlier analysis that
ColA is most suitable with very sparse matrices or small scale
runs. ColABC and InnerABC can help improve scalability
to some level, but eventually SummaABC wins as we move
towards larger concurrency or denser matrices.

Since this analysis is based on just nnz(A), nnz(B), and
nnz(C), it is trivially applicable to sparse-sparse matrix-matrix
multiplication (of different sparsities and/or sizes) or even
dense-dense matrix-matrix multiplication (of different sizes).

V. PERFORMANCE RESULTS

We implemented all four algorithms listed in Table I using
C++ and MPI. A is stored in zero-based indexing Compressed
Sparse Row (CSR) format;2 B and C are stored in row-major
format, except where noted. We used the multi-threaded Intel®
Math Kernel Library (MKL) for local sparse-dense matrix-
matrix multiplication (mkl dcsrmm). We ran our experiments
on Edison, a Cray XC30 machine at the National Energy
Research Scientific Computing Center (NERSC). Edison has
a Cray Aries interconnect with a Dragonfly topology and
consists of 5,576 compute nodes, each with 2 sockets of 12-
core Intel Ivy Bridge processors running at 2.4GHz and with
64 GB memory. We used Intel’s C++ compiler (icpc) version
15.0.1, Intel MKL version 11.2.1, and Cray MPICH version
7.3.1. All benchmarks are run with 2 MPI processes per node
and 12-way multi-threaded MKL operation per process. We
did not utilize Intel’s Hyper-Threading Technology nor Turbo
Boost Technology to avoid high performance variance.

A. Trends in Communication Costs
Figure 5 shows the cost breakdown of all algorithms running

on 3, 072 processors (256 MPI processes). A is an Erdős-
Rényi matrix with n=65, 536 and 41 nonzeroes per row
(0.0625% nonzeroes). The first two bars on the left belongs to
SummaABC where all three matrices are replicated 1 (i.e., not
at all) and 4 times, respectively. The next group is the ColA
algorithm in which A is partitioned into block columns and
replicated with the factors (c) shown above the algorithm’s
name. The last two groups are ColABC and InnerABC with
similar replication factors (c) shown in each label. All costs
in the stacked bars are average costs over all processors.

The computation times in green are unequal even though
all algorithms do the same amount of work. This is be-
cause the local MKL matrix-multiplication routine has varying

2The CSC (Compressed Sparse Column) format would scale better in
terms of storage for the blocked column algorithms, but we found MKL’s
multiplication routine for the CSC format (mkl dcscmm) significantly slower
than the CSR’s (mkl dcsrmm), so we used CSR format in all implementations.

41

Training Neural Networks

• Training is to adjust the weights (W) in the connections of the
neural network, in order to change the function it represents.

1

2

3

4

5

6

w1,3

w1,4
w1,5 w2,3

w2,4

w2,5

w3,6

w4,6

w5,6

A “shallow” neural network with only one hidden layer
(nodes 3,4,5), two inputs and one output.

x1

x2

y

Only parameters are
weights for simplicity (i.e.
ignore bias parameters)

W: the matrix of weights

42

Gradient Descent

Wt+1←Wt −α ⋅∇W f (W
t, x)

• Also called the steepest descent algorithm
• In order to minimize a function, move towards the opposite

direction of the gradient at a rate of α.
• α is the step size (also called the learning rate)
• Used as the optimization backend of many other machine

learning methods (example: NMF)

Stochastic Gradient Descent (SGD)

• Actually the name is a misnomer, this is not a “descent” method
• But we will stick to it anyway to avoid confusion.
• Performance and parallelism requires batch training
• Larger batch sizes hurt convergence as they get trapped easily
• SGD escapes sharp local minima due to its “noisy” gradients

Assume f (Wt, x) = 1
n

fi (W
t, x)

i=1

n

∑

Wt+1 ←Wt −α ⋅∇W fi (W
t, x)

Pure SGD: compute gradient using 1 sample

f is not going down for every iteration

Wt+1←Wt −α ⋅
1
b

∇W fi (W
t, x)

i=k+1

k+b

∑
Mini-batch: compute gradient using b samples

44

SGD training of NNs as matrix operations

N = the number of outputs
M = the number of inputs
B = the size of the minibatch

Xin: inputs to this layer

Xout: outputs of this layer

The impact to parallelism:
• W is replicated to processor, so it doesn’t change
• Xin and Xout gets skinnier if we only use data parallelism, i.e.

distributing b=B/p mini-batches per processor
• GEMM performance suffers as matrix dimensions get smaller and

more skewed
• Result: Data parallelism can hurt single-node performance

W: weights

N

M B

N

B

X =

45

Data Parallel SGD training of NNs as matrix operations

P0,	P1,	P2 P0 P1 P2*P0 P1 P2 di

di-1 B/P

Local
matmul

B/P

W XY

P0

P1

P2

P0 P1 P2 *

XT
�Y

Local
matmul

Low rank
intermediate
matrices
(one per
process)

AllReduce
on P sized

groups

�W

P0,	P1,	P2

P0
P1
P2

P0 P1 P2P00 P01 P02 *di-1

B/P

Local
matmul

WT �Y�X

di

1. Which matrices are replicated?
2. Where is the communication?
3. Which steps can be overlapped?

∇Y= ∂L/ ∂Y = how did the loss function
change as output activations changed?
∇X= ∂L/ ∂X
∇W= ∂L/ ∂W

46

Model Parallel SGD training of NNs as matrix operations

P0

P1

P0
P1

P0
P1 *

di/P

di-1 B

P0

P1
Local

matmul
AllGather
on P sized

groups

di/P

B

W XYintermediateY

P0, P1P0
P1

*

XT
�Y

Local
matmul

P0

P1

di/P

�W

P0 P1
P0
P1

P0
P1 *

di-1

B

Local
matmul

WT�X
intermediate �Y�X

di/P

Low rank
intermediate
matrices
(one per
process)AllReduce

on P sized
groups

1. Which matrices are replicated?
2. Where is the communication?
3. How can matrix algebra

capture both model and data
parallelism?

Combinations of various parallelism opportunities

• There are various different ways to combine DNN training
parallelism opportunities.
- It helps to think in terms of matrices again.

• We will exploit communication-avoiding matrix algorithms;
which trade off some storage (judicious replication) at the
expense of reduced communication.
- Deep Learning community is already OK with data or

model replication in many cases

B B B

C C C
1D 2D 3D

2.5D1.5D

A succinct classification of parallel matrix multiplication algorithms

Data & Model Parallel SGD training of NNs as matrix operations

A.	Gholami,	A.	Azad,	P.	Jin,	K.	Keutzer,	A.	Buluç.	Integrated	Model,	Batch,	and	Domain	Parallelism	in	Training	Neural	
Networks.	ACM	Symposium	on	Parallelism	in	Algorithms	and	Architectures	(SPAA’18)

P00,	P01,	P02

P10,	P11,	P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di/Pr

di-1 B/Pc

P00 P01 P02

P10 P11
Local

matmul
AllGather

on Pr
sized

groups

di/Pr

B/Pc

W XYintermediateY

P12

P00, P10

P01, P11

P02, P12

P00
P10

P01
P11

P02
P12

*

XT
�Y

Local
matmul

P00,	P01,	P02

P10,	P11,	P12

di/Pr Low rank
intermediate
matrices
(one per
process)

AllReduce
on Pc
sized

groups

�W

P00
P01
P02

P10
P11
P12

P00
P10

P01
P11

P02
P12

P00
P10

P01
P11

P02
P12 *

di-1

B/Pc

Local
matmul

WT�X
intermediate �Y�X

di/Pr

Low rank
intermediate
matrices
(one per
process)AllReduce

on Pr
sized

groups

Processes are
2D indexed:
P= Pr x Pc

Integrated Batch + Model Scaling

° For large processes integrated could provide up to
2x speedup

Conclusions

• Both graph algorithms and machine learning have growing
importance in scientific applications

• Not everything is [sparse] linear algebra, but a lot of things are!
• Transfer of techniques and knowledge is easier when your

scientific base is not domain specific
• Communication-avoiding [sparse] linear algebra algorithms

provide unprecedented scaling for problems outside
traditional scientific computing, such as computational biology,
graph analysis, and machine learning.

• Check out http://graphblas.org, HipMCL, and HP-CONCORD

My lab website: http://passion.lbl.gov

Acknowledgments

My work is funded by

Alnur Ali, Ariful Azad, David Bader, Grey Ballard, Scott
Beamer, James Demmel, Amir Gholami, John Gilbert,
Giulia Guidi, Laura Grigori, Peter Jin, Jeremy Kepner, Kurt
Keutzer, Penporn Koanantakool, Nikos Kyrpides, Tim
Mattson, Scott McMillan, Dmitriy Morozov, Jose Moreira,
Yusuke Nagasaka, Sang-Yun Oh, Lenny Oliker, John
Owens, Christos Ouzounis, Georgios Pavlopoulos,
Prabhat, Dan Rokhsar, Oded Schwartz, Sivan Toledo,
Sam Williams, Carl Yang, Kathy Yelick.

