—N
f(rrreee Im

”\ UNIVERSITY OF CALIFORNIA]
[BERKELEY LAB

Communication-Avoiding Sparse Matrix
Algorithms for Large Graph and Machine
Learning Problems

Aydin Buluc
Computational Research Division, LBNL
EECS Department, UC Berkeley

New Architectures and Algorithms

Large Graphs in Scientific Discoveries

1 2 3 4 5 1 2 3 4 5
1@ ° 1 1 1le @
2 o0 0 2 2 5] @ °
3 ° ° ; 3 3 ® °
sle @ 1@ °
5 ® ® 4 4 2 ® 06 ©
A 2 > PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

Graph partitioning: Dynamic load
balancing in parallel simulations

Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse
linear system to be solved or the
simulation to be performed

Large Graphs in Scientific Discoveries

Whole genome assembly

A Read Layout B Overlap Graph
: > C
R,: GACCTACA Vertices: reads & A
R,: ACCTACAA B
CCTACAAG " A o
R,: CTACAAGT _ ‘ Y
A: TACAAGTT Ry Ry Ry/ "R
B: ACAAGTTA of)
C: CAAGTTAG w\
X: TACAAGTC ’W .
Y: ACAAGTCC \:W
Z: CAAGTCCG
C de Bruijn Graph . TAG
Vertices: k-mers Ry
_,GTT
LGNGO EL

26 billion (8B of which are non-erroneous) @k
unique k-mers (vertices) in the hexaploit
wheat genome W7984 for k=51

Schatz et al. (2010) Perspective: Assembly of Large Genomes
w/2nd-Gen Seq. Genome Res. (figure reference)

Graph Theoretical
analysis of Brain
Connectivity

/ s. ";'M\, o
VJ ,m o,

Potentially millions of
neurons and billions of edges
with developing technologies

Sparse Matrices

“I observed that most of the
coetticients in our matrices were

\ zero; 1.e., the nonzeros were ‘sparse
Y. in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

>

as

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics & =

Graphs in the language of matrices

° O O
° O
° ’ .:0.9.0
° °
° ® O
°
Al F Al F

« Sparse array representation => space efficient
« Sparse matrix-matrix multiplication => work efficient
« Three possible levels of parallelism: searches, vertices, edges
« Highly-parallel implementation for Betweenness Centrality”
*: A measure of influence in graphs, based on shortest paths

Graph coarsening via sparse

matrix-matrix products

o A WN =
®
®
—

Aydin Bulug and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.

The GraphBLAS effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

The GraphBLAS Forum: http://graphblas.org

Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

GraphBLAS Status: C API 1.2 released and in use

* Implementations of the GraphBLAS C specification:
— SuiteSparse http://faculty.cse.tamu.edu/davis/suitesparse.htmi
— IBM https://github.com/IBM/ibmgraphblas
— Test suite for validating an implementation of the C-spec from SEI/CMU
... to be released “soon”

« Systems using the GraphBLAS
— RedisGraph v1.0 preview release:

o RedisGraph is a graph database architecture implemented as a Redis
Module, using GraphBLAS sparse matrices for internal data representation
and linear algebra for query execution.

o https://redislabs.com/blog/release-redisgraph-v1-0-preview/
— Lincoln Labs GraphProcessor designed around the GraphBLAS.

« C++ bindings to the GraphBLAS
— GBTL from SEI/CMU: https://github.com/cmu-sei/gbtl
— Gunrock for GPUs: https://github.com/gunrock/gunrock-grb

GraphBLAS C API Spec (http://graphblas.org)

* Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that

i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

e Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra
* Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs

(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

GrB _info GrB mxm(GrB Matrix *C, // destination
const GrB Matrix Mask,
const GrB_BinaryOp accum,
const GrB_Semiring op, — AT T
const GrB Matrix A, C(_IM) o= A @.® B
const GrB Matrix B
[, const Descriptor desc]) ;

A. Bulug, T. Mattson, S. McMiillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.2.0

The case for sparse matrices

Many irregular applications contain coarse-grained parallelism
that can be exploited by abstractions at the proper level.

Traditional graph

computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks exploit
memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

Linear-algebraic primitives for graphs

Sparse matrix X sparse matrix Sparse matrix X sparse vector
® ® ® C) ® ® ® P
o o X ® o X
® O o o o ® O o
® O o O ® O {
o o
Element-wise operations Sparse matrix indexing
o o o o o o o o
o o * o o ® & o o o
oo o oo o e o o0 °
® O L ® O ® O

Is think-like-a-vertex really more productive?

“Our mission is to build up a linear algebra sense to the extent that
vector-level thinking becomes as natural as scalar-level thinking.”

- Charles Van Loan

Graph Algorithms on GraphBLAS

Miscellaneous: Centrality Graph clustering Shortest paths
connectivity, traversal (PageRank, (Markov cluster, (all-pairs,

(BFS), independent sets betweenness, peer pressure, single-source,
(MIS), graph matching closeness) spectral, local) temporal)

J3SZT)\
=9\

Sparse Matrix Sparse -
Times Multiple Sparse Matrix
Dense Vectors Product

Sparse -

Sparse Matrix- Sparse Matrix- Dense Matrix

Sparse Vector Dense Vector
(SpMSpV) (SpMV)

Product
(SpDM3)

(SpMM) (SPGEMM)

GraphBLAS primitives in increasing arithmetic intensity

Examples of semirings in graph algorithms

Real field: (R, +, X)

Classical numerical linear algebra

Boolean algebra: ({01}, |, &)

Graph connectivity

Tropical semiring: (R U {00}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +)

Graph matching &network alignment

(R, min, times)

Maximal independent set

Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Neither add nor multiply needs to have an inverse.

Both add and multiply are associative, multiply distributes over add

Breadth-first search in
the language of matrices

from

Particular semiring operations:
Multiply: select
Add: minimum

from

parents: @

Select vertex with
minimum label as parent

parents:

S & O &

)

parents:

® ® ® & O &

BFS in GraphBLAS with Masks

GrB_Vector q; // wvertices wvisited in each level
GrB_Vector_new(&q,GrB.BOOL,n) ; // Vector<bool> q(n) = false
GrB_Vector_setElement (q,(bool)true,s); // q[s] = true, false everywhere else
GrB_Monoid Lor; // Logical—or monoid

GrB_Monoid_new(&Lor ,GrB_LOR, false);

GrB_Semiring Boolean; // Boolean semiring
GrB_Semiring_new(&Boolean ,Lor ,GrB.LAND) ;

GrB_Descriptor desc; // Descriptor for vzm
GrB_Descriptor_new(&desc);

GrB_Descriptor_set (desc ,GrB.MASK, GrB_.SCMP) ; // invert the mask
GrB_Descriptor_set (desc ,GrB.OUTP,GrB. REPLACE); // clear the output before assignment

GrB_UnaryOp apply_level;
GrB_UnaryOp_new(&apply_-level ,return_level ,GrB_.INT32,GrB_.BOOL);

/*
* BFS traversal and label the wvertices.

*/

level = 0;
GrB_Index nvals;
do {
++level ; // nmext level (start with 1)
GrB_apply (xv,GrB.NULL, GrB_PLUS_INT32, apply_level ,q,GrBNULL); // v[q] = level
GrB_vxm(q,*v,GrB.NULL, Boolean ,q,A, desc); // qllv] = q ||.668 A ; finds all the
// unvisited successors from current gq

GrB_Vector_nvals(&nvals, q);
} while (nvals); // if there is no successor in q, we are done.

Push-pull = column-row matvec!

input output input output

adjacency matrix vector vector adjacency matrix vector vector
< []
> []
> B |
> X = X =
>
>
> 4 \ A A / v

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

III .

implementable

Masks make “pul

in GraphBLAS

input output input
mask adjacency matrix vector vector mask adjacency matrix vector
X X = ¥ X = VX
. >
>
>
< v _ YVYY | 1] v
Row-based matvec w/ mask Column-based matvec w/ mask

Complexity: O(dN) - O(d nnz(m))

« d: average vertex degree

* nnz(m) is the number nonzeros in the mask
* N is the matrix/vector length

A work-efficient parallel algorithm for
sparse matrix-sparse vector multiplication (SpMSpV)

Goal: A scalable SpMSpV algorithm without doing more work on higher concurrency
Application: Breadth-first search, graph matching, support vector machines, etc.
Algorithmic innovation:

= Attains work-efficiency by arranging necessary columns of the matrix into buckets
where each bucket is processed by a single thread

= Avoids synchronization by row-wise partitioning of the matrix on the fly
Performance:

— First ever work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24-
core Intel lvy Bridge processor and up to 49x speedup on a 64-core KNL processor

— Up to an order of magnitude faster than its competitors, especially for sparser vector

wb-edu

16384

dielFilterV3real G3_circuit

-~ —O0— SpMSpV-bucket
<. N0 { | = CombBLAS-SPA

N —&O— CombBLAS-heap
— GraphMat

409 N = S

1024 OGS

1 2 4 8 16 32 X-axis: Number of cores
(Intel Ivy Bridge)

256 64

Time (milliseconds)

1 2 4 8 16 32 1 2 4 8 16 32

A.Azad, A. Bulug. A work-efficient parallel sparse matrix-sparse vector
multiplication algorithm. IPDPS’17

Performance of Linear Algebraic

Graph Algorithms

-o-Native -#-Combblas —e—Graphlab -&Socialite -#-Giraph

100

Combinatorial BLAS fastest among all
tested graph processing frameworks
on 3 out of 4 benchmarks in an (@ P
independent study by Intel. S WS S 2 el

~o-Native ~#-Combblas —#—Graphlab -4-Socialite -#-Giraph

Time per iteration (seconds)

g 100 ® o — 5 ————————————=a
The linear algebra abstraction £
enables high performance, within 4X 8

of native performance for PageRank

(b) Breadth-First Search

an d CO llabora tive filterin g, Collaborative Filtering (Weak scaling, 250 M edges/node)

—o-Native -#-Combblas —e—Graphlab -4—Socialite -#~Giraph

10000

1000 /.’—-——-—-—I

el

100 , , . " -

Satish, Nadathur, et al. "Navigating the Maze of Graph
Analytics Frameworks using Massive Graph Datasets”,
in SIGMOD’14

Time per iteration (seconds)
S
T\
\
)
|
\
\
b W3
|
|
|
\ﬁ »
|
\

1 2 4 8 16 32 64
Number of nodes
(c) Collaborative Filtering

Machine Learning for Science

Classification Instance
+ Localization

Classification Object Detection

Segmentation
R TR

Slide source: Prabhat

Machine Learning relies a lot on Linear Algebra

Higher-level machine learning tasks

Logistic : : . Clustering Partial
: Dimensionality : :
Regression, : (e.g., MCL, Correlation Deep Learning
Reduction ..
Support Vector (NMF, CX, PCA) Spectral Estimation (Neural Nets)
Machines S Clustering) (CONCORD)

»4“)

Sparse
Matrix-
Sparse
Vector
(SpMSpV)

Dense
Matrix-

Sparse Sparse Matrix- Sparse x Dense Sparse x
Matrix- Multiple Sparse Matrix- Dense
Dense Vector | Dense Vectors Matrix Vector Matrix

Matrix

(SpMV) (SpMM) (SpGEMM) | (BLAS2) | (SpDM3) | (BLAS3)

>
Graph/Sparse/Dense BLAS functions (in increasing arithmetic intensity)

Parallelism in Machine Learning

Implicit Parallelization: Keep the overall algorithm structure
(the sequence of operations) intact and parallelize the
individual operations.

Example: parallelizing the BLAS operations in previous figure

+ Often achieves exactly the same accuracy (e.g., model parallelism
in DNN training)

- Scalability can be limited if the critical path of the algorithm is long

Explicit Parallelization: Modify the algorithm to extract more
parallelism, such as working on individual pieces whose
results can later be combined

Examples: CA-SVM and data parallelism in DNNs
+ Significantly better scalability can be achieved
- No longer the same algorithmic properties (e.g. HogWild!).

26

Philosophy of the Markov Cluster Algorithm (MCL)

s
g

The number of edges or higher-length paths between two arbitrary
nodes in a cluster is greater than the number of paths between
nodes from different clusters

W

Random walks on the graph will frequently remains within a cluster

\ 4

The algorithm computes the probability of random walks through
the graph and removes lower probability terms to form clusters,

Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for discovering
clusters in protein interaction and protein similarity networks

.At each iteration:
i Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (Sp GEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

A combined expansion and pruning step

b b
—
| e fﬁﬁffﬁ °
s ¢ o | |o Prune |
| X | = —
. 8 ® e o o
. . g
A J C = Prune(A?)
Ap

Q b: number of columns in the output constructed at once

— Smaller b: less parallelism, memory efficient (b=1 is equivalent
to sparse matrix-sparse vector multiplication used in MCL)

— Larger b: more parallelism, memory intensive

A combined expansion and pruning step

A — A2 C = Prune(A?)

a b: number of columns in the output constructed at once

— HipMCL selects b dynamically as permitted by the available
memory

— The algorithm works in h=N/b phases where N is the number of
columns (vertices in the network) in the matrix

HipMCL: High-performance MCL

* MCL process is both computationally expensive and memory

hungry, limiting the sizes of networks that can be clustered
 HipMCL overcomes such limitation via sparse parallel algorithms.
* Up to 1000X times faster than original MCL with same accuracy.

Process row

Process column

———

. A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Bulug; HipMCL: a high-performance parallel
\ implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018 |

HipMCL on large networks

HipMCL

Proteins Edges #Clusters .
time

platform

Isolate-1 47M 7B 1.6M 1 hr 1024 nodes
Edison
Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison
Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes
Cori KNL
MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes
Cori KNL

MCL can not cluster these networks

The computation cube of

matrix-matrix multiplication

Matrix multiplication: V(@j) enxn C@j) =2, AGk)B(k,)),

The computation (discrete) cube:
(B A face for each (input/output) matrix
P + Agrid point for each multiplication

[How about sparse algorithms? 1

1D algorithms 2D algorithms 3D algorithms

3D parallel Sp GEMM in a nutshell

~ \Jplc
int
Cijk - E AilkBljk
=1

-

AlltoAll

\

" AlitoAll

I_‘Z(>

x |
I

3

\Z

A B Cintermediate Cfinal

Azad, A, Ballard, G., Buluc, A., Demmel, J., Grigori, L., Schwartz, O., Toledo, S. and Williams, S., 2016. Exploiting multiple
levels of parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific Computing, 38(6), pp.C624-C651.

3D SpGEMM performance

nlpkkt160 x nlpkkt160 (on Edison)

2D (non-threaded) et
is the previous .
state-of-the art

= i
) 2D
GE) : #threads
= increasing
3D (threaded) — first =~ "l i
_ : 3D
!oresented here — beats Hayers &
it by 8X at large o #threads
. : increasing
concurrencies *
0-2%2 256 1024 4096 16384

Number of Cores

Strong scaling of different variants of 2D and 3D algorithms when squaring of nlpkkt160 matrix on Edison.

New shared-memory SpGEMM kernels

 Compression ratio (CR): i
flops/nnz(C) o
« Combinatorial BLAS and &
HipMCL uses heap L’ 9
» Stable performance but -
significant gap in high CR 2"
* HipMCL inputs have high CR 0 K 2 K 53 5

Compression Ratio

14

2 1 Unsorted
* We will integrate hash
12 | .
o algorithms to CombBLAS
o .
S and HipMCL
T 10|
2
= x
3 2 2 ¢ — MKL —— Hash Yusuke Nagasaka, Satoshi Matsuoka, Ariful
8 —— MKL-inspector —— HashVec Azad, and Aydin Buluc. High-performance
2 [] —— Kokkos sparse matrix-matrix products on intel KNL and
multicore architectures. In ICPPW, 2018.
2° 2! 2° 2° 2* 2°

Compression Ratio

Sparse Inverse Covariance Matrix Estimation

° Precision matrix = Inverse covariance matrix

> Goal: Estimating graphical model structure

O &t

The zeros of a precision matrix correspond to zero
partial correlation, a necessary and sufficient condition
for conditional independence (Lauritzen, 1996)”

° Sparsity often enforced by regularization
> One algorithm (HP-CONCORD)'s objective function:

rrglszl{mlze —log det(Q5,)—I—tr(QSQ)—I—)\l||QXH1-|——HQ||F7
cRPXp

° Q) is the sparse inverse covariance matrix we are trying
to estimate

Why care? Finding Direct Associations

Partial Correlation (a.k.a. sparse inverse covariance estimation):

direct association without confounders

D
* Gene Regulatory Network (GRN) estimation ’\/(g
+ Joint modeling of SNPs and GRN
* Linkage Disequilibrium (LD) estimation ;ml W
g q (LD) e

« Canonical Correlation Analysis (CCA) P 1 Cond
ig. 1. ondi-

- Genome-wide association studies (GWAS) tionaily on the
eight of snow,

. . . the number of
Data-driven hypothesis generation! snowmen is in-
dependent of the

intensity of traffic

jams. This is

represented by a

two edges graph.

o Computationally challenging;

o HP-CONCORD on distributed memory increases scalability

HP-CONCORD Advantages

HP-CONCORD makes fewer assumptions about the data (in particular,
no Gaussianity is assumed) compared to competitors

Thanks to communication-avoiding matrix algorithms, it reaches

unprecedented scales
262144

—— gngUIC
—— s-1 |
65536 Obod | |
o BigQUIC: previous 16384 - = Opead e e .
r —e— Obs-256 : : 1
State_Of-the_art - 4096 ,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,, _
o L i i | i i
o Obs-K are our HP- S 1024 ‘ ‘ ‘ ‘
CONCORD algorithm 8 *
o 256
(K: number of nodes) £ _
. . . 64
o Experimentis trying to _
recover a random graph 167
structure. 4
10k 20k 40k 80k 160k 320k

p (#features)

P. Koanantakool, A. Ali, A. Azad, A. Bulug, D. Morozov, S. Oh, L.Oliker, and K. Yelick “Communication-
' Avoiding Optimization Methods for Massive-Scale Graphical Model Structure Learning”. In:
' International Conference on Artificial Intelligence and Statistics (AISTATS). 2018.

SpDM3: Sparse x Dense Matrix: The workhorse of HP-CONCORD

B (dense) B (dense)

2D ‘ 1D
(SUMMA)

The best algorithm
when multiplying two
matrices with unequal

nonzero counts? R -
" -, Po - —
. - - [) -
Depends on the [P
[|
L} -
concurrency! . -
A (sparse) C (dense) A (sparse) C (dense)
65,536 65,536 65,536 |
32,768 32,768 32,768 |
16,384 16,384 16,384 |
® 8,192 ® 8,192 o 8192 [
3 4,006 3D SUMMA ABC 3 4,006 |; 2 4,09 [
_1g 8 2,048 8 2,048 8 2,048
c=8 O 1024 S 1,024 3D SUMMA ABC S 1,024 3D SUMMA ABC
c=4 g 512 g 512 fg 512
c=2 5 256 5 256 5 256
c=1ll 2 128 o 128 e} 128
E &4 E &4 E &
< 32 Z 32 2 32
16 16 16
8 8 8
4 4 4
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

nnz(A)/nnz(B) (%) nnz(A)/nnz(B) (%) nnz(A)/nnz(B) (%)
Koanantakool, Penporn, et al. "Communication-avoiding parallel sparse-dense matrix-matrix
multiplication." IPDPS, 2016

Training Neural Networks

 Training is to adjust the weights (W) in the connections of the
neural network, in order to change the function it represents.

Only parameters are
weights for simplicity (i.e.
ignore bias parameters)

W: the matrix of weights

A “shallow” neural network with only one hidden layer
(nodes 3,4,5), two inputs and one output.

41

Gradient Descent

W W' -a -V, f(W,x)

* Also called the steepest descent algorithm

* |n order to minimize a function, move towards the opposite
direction of the gradient at a rate of a.

* qais the step size (also called the learning rate)

« Used as the optimization backend of many other machine
learning methods (example: NMF)

|
/ X
START

42

Stochastic Gradient Descent (SGD)

f is not going down for every iteration

Assume f(W', x) = 12 fWix) | -
n i=1

=5

W W' -a-V, (W, x)

Pure SGD: compute gradient using 1 sample

1 ke ”‘MMM _
Wﬂlewt‘“'gszﬁ(Wﬂx) h—
i= k+1 l UIJ SUIU 1 0:30 1 SIUIJ 20IDEI 25:]0 30:30 3500

Mini-batch: compute gradient using b samples

Actually the name is a misnomer, this is not a “descent” method
But we will stick to it anyway to avoid confusion.

Performance and parallelism requires batch training

Larger batch sizes hurt convergence as they get trapped easily
SGD escapes sharp local minima due to its “noisy” gradients

SGD training of NNs as matrix operations

M B B N = the number of outputs
M = the number of inputs
X = N B = the size of the minibatch
W: weights X, outputs of this layer

X,,: inputs to this layer

The impact to parallelism:

W is replicated to processor, so it doesn’t change

Xi, and X, gets skinnier if we only use data parallelism, i.e.
distributing b=B/p mini-batches per processor

GEMM performance suffers as matrix dimensions get smaller and
more skewed

Result: Data parallelism can hurt single-node performance
44

Data Parallel SGD training of NNs as matrix operations

B/P

o B8P,
1. Which matrices are replicated?

- * " 2. Where is the communication?

oca .

matmul 3. Which steps can be overlapped?
W X
Low rank
| intermediate | | | <=—— *
AllReduce matrices Local " -
on P sized (one per matmul
groups process)
XT
Vy
¢ il V= dL/ Y = how did the loss function
change as output activations changed?
V= oL/ oX
+— di4 * Py
Local VW= 3L/ 3W
matmul
WT Vy 45

Model Parallel SGD training of NNs as matrix operations

B . di- X B
di/Pl Po dilp[
Po Po
P, <+ < * P
AllGather Local
on P sized Py matmul Py
groups
. . X
Y Yintermediate W
1. Which matrices are replicated?
d/P 2. Where is the communication?
D Po * Py, P ,
Local P, o 3. How can matrix algebra
o, matmul capture both model and data
XT parallelism?
VW vY
di/P B
Low rank dis
- intermediate b
O vl |52 Ry SRR
oca
onpsized || POoS) matmul
groups l
VX VX intermediate WT VY 46

Combinations of various parallelism opportunities

« There are various different ways to combine DNN training
parallelism opportunities.

- It helps to think in terms of matrices again.
« We will exploit communication-avoiding matrix algorithms;
which trade off some storage (judicious replication) at the
expense of reduced communication.

- Deep Learning community is already OK with data or

model replication in many cases

A succinct classification of parallel matrix multiplication algorithms

1.5D 2.5D
— <

v

1D 2D 3D

Data & Model Parallel SGD training of NNs as matrix operations

BIP, di- BIP,
di/Pr POl di/Pr
P
P, 01
P01 ' 4 * Pll
H AllGather Local
on Pr Pio | P11 | P12 matmul P10, P11, P12
sized
groups X
Y Yintermediate W
d/P Low rank Processes are
intermediate — Pos * .
l matrices Local Py Poy, Pua 2 D |ndexed .
AllReduce
on Pc (one per matmul -
P10, P11, P12 sized process) P_ Pr X PC
groups XT
V w \% Y
difP; B/P,
Low rank di
intermediate P.o P
Pos — matrices — Pu * Pii
P11 (one per Local Py
AllReduce process) oca
on Pr matmul
sized
groups
Vx V y intermediate WT Vy

__

A. Gholami, A. Azad, P. Jin, K. Keutzer, A. Bulug. Integrated Model, Batch, and Domain Parallelism in Training Neural
Networks. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’18)

__

Integrated Batch + Model Scaling

° For large processes integrated could provide up to
2x speedup

B=2048, P=8 B=2048, P =32
400 -
3504 200 A
300 1
@ 5501 - 150 - 1.1x
2 L .
£ 200 £
= = 1
150
100 A J
50 -
0- Y ; .] 5 - ,]
2x4 4x2 8x1 16 4x8 8x4 16x2 32x1
P X P, P X P,
B=2048, P=128 - B =2048, P=512
175 1 EEE Computation
60 Model Comm.
150 - B8 Batch Comm.
125 -

0

o 100 1 l
£

= 751 1.6x

l (2.8x) I I

1x128 2x64 4x32 8x16 16x8 32x4 64x2 128x1 Ix512 2x256 4x128 8x64 16x32 32x16 64x8 128x4
Pr X Pc Pr X Pc

Both graph algorithms and machine learning have growing
importance in scientific applications

Not everything is [sparse] linear algebra, but a lot of things are!

Transfer of techniques and knowledge is easier when your
scientific base is not domain specific

Communication-avoiding [sparse] linear algebra algorithms
provide unprecedented scaling for problems outside
traditional scientific computing, such as computational biology,
graph analysis, and machine learning.

Check out http://graphblas.org, HipMCL, and HP-CONCORD

My lab website: http://passion.lbl.gov

Acknowledgments

Alnur Ali, Ariful Azad, David Bader, Grey Ballard, Scott
Beamer, James Demmel, Amir Gholami, John Gilbert,
Giulia Guidi, Laura Grigori, Peter Jin, Jeremy Kepner, Kurt
Keutzer, Penporn Koanantakool, Nikos Kyrpides, Tim
Mattson, Scott McMillan, Dmitriy Morozov, Jose Moreira,
Yusuke Nagasaka, Sang-Yun Oh, Lenny Oliker, John
Owens, Christos Ouzounis, Georgios Pavlopoulos,
Prabhat, Dan Rokhsar, Oded Schwartz, Sivan Toledo,
Sam Williams, Carl Yang, Kathy Yelick.

,\/“—'& U.S. DEPARTMENT OF Ofﬂce Of

-
S

@ ENERGY science

My work is funded by

