Sandia
National
Laboratories

Exceptional

service
in the
national

interest

Exploiting Scientific Software
to Solve Problems in Data
Analytics

Karen Devine, Sandia National Laboratories
With Erik Boman, Daniel Dunlavy, Alicia

Klinvex, Tammy Kolda, Siva Rajamanickam,
and Michael Wolf

IPAM Workshop on HPC for
Computationally and Data-Intensive
Problems

November 5-9, 2018
@ENERGY VIS4 iCCR

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-10893 PE.

Exploiting scientific software to solve .
problems in data analytics

= DOE has made tremendous investments in
physics-based simulations for scientific
discovery and stockpile stewardship
= Supercomputing hardware
= Numerical libraries and operating systems

= Physics models and simulation codes
0.04

= Tremendous opportunities for data science

= Exploit hardware and libraries developed for Ice-flow velocity

magnitude [m/yr] on the

physics-based simulation surface of the Greenland
= Use directly, or with some twists Ice Sheet, as computed
= Potential to save development time for new b%g_/\;ﬁ;nﬁf%
applications (Perego, SNL)

Case study:
Exploiting Trilinos for data analytics

Sandia
'11 National

Laboratories

" Trilinos solver framework
= High performance linear algebra data structures and algorithms
= High performing eigensolvers, linear solvers, partitioners
= Scales to billions of matrix rows/columns/entries

= Today’s talk:
= Using Trilinos directly: spectral hypergraph clustering in Grafiki
= Adding some twists: two-dimensional matrix partitioning

= Building new applications: sparse tensor decomposition

Trilinos: open-source toolkit of =
mathematical algorithms for HPC

Laboratories

= Capabilities: Component-based approach

= Matrix/Vector classes " Discretization

= Linear solvers / preconditioners * Load balancing

= Eigensolvers - Simple mesh generation
= Nonlinear solvers * Time integrators

= Optimization - Automatic differentiation

= Distributed memory (MPI)
= On-node parallelism via Kokkos

performance portability layer I 3
= Traditional realms: / H = | i J
= Solid mechanics, fluid flow, » $

electrical circuits, etc.

= Goal: Investigate use for
large-scale data analysis

#(_ﬁ

Multi-Core Many-Core CPU + GPU

Using Trilinos directly: Grafiki --
Trilinos for Large-Scale Data Analysis

= Michael Wolf, Alicia Klinvex, Daniel Dunlavy
= Grafiki: formerly TriData

= Goal: Sparse linear algebra-based data analysis
= Target: very large data problems
= Target: distributed memory and single node HPC architectures

= Additionally

= Testbed for improving how Trilinos can
be leveraged for data analytics

Sandia
"1 National

Laboratories

| Grafiki

= Support GraphBLAS-like linear algebra

analysis techniques

= Focus: Graph and Hypergraph

Analysis

CPU + GPU

Grafiki uses many components of =
Trilinos

Laboratories

= Tpetra parallel matrix/vector/communication classes
= MPI+X (OpenMP, CUDA via Kokkos performance portability layer)
= Supporting > 2B rows/cols/nonzeros
= Compressed Sparse Row matrices for graph storage
= Multivectors for eigenvector storage

= Anasazi eigensolver package
= Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)

= Belos linear solver package
= Mean hitting time analysis on graphs

Grafiki Example: Evaluating use of Hypergraphs in) s,
Clustering of Relational Data

Laboratories

= Clustering: Determine groupings of data objects given relationships
among the objects

= Relationships may be represented as graph or hypergraph
= Focus: spectral clustering

= Compute the smallest eigenpairs of the graph or hypergraph Laplacian
= Normalized graph Laplacian:

Le=1-D,)*(HoHE — Dye)D,M?

= Hypergraph Laplacian (Zhou et al., 2006)

Ln=1-D,}*HyD tHED }/?

= Eigenvectors used to group vertices into clusters (sorting, kmeans++, ...)

(hyper)graph . ‘ ans(\ vertex
incidence (hyper)graph eigenvectors to cluster

matrix Laplacian: L of L: V find clusters assignments

What is a hypergraph?) .

Hyperedges: Emails

Hypergraph

o Bob
P
D Am Carl
5
®
O
)
= i E Dan
Relatlgnql data / hyp_ergraph Hyperedges connect Edges connect
incidence matrix) .
one or more vertices two vertices

= Generalizations of graphs
= Hyperedges represent multiway relationships between vertices

= Convenient representations of relational data
= Each email (subset of users) can be represented by hyperedge
= Relational data often stored as hypergraph incidence matrices

Hypergraphs represent multiway
relationships unambiguously

Hypergraph

Amy

Ed

Sandia
"1 National

Laboratories

Bob

Carl

Dan

= Typically graph models lose information
= Were Carl, Dan, and Ed involved in same email?
= Fix: multi-graphs + metadata, changes to algorithms

l 1 ﬁg?igiﬁal
Hypergraph to Graph: Clique Expansion L
Hyperedges Graph Edges

Vertices

| (en)
El- % (%
en€ by f
hyperedge
cardinality

Graph obtained through clique expansion of hypergraph |

Hypergraphs have computational

Sandia
"1 National
Laboratories

advantages
1 1 1 1111 1
1 1
1 1 11 1 1 111
1 1 1 1 1 1 1
1 1 111 1 111
Hypergraph incidence matrix Graph Incidence matrix
d(eh)
gl- % (")
enc€ by

= Hypergraphs require significantly less storage space than
graphs generated using cligue expansion

= Hypergraph incidence matrices require fewer operations for
matrix-vector multiplication

Trilinos interface avoids need to =
explicitly form Laplacians

= Laplacians:
Lg=1I-D,} Z(HGHg — Dyg)D.?
Ly=I-D, 1/2HHD LHLD

= One option: Explicitly form/store Laplacian

" |nstead: Trilinos interfaces allows implicit representation of
Laplacian as series of SpMV and vector addition operations
= QOperator interface describes how to apply a matrix to a vector
= Eigensolvers use the Operator interface
= Store only incidence matrix, degree matrices
= Avoid expensive matrix-matrix products

= Support dynamic graphs — easier to change incidence matrix than
Laplacian

Computational advantages to not explicitly forming Laplacians |

Using Trilinos enables easy comparison

of models

= Quality: Jaccard index
= T="ground truth” assignments
= P =predicted assignments
= J(T,P)=1 =» exact match

T N P
J(T,P) =
(. P) T U P|
1_
. 09 -
Q
©
£ 08 -
2
S 0.7 -
(&)
S
0.6 -
0.5 -

P1 P2 P3

Hypergraph clusters more
similar to “ground truth”
than graph clusters

Sandia
"1 National

Laboratories

Number of clusters
Vertices per cluster® 10,000 10,000 10,000
Intra-cluster hyperedges* 40,000 20,000 20,000
Inter-cluster hyperedges® 50,000 200,000 200,000
Intra-cluster h-edge cardinality* 5 10 5
Inter-cluster h-edge cardinality® 5 3 5
16
14
. 12
)
Py 10
W graph E s
M hypergraph ;5; 6
4
2
O -

P1 P2 P3

Hypergraph less expensive
computationally than graph
(up to 30x faster)

Trilinos’ Anasazi toolkit enables easy
comparison of eigensolvers

Sandia
r.h National

Laboratories

= Locally Optimal Block Preconditioned Conjugate Gradient
method (LOBPCG)

= Riemannian Trust Region method (RTR)
= TraceMin-Davidson (TD)

P3 data set
45
40 m LOBPCG
35 m RTR
= 30 mTD
o 25
S
: S 20
Relatively loose 5 .:
convergence tolerance
(e.g., 10?) suffices for 10 -
clustering 5 _
0 - , *L

graph hypergraph

Use of Trilinos’ Tpetra classes enables
performance portability

Laboratories
Spectral Clustering: Speedup over Serial

= CPU: 20 core IBM 45 | MTpetra Powers
Power 8’ 3.42 GHZ 20 B Tpetra GPU: Kepler
= GPU: NVIDIA Kepler by LT
= GPU: NVIDIA Pascal Q.
P100 B 2 I
o)
Q 20
| I
J— Y I
Flicker Copapers LiveJournal1

* One Grafiki implementation runs on all three platforms |

“TriData: High Performance Linear Algebra-Based Data Analytics,” M. Wolf, D. Dunlavy, R. Lehoucq, J. Berry, D. Bourgeois.

ANV Con ara 0 ng. 2018

Adding a twist: 2D matrix partitioning .
for power-law graphs

Laboratories

= Frik Boman, Siva Rajamanickam, Karen Devine

" Goal: reduce MPI communication overhead in solvers for non-
physics data (e.g., power-law graphs, social networks)

= Approach:

= Exploit Trilinos’ flexible parallel distributions to reduce the number of
processors with which communication is needed in sparse matrix-

vector multiplication (SpMV)
= Combine graph partitioning and flexible layouts to further reduce

o - I r- I

1D matrix distribution 2D matrix distribution
“Scalable Matrix Computations on Scale-Free Graphs using 2D Graph Partitioning,” E. Boman, K. Devine, S. Rajamanickam.

Typical matrix partition: 1D
distribution

Sandia
'11 National

Laboratories

" Entire row (or column) of matrix assigned to a single processor
= Vectors use same distribution
= During SpMV,

= Expand (vertical): processor
receives (via communication)
x vector entries needed to match
non-zeros in owned rows.

= Each processor does local partial
products with owned nonzeros

= Fold (horizontal):
no communication required if
y-vector layout matches matrix

= Non-zero structure of matrix
determines communication neede

Trilinos’ Tpetra Maps describe parallel

Sandia
m National
Laboratories

distribution of matrix and vectors

Rank 2 (Blue)
=" Four maps needed for SpMV: Row Map = {4, 5}

Column Map = {3, 4, 5, 6}

= Row map: Rows of the matrix A
for which the processor has

Range/Domain Map = {4, 5}

nonzeros X

y

= Column map: Columns of A for
which the processor has nonzeros
= Domain map: Input vector x XXX
X | X

entries on the processor

= Range map: Output vectory
entries on the processor

1D distributions work well for many
physics-based simulations

= Data locality in mesh-based
applications limits amount of
communication needed.

X
= Several ways to distribute rows: y g ;

= 1D-Block: each processor given
block of N/p rows

= 1D-Random: each processor given
N/p randomly selected rows

= 1D-GP: assign rows based on
output of graph partitioning
algorithm

Sandia
'11 National
Laboratories

;F

Graph partitioning: 1D-GP i

(Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson,

National _
Laboratories

Leland, Kumar, Karypis, et al.)

Explicitly attempts to minimize communication costs induced by
partition
Represent matrix A as a graph:

" One vertexj per row g;

= Edge (i, j) exists iff a;# 0

= Vertex weights = # nonzeros in row

OOk WN -

Goal: Assign equal vertex weight to parts while minimizing weight
of edges between parts (i.e., cut by part boundary)
Highly effective for mesh-based PDE problems

= Mostly local connectivity (e.g., local support for basis functions)

= Regular structure (e.g., dual graph of mesh)

Many high quality graph partitioners available: Chaco (Sandia),
ParMETIS (U.Minn.), Scotch (Inria/Bordeaux), PuLP (Sandia/PennSt)

Example: Finite element matrix) .

= Structural problem discretizing a gas reservoir with
tetrahedral finite elements

= Platform: SNL Redsky cluster
= 2.93 GHz dual socket/quad core Nehalem X5570 procs
= 3D torus InfiniBand network

= Graph partition gives 25% reduction in SpMV time i

. 1
relative to 1D-Block _
= |mproves load balance Serena matrix

Janna & Ferronato
U.Florida Sparse Matrix Collection

= Reduces communication volume

1D-Block
1D-Random

=)

CounterExample: Social network matrix ™).

12

(I
o

= Social networks, web graphs, etc., have very
different structure from PDE discretizations

= Power-law degree distributions;
scale-free properties

SpMV time (secs)

o N =] (<)} oo
| | | |

= Graph partitioning can reduce SpMV time

16 64 256 1024
= Reduces imbalance and communication volume # processors

. Strong scaling of 1D-GP
= But large number of messages hurts scaling o

= Nearly all-to-all communication Stanfordygllq\laiﬁiﬁle(g;g;

1D-Block
1D-Random

ﬂ

1.3

In 1D, irregular matrix structure drives
greatly increased communication cost

Sandia
rh National

Laboratories

2D Finite Difference (9 point) R-Mat (0.5, 0.125, 0.125, 0.25)
(/2] | 7)) ’
(7)] 7]
Q . QO
(8] (&)
o o p
o . Q. 3
0} [} .
o o :
= =
o o
(/2] . » 50
P=64 destination process P=64 destination process
Number of Rows: 223 Number of Rows: 22
Avg. nonzeros/row: 9 Nonzeros/Row: 8
NNZ/process # Messaqges NNZ/process # Messages
min: 1.17E+06 total: 126 min: 1.05E+06 total: 4032
max: 1.18E+06 max: 2 max: 1.07E+06 max: 63
avg: 1.18E+06 avg: 1.06E+06
max/avg: 1.00 Volume max/avg: 1.01 Volume
total: 2.58E+05 total: 5.48E+07
max: 4.10E+03 max: 8.62E+05

Sandia

Goal: Reduce number of messages @k.

= 1D distribution:

Entire rows (or columns) of matrix assigned to a
processor

= 2D distribution:

Cartesian methods: Each process owns
intersection of some rows & columns

Processes are logically arranged in a 2D grid

Limits max #messages per process to
O(sqrt(#processors))

Long used in parallel dense solvers (ScalLapack)

Beneficial also for sparse matrices (Fox et al. ‘88,
Lewis & van de Geijn ‘93, Hendrickson et al. "95)

Yoo et al. (SC'11) demonstrated benefit over 1D
layouts for eigensolves on scale-free graphs

1D row-wise matrix
distribution; 6 processes

2D matrix
distribution; 6 processes

Benefit of 2D Matrix Distribution in = s

National _
Laboratories

SpMV

= During matrix-vector multiplication
(y=Ax), communication occurs only
along rows or columns of
processors.

= Expand (vertical):
Vector entries X;sent to
column processors to compute

local product y? = AP x

Benefit of 2D Matrix Distribution — [@E=.

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
" Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product y? = AP x

* Fold (horizontal):
Local products y? summed along

row processors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.

Trilinos” maps support both 1D and 2D ..

National _
Laboratories

distributions

1D Map 2D Map

Rank 2 (Blue) Rank 2 (Blue)

Row Map = {4, 5} Row Map = {4, 5, 8}

Column Map ={0, 1, 2, 3, 4, 5, 6, 9, 10, 11} Column Map = {4, 5, 6, 7}

Range/Domain Map = {4, 5} Range/Domain Map = {4, 5}
X X

B X |X B

B X B

L[]
0 e O N

Sandia

2D Partitioning of Social Network) k.

® Drastic reduction in max number of messages and SpMV time
= Even with expand & fold, max number of messages is smaller

= Communication volume high with 2D partitions
= |gnoring the non-zero structure of the matrix.
= Can we exploit it as we did with 1D-GP?

1D-Block 12.8 1023 34.5M 14.72

1D-Random

2D-Block
2D-Random

The twist: 2D + Graph Partitioning) .

= Existing research into direct 2D partitioning of nonzeros
(treat nonzeros as graph/hypergraph vertices)
= Catalyurek & Aykanat; Vastenhouw & Bisseling
= Much larger problem = very expensive
= Only serial software available

= Quridea: Apply parallel graph partitioning and 2D
distribution together
= Compute 1D-GP row (vertex) partition of matrix (graph)
= Apply 2D distribution to the resulting permuted matrix (graph)
= Advantages:

= Balance the number of nonzeros per process,
= Exploit structure in the graph to reduce communication volume, AND
= Reduce the number of messages via 2D distribution

= Don’t optimize a single objective but try do fairly well in all

2D Graph Partitioning (2D-GP)) .

= Partition rows (vertices) of Due to partitioning,
original matrix (graph) into diagonal blocks of A,

p parts will be denser:
= Using standard graph
partitioner
= Implicitly, let A, = PAP’

perm
= Where P is permutation from
partitioning above
" Assign A, to processes
using Cartesian block 2D
layout

Sandia

Results 1D vs 2D (Block, Random, GP) W&

= With 2D-GP,
= Low number of messages as with 2D-Block, 2D-Random
= Reduced communication volume due to using structure of matrix

= Reduced SpMV execution time

1D-Block 12.8 1023 34.5M 14.72
1D-Random 1.3 1023 66.3M 14.00
2D-Block 11.4 62 43.4M 1.31
2D-Random 1.0 62 64.2M 0.97

Strong scaling: 1D-GP vs 2D-GP)

= Performance for fixed problem as increase number of processors

= For each matrix:
= Blue =1D-GP on 16, 64, 256, 1024 processors (left to right)
= Red =2D-GP on 16, 64, 256, 1024 processors (left to right)

= Times are normalized to the 1D-GP 16-processor runtime
10 -

[y

SpMYV time normalized to
1D-GP 16-processor time
o

_ Serena FE com-liveJournal _

Building New Applications: =
Parallel Sparse Tensor Decomposition

Laboratories

= Tammy Kolda, Eric Phipps, Karen Devine

= Goal: Distributed memory parallel sparse tensor
decomposition for extremely large tensors

l'
L Al a9 | a,

= Approach: Use Trilinos data structures and communication
for efficient parallel decomposition

CANDECOMP/PARAFAC Tensor =

Decomposition

= F. Hitchcock; J.D. Carroll & J-J Chang; R. Harshman
= Seek low-rank approximation of tensor data

= Solve as an optimization problem

Low- del
C1 C2 Cr
Ql /:le /=br
X M = + +oet
A A2 U Ay
r nXr
L
X~M=>) a,ob,oc, =[AB,C]
w7 - 4 i
MXNXP mxr — pXr

Optimization Problem: min [|X — M||2 = Z Z Z(xijk - mijk:)2
e

? J

“Tensor Decompositions and Applications,” T. Kolda & B. Bader, SIAM Review, 2009

CP-ALS is common solution method) i,

= Solve optimization problem using Alternating Least Squares

min F(A, B, C) = £[|X — M|? subject to M = [A,B, C]

9E =X1H)(C®B) — A(CTC *B'B)
9L =X 2)(C®A) —B(CTCxATA)
9L =X3(BO@A)—C(B'BxATA)

= Repeat until converged:

A+ X4 (CoB)(CTC+B™B)™!

B+ X(5(C®A)(CTC+ ATA)™! Most expensive part of
T T A1 ~____computation:
C—X@BOA)(B'BxATA) MTTKRP: Matricized Tensor
HH Times Khatri-Rao Products

(4,5,k)EN(X)

“A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions,” E. Acar, D. Dunlavy, T. Kolda,

Vv

Parallel MTTKRP looks a lot like SpMV [&..

. (i.:F) EN (X)
= Given:

= Distribution of tensor (matrix) nonzeros to processors
= Distribution of factor-matrix (vector) entries to processors

= Expand: Import factor-matrix (vector) entries to processors as needed
= Perform local computation with owned tensor (matrix) nonzeros
= Fold: Export local product values to factor matrix (vector)

Expand Compute Fold

B,C

Sparse tensors use Trilinos’ Tpetra
Maps to describe parallel distribution

Sandia
"1 National
Laboratories

= Nonzeros stored in coordinate format

= One Tpetra::Map per tensor mode
= Analogous to row/column map in SpMV
= Built from indices in coordinate-format storage

= E.g., nonzero x;; of 3-mode tensor has entry
i in mode 0 map,
jin mode 1 map,
k in mode 2 map

= Not necessarily one-to-one

= Many processors may have a given indexj in their mode 1 map

= Store only single copy of sparse tensor
= Each nonzero stored on only one processor

Factor Matrices use Trilinos’
Tpetra::MultiVector

Sandia
"1 National
Laboratories

= Factor Matrix Rank 3, length 12 factor matrix
= Dense rectangular NxR matrix distributed across 6 processors

= Entries distributed w.r.t. N across all processors

= Tpetra::MultiVector
= Designed to support Block Krylov linear solvers
= (Class consisting of R distributed vectors of length N

= Entries distributed w.r.t. N
= e.g., sub-multivectors assigned to processors

Tpetra::Map describes parallel distribution of MultiVector

= Map is one-to-one; i.e., each MultiVector entry stored on only one
processor

= MultiVector class provides operations (norms, initialization, etc.)
needed in tensor decomposition

All communication performed in
Trilinos’ Tpetra classes

Sandia
'11 National

Laboratories

= Communication operations: expand and fold of factor matrix
entries are the same as those in SpMV

= Tpetra:Import/Export

= Built based on two maps: Factor matrix map and corresponding
tensor map

= Point-to-point MPI Isend/Irecv
= All other communication: MPI_Allreduce

= Convergence tests, contributions to replicated Gramian matrices, etc.

Scalable communication enables =
decomposition of huge problems

Laboratories

= AD Random tensor
= 64M nonzeros per

Weak Scaling, Random, 64M nz per process Process
—20 B CP-ALS time B MTTKRP time = Constant nonzero
g density 0.001024
£ 15 = SkyBridge cluster
"§ (2.6 GHz Intel Sandy
= 10 Bridge with Infiniband)
3 = 12.6 Terabyte tensor
f? 5 '\ on 8192 MPI processes
§- 524 B nonzeros
.§ 0 Four integer indices

1024 8192
Number of Processes (One node = 16 processes)

per nonzero

= One double value per
nonzero

300

= = N N
Ul (=] U1 (=] Ul
o o o o o

Time per CP-ALS iteration (secs)

o

Good strong scaling in MPIl-only
Trilinos-based CP-ALS

= Genten (Phipps, Kolda; SNL) CP-ALS on single Skybridge node
= Kokkos-based code with OpenMP, CUDA backends
= Single implementation runs on CPUs and GPUs (key advantage)

Sandia
rl1 National

Laboratories

= Random tensor = Delicious (FROSTT collection):
= 1000 x 1000 x 500 x 500 = 533Kx 17M x 2.5M x 1.4K
= 256M nonzeros; rank=16 = 140M nonzeros; rank=10
Strong scaling, Random, 256 M nonzeros Strong scaling with Delicious tensor
10 _
M Trilinos-based CP-ALS Time & " Ch-ALS tm-\e
= ® MTTKRP time
GenTen CP-ALS Time § GenTen CP-ALS time
9 6
<
o
O 4
: I
1
|—
I . [[— 0 l.
1 2 4 8 16 16 32 64 128 256
Number of processes (dist. mem.) or threads (GenTen) Number of processes (dist. mem.) or threads (GenTen)

Scaling not hurt by MPI Strong scaling extends beyond single node

Conclusions)

= |nvestment in HPC scientific libraries can be leveraged for data
sciences
= Directly to explore new areas (e.g., hypergraph clustering in Grafiki)
= With a twist (e.g., 2D matrix distributions)
= Enabling new applications (e.g., sparse tensor decomposition)

= Another whole talk: Kokkos and KokkosKernels

= Kokkos performance portable data structures and parallel execution
constructs (Trott, Edwards, et al.)

= KokkosKernels graph and matrix operations using Kokkos (Rajamanickam
et al.)

= Single code compiles/executes well on CPUs, KNLs, GPUs

= Examples:
= GenTen sparse tensor decomposition (Phipps, Kolda)
= Triangle counting (Wolf, Deveci, Berry, Hommond, Rajamanickam)
= SpGEMM (Deveci, Trott, Rajamanickam)

= “High-Performance Portable Data Analytics Software Using Kokkos”
Michael Wolf, 2018 Chesapeake Large-Scale Analytics Conference

Sandia
rh National

Laboratories

= Thanks to
= The organizers for inviting me
= Erik Boman = Daniel Dunlavy
= Mark Hoemmen = Alicia Klinvex
= Tammy Kolda " Mauro Perego
= Eric Phipps = Siva Rajamanickam
= Chris Siefert = Michael Wolf
= Trilinos:

= https://github.com/trilinos/Trilinos
= https://trilinos.github.io/

= Karen Devine: kddevin@sandia.gov

https://github.com/trilinos/Trilinos
https://trilinos.github.io/

