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Exploiting scientific software to solve .
problems in data analytics

= DOE has made tremendous investments in
physics-based simulations for scientific
discovery and stockpile stewardship
= Supercomputing hardware
= Numerical libraries and operating systems

= Physics models and simulation codes
0.04

= Tremendous opportunities for data science

= Exploit hardware and libraries developed for Ice-flow velocity

magnitude [m/yr] on the

physics-based simulation surface of the Greenland
= Use directly, or with some twists Ice Sheet, as computed
= Potential to save development time for new b%g_/\;ﬁ;nﬁf%
applications (Perego, SNL)




Case study:
Exploiting Trilinos for data analytics
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" Trilinos solver framework
= High performance linear algebra data structures and algorithms
= High performing eigensolvers, linear solvers, partitioners
= Scales to billions of matrix rows/columns/entries

= Today’s talk:
= Using Trilinos directly: spectral hypergraph clustering in Grafiki
= Adding some twists: two-dimensional matrix partitioning

= Building new applications: sparse tensor decomposition




Trilinos: open-source toolkit of =
mathematical algorithms for HPC
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= Capabilities: Component-based approach

= Matrix/Vector classes " Discretization

= Linear solvers / preconditioners * Load balancing

= Eigensolvers - Simple mesh generation
= Nonlinear solvers * Time integrators

= Optimization - Automatic differentiation

= Distributed memory (MPI)
= On-node parallelism via Kokkos

performance portability layer I 3
= Traditional realms: / H = | i J
= Solid mechanics, fluid flow, » $

electrical circuits, etc.

= Goal: Investigate use for
large-scale data analysis

#(_ﬁ

Multi-Core Many-Core CPU + GPU




Using Trilinos directly: Grafiki --
Trilinos for Large-Scale Data Analysis

= Michael Wolf, Alicia Klinvex, Daniel Dunlavy
= Grafiki: formerly TriData

= Goal: Sparse linear algebra-based data analysis
= Target: very large data problems
= Target: distributed memory and single node HPC architectures

= Additionally

= Testbed for improving how Trilinos can
be leveraged for data analytics
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| Grafiki

= Support GraphBLAS-like linear algebra

analysis techniques

= Focus: Graph and Hypergraph

Analysis

CPU + GPU




Grafiki uses many components of =
Trilinos

Laboratories

= Tpetra parallel matrix/vector/communication classes
= MPI+X (OpenMP, CUDA via Kokkos performance portability layer)
= Supporting > 2B rows/cols/nonzeros
= Compressed Sparse Row matrices for graph storage
= Multivectors for eigenvector storage

= Anasazi eigensolver package
= Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)

= Belos linear solver package
= Mean hitting time analysis on graphs




Grafiki Example: Evaluating use of Hypergraphs in ) s,
Clustering of Relational Data

Laboratories

= Clustering: Determine groupings of data objects given relationships
among the objects

= Relationships may be represented as graph or hypergraph
= Focus: spectral clustering

= Compute the smallest eigenpairs of the graph or hypergraph Laplacian
= Normalized graph Laplacian:

Le=1-D,)*(HoHE — Dye)D,M?

= Hypergraph Laplacian (Zhou et al., 2006)

Ln=1-D,}*HyD tHED }/?

= Eigenvectors used to group vertices into clusters (sorting, kmeans++, ...)

(hyper)graph . ‘ ans(\ vertex
incidence (hyper)graph eigenvectors to cluster

matrix Laplacian: L of L: V find clusters assignments




What is a hypergraph? ) .

Hyperedges: Emails

Hypergraph

o Bob
P
D Am Carl
5
®
O
)
= i E Dan
Relatlgnql data / hyp_ergraph Hyperedges connect Edges connect
incidence matrix ) .
one or more vertices two vertices

= Generalizations of graphs
= Hyperedges represent multiway relationships between vertices

= Convenient representations of relational data
= Each email (subset of users) can be represented by hyperedge
= Relational data often stored as hypergraph incidence matrices




Hypergraphs represent multiway
relationships unambiguously

Hypergraph

Amy

Ed
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Bob

Carl

Dan

= Typically graph models lose information
= Were Carl, Dan, and Ed involved in same email?
= Fix: multi-graphs + metadata, changes to algorithms




l 1 ﬁg?igiﬁal
Hypergraph to Graph: Clique Expansion L
Hyperedges Graph Edges

Vertices

| (en)
El- % (%
en€ by f
hyperedge
cardinality

Graph obtained through clique expansion of hypergraph |




Hypergraphs have computational
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advantages
1 1 1 1111 1
1 1
1 1 11 1 1 111
1 1 1 1 1 1 1
1 1 111 1 111
Hypergraph incidence matrix Graph Incidence matrix
d(eh)
gl- % (")
enc€ by

= Hypergraphs require significantly less storage space than
graphs generated using cligue expansion

= Hypergraph incidence matrices require fewer operations for
matrix-vector multiplication




Trilinos interface avoids need to =
explicitly form Laplacians

= Laplacians:
Lg=1I-D,} Z(HGHg — Dyg)D.?
Ly=I-D, 1/2HHD LHLD

= One option: Explicitly form/store Laplacian

" |nstead: Trilinos interfaces allows implicit representation of
Laplacian as series of SpMV and vector addition operations
= QOperator interface describes how to apply a matrix to a vector
= Eigensolvers use the Operator interface
= Store only incidence matrix, degree matrices
= Avoid expensive matrix-matrix products

= Support dynamic graphs — easier to change incidence matrix than
Laplacian

Computational advantages to not explicitly forming Laplacians |




Using Trilinos enables easy comparison

of models

= Quality: Jaccard index
= T="ground truth” assignments
= P =predicted assignments
= J(T,P)=1 =» exact match

T N P
J(T,P) =
(. P) T U P|
1_
. 09 -
Q
©
£ 08 -
2
S 0.7 -
(&)
S
0.6 -
0.5 -

P1 P2 P3

Hypergraph clusters more
similar to “ground truth”
than graph clusters
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Number of clusters
Vertices per cluster® 10,000 10,000 10,000
Intra-cluster hyperedges* 40,000 20,000 20,000
Inter-cluster hyperedges® 50,000 200,000 200,000
Intra-cluster h-edge cardinality* 5 10 5
Inter-cluster h-edge cardinality® 5 3 5
16
14
. 12
)
Py 10
W graph E s
M hypergraph ;5; 6
4
2
O -

P1 P2 P3

Hypergraph less expensive
computationally than graph
(up to 30x faster)




Trilinos’ Anasazi toolkit enables easy
comparison of eigensolvers
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= Locally Optimal Block Preconditioned Conjugate Gradient
method (LOBPCG)

= Riemannian Trust Region method (RTR)
= TraceMin-Davidson (TD)

P3 data set
45
40 m LOBPCG
35 m RTR
= 30 mTD
o 25
S
: S 20
Relatively loose 5 .:
convergence tolerance
(e.g., 10?) suffices for 10 -
clustering 5 _
0 - , *L

graph hypergraph




Use of Trilinos’ Tpetra classes enables
performance portability

Laboratories
Spectral Clustering: Speedup over Serial

= CPU: 20 core IBM 45 | MTpetra Powers
Power 8’ 3.42 GHZ 20 B Tpetra GPU: Kepler
= GPU: NVIDIA Kepler by LT
=  GPU: NVIDIA Pascal Q.
P100 B 2 I
o)
Q 20
| I
J— Y I
Flicker Copapers LiveJournal1

* One Grafiki implementation runs on all three platforms |

“TriData: High Performance Linear Algebra-Based Data Analytics,” M. Wolf, D. Dunlavy, R. Lehoucq, J. Berry, D. Bourgeois.

ANV Con ara 0 ng. 2018



Adding a twist: 2D matrix partitioning .
for power-law graphs
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= Frik Boman, Siva Rajamanickam, Karen Devine

" Goal: reduce MPI communication overhead in solvers for non-
physics data (e.g., power-law graphs, social networks)

= Approach:

= Exploit Trilinos’ flexible parallel distributions to reduce the number of
processors with which communication is needed in sparse matrix-

vector multiplication (SpMV)
= Combine graph partitioning and flexible layouts to further reduce

o - I r- I

1D matrix distribution 2D matrix distribution
“Scalable Matrix Computations on Scale-Free Graphs using 2D Graph Partitioning,” E. Boman, K. Devine, S. Rajamanickam.




Typical matrix partition: 1D
distribution
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" Entire row (or column) of matrix assigned to a single processor
= Vectors use same distribution
= During SpMV,

= Expand (vertical): processor
receives (via communication)
x vector entries needed to match
non-zeros in owned rows.

= Each processor does local partial
products with owned nonzeros

= Fold (horizontal):
no communication required if
y-vector layout matches matrix

= Non-zero structure of matrix
determines communication neede




Trilinos’ Tpetra Maps describe parallel
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distribution of matrix and vectors

Rank 2 (Blue)
=" Four maps needed for SpMV: Row Map = {4, 5}

Column Map = {3, 4, 5, 6}

= Row map: Rows of the matrix A
for which the processor has

Range/Domain Map = {4, 5}

nonzeros X

y

= Column map: Columns of A for
which the processor has nonzeros
= Domain map: Input vector x XXX
X | X

entries on the processor

= Range map: Output vectory
entries on the processor




1D distributions work well for many
physics-based simulations

= Data locality in mesh-based
applications limits amount of
communication needed.

X
= Several ways to distribute rows: y g ;

= 1D-Block: each processor given
block of N/p rows

= 1D-Random: each processor given
N/p randomly selected rows

= 1D-GP: assign rows based on
output of graph partitioning
algorithm

Sandia
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Graph partitioning: 1D-GP i

(Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson,

National _
Laboratories

Leland, Kumar, Karypis, et al.)

Explicitly attempts to minimize communication costs induced by
partition
Represent matrix A as a graph:

" One vertexj per row g;

= Edge (i, j) exists iff a;# 0

= Vertex weights = # nonzeros in row

OOk WN -

Goal: Assign equal vertex weight to parts while minimizing weight
of edges between parts (i.e., cut by part boundary)
Highly effective for mesh-based PDE problems

= Mostly local connectivity (e.g., local support for basis functions)

= Regular structure (e.g., dual graph of mesh)

Many high quality graph partitioners available: Chaco (Sandia),
ParMETIS (U.Minn.), Scotch (Inria/Bordeaux), PuLP (Sandia/PennSt)




Example: Finite element matrix ) .

= Structural problem discretizing a gas reservoir with
tetrahedral finite elements

= Platform: SNL Redsky cluster
= 2.93 GHz dual socket/quad core Nehalem X5570 procs
= 3D torus InfiniBand network

= Graph partition gives 25% reduction in SpMV time i

. 1
relative to 1D-Block _
= |mproves load balance Serena matrix

Janna & Ferronato
U.Florida Sparse Matrix Collection

= Reduces communication volume

1D-Block
1D-Random

=)



CounterExample: Social network matrix ™).

12

(I
o

= Social networks, web graphs, etc., have very
different structure from PDE discretizations

= Power-law degree distributions;
scale-free properties

SpMV time (secs)

o N =] (<)} oo
| | | |

=  Graph partitioning can reduce SpMV time

16 64 256 1024
= Reduces imbalance and communication volume # processors

. Strong scaling of 1D-GP
= But large number of messages hurts scaling o

= Nearly all-to-all communication Stanfordygllq\laiﬁiﬁle(g;g;

1D-Block
1D-Random

ﬂ

1.3



In 1D, irregular matrix structure drives
greatly increased communication cost
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2D Finite Difference (9 point) R-Mat (0.5, 0.125, 0.125, 0.25)
(/2] | 7)) ’
(7)] 7]
Q . QO
(8] (&)
o o p
o . Q. 3
0} [} .
o o :
= =
o o
(/2] . » 50
P=64 destination process P=64 destination process
Number of Rows: 223 Number of Rows: 22
Avg. nonzeros/row: 9 Nonzeros/Row: 8
NNZ/process # Messaqges NNZ/process # Messages
min: 1.17E+06 total: 126 min: 1.05E+06 total: 4032
max: 1.18E+06 max: 2 max: 1.07E+06 max: 63
avg: 1.18E+06 avg: 1.06E+06
max/avg: 1.00 Volume max/avg: 1.01 Volume
total: 2.58E+05 total: 5.48E+07
max: 4.10E+03 max: 8.62E+05




Sandia

Goal: Reduce number of messages @k.

= 1D distribution:

Entire rows (or columns) of matrix assigned to a
processor

= 2D distribution:

Cartesian methods: Each process owns
intersection of some rows & columns

Processes are logically arranged in a 2D grid

Limits max #messages per process to
O(sqrt(#processors))

Long used in parallel dense solvers (ScalLapack)

Beneficial also for sparse matrices (Fox et al. ‘88,
Lewis & van de Geijn ‘93, Hendrickson et al. "95)

Yoo et al. (SC'11) demonstrated benefit over 1D
layouts for eigensolves on scale-free graphs

1D row-wise matrix
distribution; 6 processes

2D matrix
distribution; 6 processes




Benefit of 2D Matrix Distribution in = s
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SpMV

= During matrix-vector multiplication
(y=Ax), communication occurs only
along rows or columns of
processors.

= Expand (vertical):
Vector entries X;sent to
column processors to compute

local product y? = AP x




Benefit of 2D Matrix Distribution — [@E=.

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
" Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product y? = AP x

* Fold (horizontal):
Local products y? summed along

row processors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.




Trilinos” maps support both 1D and 2D ..
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distributions

1D Map 2D Map

Rank 2 (Blue) Rank 2 (Blue)

Row Map = {4, 5} Row Map = {4, 5, 8}

Column Map ={0, 1, 2, 3, 4, 5, 6, 9, 10, 11} Column Map = {4, 5, 6, 7}

Range/Domain Map = {4, 5} Range/Domain Map = {4, 5}
X X

B X |X B

B X B

L[]
0 e O N
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2D Partitioning of Social Network ) k.

® Drastic reduction in max number of messages and SpMV time
= Even with expand & fold, max number of messages is smaller

= Communication volume high with 2D partitions
= |gnoring the non-zero structure of the matrix.
= Can we exploit it as we did with 1D-GP?

1D-Block 12.8 1023 34.5M 14.72

1D-Random

2D-Block
2D-Random




The twist: 2D + Graph Partitioning ) .

= Existing research into direct 2D partitioning of nonzeros
(treat nonzeros as graph/hypergraph vertices)
= Catalyurek & Aykanat; Vastenhouw & Bisseling
= Much larger problem = very expensive
= Only serial software available

= Quridea: Apply parallel graph partitioning and 2D
distribution together
= Compute 1D-GP row (vertex) partition of matrix (graph)
= Apply 2D distribution to the resulting permuted matrix (graph)
= Advantages:

= Balance the number of nonzeros per process,
= Exploit structure in the graph to reduce communication volume, AND
= Reduce the number of messages via 2D distribution

= Don’t optimize a single objective but try do fairly well in all




2D Graph Partitioning (2D-GP) ) .

= Partition rows (vertices) of Due to partitioning,
original matrix (graph) into  diagonal blocks of A,

p parts will be denser:
= Using standard graph
partitioner
= Implicitly, let A, = PAP’

perm
= Where P is permutation from
partitioning above
" Assign A, to processes
using Cartesian block 2D
layout




Sandia

Results 1D vs 2D (Block, Random, GP) W&

= With 2D-GP,
= Low number of messages as with 2D-Block, 2D-Random
= Reduced communication volume due to using structure of matrix

= Reduced SpMV execution time

1D-Block 12.8 1023 34.5M 14.72
1D-Random 1.3 1023 66.3M 14.00
2D-Block 11.4 62 43.4M 1.31
2D-Random 1.0 62 64.2M 0.97




Strong scaling: 1D-GP vs 2D-GP )

= Performance for fixed problem as increase number of processors

= For each matrix:
= Blue =1D-GP on 16, 64, 256, 1024 processors (left to right)
= Red =2D-GP on 16, 64, 256, 1024 processors (left to right)

= Times are normalized to the 1D-GP 16-processor runtime
10 -

[y

SpMYV time normalized to
1D-GP 16-processor time
o

_ Serena FE com-liveJournal _



Building New Applications: =
Parallel Sparse Tensor Decomposition
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= Tammy Kolda, Eric Phipps, Karen Devine

= Goal: Distributed memory parallel sparse tensor
decomposition for extremely large tensors

l'
L Al a9 | a,

= Approach: Use Trilinos data structures and communication
for efficient parallel decomposition




CANDECOMP/PARAFAC Tensor =

Decomposition

= F. Hitchcock; J.D. Carroll & J-J Chang; R. Harshman
= Seek low-rank approximation of tensor data

= Solve as an optimization problem

Low- del
C1 C2 Cr
Ql /:le /=br
X M = + +oet
A A2 U Ay
r nXr
L
X~M=>) a,ob,oc, =[AB,C]
w7 - 4 i
MXNXP mxr — pXr

Optimization Problem: min [|X — M||2 = Z Z Z(xijk - mijk:)2
e

? J

“Tensor Decompositions and Applications,” T. Kolda & B. Bader, SIAM Review, 2009




CP-ALS is common solution method ) i,

= Solve optimization problem using Alternating Least Squares

min F(A, B, C) = £[|X — M|? subject to M = [A,B, C]

9E =X1H)(C®B) — A(CTC *B'B)
9L =X 2)(C®A) —B(CTCxATA)
9L =X3(BO@A)—C(B'BxATA)

= Repeat until converged:

A+ X4 (CoB)(CTC+B™B)™!

B+ X(5(C®A)(CTC+ ATA)™! Most expensive part of
T T A1 ~____computation:
C—X@BOA)(B'BxATA) MTTKRP: Matricized Tensor
HH Times Khatri-Rao Products

(4,5,k)EN(X)

“A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions,” E. Acar, D. Dunlavy, T. Kolda,
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Parallel MTTKRP looks a lot like SpMV  [&..

. (i.:F) EN (X)
= Given:

= Distribution of tensor (matrix) nonzeros to processors
= Distribution of factor-matrix (vector) entries to processors

= Expand: Import factor-matrix (vector) entries to processors as needed
= Perform local computation with owned tensor (matrix) nonzeros
= Fold: Export local product values to factor matrix (vector)

Expand Compute Fold

B,C




Sparse tensors use Trilinos’ Tpetra
Maps to describe parallel distribution
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= Nonzeros stored in coordinate format

= One Tpetra::Map per tensor mode
= Analogous to row/column map in SpMV
= Built from indices in coordinate-format storage

= E.g., nonzero x;; of 3-mode tensor has entry
i in mode 0 map,
jin mode 1 map,
k in mode 2 map

= Not necessarily one-to-one

= Many processors may have a given indexj in their mode 1 map

= Store only single copy of sparse tensor
= Each nonzero stored on only one processor




Factor Matrices use Trilinos’
Tpetra::MultiVector
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= Factor Matrix Rank 3, length 12 factor matrix
= Dense rectangular NxR matrix distributed across 6 processors

= Entries distributed w.r.t. N across all processors

= Tpetra::MultiVector
= Designed to support Block Krylov linear solvers
= (Class consisting of R distributed vectors of length N

= Entries distributed w.r.t. N
= e.g., sub-multivectors assigned to processors

Tpetra::Map describes parallel distribution of MultiVector

= Map is one-to-one; i.e., each MultiVector entry stored on only one
processor

= MultiVector class provides operations (norms, initialization, etc.)
needed in tensor decomposition




All communication performed in
Trilinos’ Tpetra classes
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= Communication operations: expand and fold of factor matrix
entries are the same as those in SpMV

= Tpetra:Import/Export

= Built based on two maps: Factor matrix map and corresponding
tensor map

= Point-to-point MPI Isend/Irecv
= All other communication: MPI_Allreduce

= Convergence tests, contributions to replicated Gramian matrices, etc.




Scalable communication enables =
decomposition of huge problems
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= AD Random tensor
= 64M nonzeros per

Weak Scaling, Random, 64M nz per process Process
—20 B CP-ALS time B MTTKRP time = Constant nonzero
g density 0.001024
£ 15 = SkyBridge cluster
"§ (2.6 GHz Intel Sandy
= 10 Bridge with Infiniband)
3 = 12.6 Terabyte tensor
f? 5 '\ on 8192 MPI processes
§- 524 B nonzeros
.§ 0 Four integer indices

1024 8192
Number of Processes (One node = 16 processes)

per nonzero

= One double value per
nonzero




300

= = N N
Ul (=] U1 (=] Ul
o o o o o

Time per CP-ALS iteration (secs)

o

Good strong scaling in MPIl-only
Trilinos-based CP-ALS

= Genten (Phipps, Kolda; SNL) CP-ALS on single Skybridge node
= Kokkos-based code with OpenMP, CUDA backends
= Single implementation runs on CPUs and GPUs (key advantage)
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= Random tensor = Delicious (FROSTT collection):
= 1000 x 1000 x 500 x 500 = 533Kx 17M x 2.5M x 1.4K
= 256M nonzeros; rank=16 = 140M nonzeros; rank=10
Strong scaling, Random, 256 M nonzeros Strong scaling with Delicious tensor
10 _
M Trilinos-based CP-ALS Time & " Ch-ALS tm-\e
= ® MTTKRP time
GenTen CP-ALS Time § GenTen CP-ALS time
9 6
<
o
O 4
: I
1
|—
I . [ [ — 0 l.
1 2 4 8 16 16 32 64 128 256
Number of processes (dist. mem.) or threads (GenTen) Number of processes (dist. mem.) or threads (GenTen)

Scaling not hurt by MPI Strong scaling extends beyond single node



Conclusions )

= |nvestment in HPC scientific libraries can be leveraged for data
sciences
= Directly to explore new areas (e.g., hypergraph clustering in Grafiki)
= With a twist (e.g., 2D matrix distributions)
= Enabling new applications (e.g., sparse tensor decomposition)

= Another whole talk: Kokkos and KokkosKernels

= Kokkos performance portable data structures and parallel execution
constructs (Trott, Edwards, et al.)

= KokkosKernels graph and matrix operations using Kokkos (Rajamanickam
et al.)

= Single code compiles/executes well on CPUs, KNLs, GPUs

= Examples:
= GenTen sparse tensor decomposition (Phipps, Kolda)
= Triangle counting (Wolf, Deveci, Berry, Hommond, Rajamanickam)
= SpGEMM (Deveci, Trott, Rajamanickam)

= “High-Performance Portable Data Analytics Software Using Kokkos”
Michael Wolf, 2018 Chesapeake Large-Scale Analytics Conference
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= Thanks to
= The organizers for inviting me
= Erik Boman = Daniel Dunlavy
= Mark Hoemmen = Alicia Klinvex
= Tammy Kolda " Mauro Perego
= Eric Phipps = Siva Rajamanickam
= Chris Siefert = Michael Wolf
= Trilinos:

= https://github.com/trilinos/Trilinos
= https://trilinos.github.io/

= Karen Devine: kddevin@sandia.gov



https://github.com/trilinos/Trilinos
https://trilinos.github.io/

