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Fraunhofer Gesellschaft at a Glance

application-oriented research for immediate benefit to the economy and to the benefit of society
m 72 institutes and research units
25,000 staff

® |argest organization for applied research in Europe

2.3€ billion annual research budget totaling. Of this sum, more than

2.0<€ billion is generated through contract research
roughly two thirds of this sum is generated through contract research on behalf of industry and
publicly funded research projects
roughly one third is contributed by the German federal and Countries governments in the form of base
funding

several Fraunhofer subsidiaries and centers worldwide
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Machine Learning at Fraunhofer SCAI

m \We generate machine learning methods
develop new machine learning approaches
integrate domain knowledge into machine learning algorithms
improve scalability of machine learning methods

= We adapt machine learning for and use it in applications

industrial (virtual) product development

data-driven energy management for networks

predictive maintenance

design of innovative materials

interpretation of patient data

knowledge graph / taxonomy by text mining of medical publications
anomaly detection in (telecommunication) logs

= We provide training and coaching for machine learning
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Machine Learning Domains

Reinforcement
Learning

ask the teacher examples labeled reward / cost of action no feedback
by the teacher
“high value quality of feedback for learning o value
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Machine Learning in (Virtual) Product Development

® machine learning tools allow analysis of complex data arising
from highly detailed numerical simulations during (virtual) product development
from sensors / sensor network / control data
® use ML to simplify data analysis in R&D process and assist development engineer
m for complex physical data aim for a structured integration of domain know-how into ML
machine learning

data
assisted and :
expert pattern optimized new and improved
know how recognition product product
development
numerical
simulation

® The lack of information cannot be remedied by any mathematical trickery. Lanczos 1961
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Machine Learning in Design of Wind Energy Plant Controller

® time series from simulations of WEP arise in their design, fine-tuning of installations or upgrades

® meta data encompass environmental and operational conditions (specified by certification
bodies), as well instantiations of wind turbine’s individual components

® due to complexity and volume of this raw data, automated post-processing is used, i.e. to
identify anomalies or the overrun of thresholds (research project with GE Lab Garching)

ED: — DTW:
® use numerical simulations to generate data for controller design for rare / catastrophic cases
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Condition Monitoring for Wind Energy Plants

analysis of sensor data out of condition monitoring system for wind energy plant

hourly frequency measurements from vibration sensors on blades

history over several years from Weidmiiller Monitoring Systems, originally for ice detection

no stable learning phase due to strong effect of wind

investigated case: early detection of damages in rotor blades, based on historical data of defects
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Anomaly Detection in Time-Dependent Patient Data

® joint work with Universitatsklinikum Bonn

® analysis of ECG time series
m challenges

strong noise and external influences

ECG shape depends on the patient

expensive labelling by hand

anomaly detection without a stable learning phase

m focus on detection of QRS complex
® our approach developed with clinicians
motif discovery for regular events in time series

visualisation of detected motifs categorizes data

B aim is to reduce time needed for observing live
data and reduce workload for medical staff

4,174
;
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Uncertainty Quantification for Gas Networks - Setup

m scenario analysis necessary to operate gas network safely and reliably

How much gas does each customer withdraw? What happens for demand peaks ?
influence of temperature around pipe (only roughly / uncertainly known for a time frame)
roughness of pipe (cannot be measured in a working pipe)

® interested in expectation or cummulative distribution function of pressure in pipe
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Uncertainty Quantification for Gas Networks - Results

m kinks in surrogate surface can arise due to pressure regulation — piecewise smooth function

® we can check and exploit whether regulator is active or not (after each simulation run)

xp

B our adaptive sampling approach yields better res
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CRISP-DM

Business Data
Understanding Understanding
Data
Preparation

An Infrastructure for Business Analytics

Cross Industry Standard Process for Data Mining

Industry consortium, v1: 1996

Deployment

breaks process of data mining into six phases

® |eading methodology used by industry data miners
en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
1
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The statistical method (MacKay & Oldford 2002)

B Understand your problem
H Modelling

Retrospection: that's how
Statistics is used in science

™

: [ |
Problem \\\ Measurement system

B Interpretation
B Conclusions

B New ideas

B Communication

B Sampling designs

Conclusion Plannin
9 B Data management

B Piloting and first analysis

PPDAC
/
B Data exploration Analysis Data B Collect data
B Targeted analysis B Manage data
B Testing hypotheses B Preprocess data
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System Monitoring / Predictive Health Monitoring
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Inference Cycle for the Process of Scientific Inquiry

Formulation of Hypothesis
as Mathematical Model

Theories DEDUCTION

(Drawing necessary conclusions)

Execution of Madel to
Generate Predictions

Generation of Explanatary

Hypathesis
Predictions
ABDUCTION
(Making guesses)
INDUCTION I
Inferring generalizations from samplin
Discovery of Patterns ( a9 P 9}
and Anomolies Assimilation of Predictions &
Data to Fvaluate Hypothesis
Observations
From Instrumants, Sensors, Recards, Visualizations etc.

REALITY

Big data and extreme-scale computing D0I:10.1177/1094342018778123
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Industry 4.0: Full-fleged CPS need fusion of data and simulation

Data storage Data preparation

Security
Modelling &

knowledge Simulation

Machine Learn

Band width

Visualization

Monitoring

J' Trends, Support for
= Prognostics decision making

Main challenges

Data collection

Sensor networks Digital factory

Interfaces

Machine Learning

Standards

Physical system

Control Optimization

M Core aspects
| ] Connecting aspects
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The Clash of the Cultures ?

Industry 4.0 implies
marrying of two worlds, which work and function under very different rules
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Machine Learning for CAE ?

from a machine learning definition:
“..study/construct algorithms that can learn from and make predictions on data”

by (and) its effect on simulation

learn from data

[identify most relevant input parameter J

[identify principal variation modes

before unseen input design parameters

make predictions

[compute virtual simulations for new and J
[input design parameters

evaluate robustness to variations of the ]
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Greybox Machine Learning: Methodological brother of digital twins

m What is the role of data analysis in modelling and simulation?
® How do expert knowledge and machine learning intertwine?

interplay of data analysis and numerical simulation

Blackbox ' Whitebox

simulation-
manifolds

new territory
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Virtual Product Development with CAE in Automotive

® highly developed & regulated (load cases from: EuroNCAP, FMVSS, ECE-R,...)
Preprocessing >| Computing >I Post-processing >

scalar quantities (HIC)

= images
Fem solver *  curves
sdyna
— v ‘ Ny, |
qr> i ‘ Pamcrash | [ Y
' =2t | Nastran Wt
Abaqus ‘ )

Visualization
Software

mesh generation l

: |
* load composition
+ joints L r—=

material properties
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Analysis of Data from Crash Simulations

® design quantities such as thickness, geometry, material properties (or its modelling)

® per R&D-step can arise (couple of) hundred simulation runs

® response surface / data analysis for scalars (e.g. head injury criterion, firewall intrusion)
m for detailed analsysis data needs to be investigated interactively

®m visualisation for single 3D simulation, but no tools to compare geometric deformations

2 iy

® our aim: automatic organisation of several (full) simulation results

m goal: find intrinsic dimension s of d-dimensional simulation vectors, s < d
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Handling of Bundles of Numerical Simulation Data

® simulation data is bulky data, therefore
not stored in database but in special file formats (often vendor specific)
results are organised “database-like” using simulation data management (SDM)-systems
store meta data, derived data, etc. with simulation data

m for analysis data needs to be easily accessible (storage, transfer, visualisation)

" g03|2 employ data Storage server Storage & Database System

compress simulation data (e.g. FEMZIP)
compute mainly at data, not at client
exploit HPC capabilities of server

m future goal for product development
integrate sensor and measurement data
align real and simulation data

Server side

User side

Interactive Big Data Analysis
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Study on Position of Bumper for Toyota Yaris

B bumper attachment positions parametrised by angle, varied on a small circle
m perform simulation for ca. 200 parameters
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Low Dimensional Organisation of Simulations by Diffusion Maps

investigate array of absolute deformations on firewall and structural beams

each point represents a simulation result, color coding according to nodal distance to reference
the identified three dominant modes correspond to three angle regions

engineer selects wanted / unwanted deformation behavior in embedding — classification labels
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gﬂoorgsgre from SCAI — (Geometric) Diff for Inputdecks

B FEM model comparison based on semantic segmentation
changes to rigid body elements
changes to spotwelds
duplicate parts (translated / rotated parts)

M new / missing parts and elements

identification of geometry and mesh changes

detection of material and thickness changes

multi-parts detection
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Dimensionality Reduction / Simulation Space

B simulations are high dimensional objects Manifold Learning

Orbit Space
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Mathematical Motivation: Orbit Space

® assume simulations are obtained by transformation from reference simulation fy
f=~-fh, v€G withf . fe M
B parametrize simulations according to such transformations
M space of all simulations objects
M /G space of simulations modulo a transformation group
G- f :={(v,f)y€ G} is the orbit

~

m exploit G to understand the space of simulations objects M
B study objects invariant under group of transformations G
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Symmetry - Structure Preservation in Transformation of Objects

B isometric invariant — distance preserving

m conformal invariant — angle preserving
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Invariance for Simulation Bundles

® although no closed form available, principle can be used
invariance
m different simulations have different surface deformations
® variability is in many cases preserving the distance on the surface, i.e. an isometry
look for distance preserving operator

m Laplace-Beltrami operator is distance preserving on a mesh
® data-driven Fokker-Planck operator is invariant to nonlinear transformation, due to its
construction from observed data
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Discrete Laplace Beltrami Operator

® For a mesh K which is an (e, n) approx. of a surface S, (Belkin, Sun, and Wang, 2008) defined
for any vertex w the mesh Laplace-Beltrami operator (with d(p, w) the graph distance)

LA m@‘“" S e M (F(p) — F(w),

peV/(t)

(Belkin, Sun, and Wang, 2008) showed for f € C2(S) and suitable h(e,n)

lim sup HLh(E’77 f— A5f|KH =0,
€,n—0 K
where the supremum is taken over all (¢, n)-approximations of S.
B recent works give point wise estimates between graph Laplacians and continuum operators or
their spectral convergence
m for eigenvectors and eigenprojections (so far) only consistency results are known
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Invariant Operators: Isometric Invariance

Theorem (lza-Teran, G., 2018)

Let the set of meshes K = {Ki}7;1 contain the approximations of the surfaces S' and let there
be transformations g0|’K, i=1,..., m between the meshes which are e-isometric. Assume that
the variance for the e-isometric transformations follow a Gaussian distribution. Then, the
approximation of the Laplace-Beltrami operator L!., constructed using graph distances for one
mesh K, differs only by a scaling factor from the ones for the deformed meshes i =1,... m.

sketch.

Geodesic distance stays the same after an isometric transformation, calculating the
Laplace-Beltrami operator based on it will lead to the same result. The geodesic distance is now
approximated by the graph distance, where we assume a small error perturbation of magnitude e
which follows a Gaussian distribution. Now, we can use a result from random matrix theory,
which states that for the Gaussian kernel, such a Graph Laplacian matrix disturbed by noise can
be considered a rescaled version of the original one. O

\

~ Fraunhofer
SCAI



Spectral Decomposition of an Operator

® on a manifold (S, g) define eigenvalue problem —Agy = A\

® operator is p.s.d., eigenvalues Ay, k > 0 are real positive and isolated with finite multiplicity
® use corresponding discrete operator and its discrete eigenfunctions {1/};},{\’

m strongly related to the use of Laplace-Beltrami operator in shape analysis / shape spaces

m spectral decomposition in operator eigenbasis gives for function f on mesh
N
f= Za’ﬂ)i, o =< f ;>
i=1

= distance of coefficients o}, o gives good distance measure for corresponding simulations f1, f2

\

~ Fraunhofer

SCAI



Fokker-Planck Operator Constructed From Data

non-observable data observed data simulation burst

estimate local covariance matrices C from observed cloud, use C = J,J
(Singer and Coifman, 2008): approximate original distance for p's, up to O(||n — 77’||f?d)

~1
d(p, o) =200 =) [JpdZ(n) + S L] (=)

use data-driven distances as graph weights, build Fokker-Planck operator L = W, — /

discrete operator is invariant to nonlinear transformation ¢
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Analysis of Numerical Simulations of a Car Crash

® using numerical simulations where thickness values of 9 parts are varied up to 30%
® chose relevant structural part (and time step) for analysis
® analyse the different deformations of the simulations results

\
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Visualization of All Time Steps in LB-decomposition

= for each mesh point its x, y, and z coordinates in simulation / gives f, f, and f;

= use first spectral coefficient for each £/, fy", f/ at each time

\
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Fokker-Planck operator
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(a) magnitude of coefficients (b) variance of coefficients

= for each mesh point its x, y, and z coordinates in simulation i gives £, £/, and f
m spectral decomposition computed for a selected time step
m observation: 1st mode reflects translation, 2nd mode reflects rotation
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Mode 3 - Global Deformation

m fix all coefficients but the third one
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Mode 4 - Local Deformation

m fix all coefficients but the fourth one
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Morph in Lower Dimensional Representation to Match a Point Cloud

= vary / optimize over several spectral coefficients
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High Speed 3D-Point Cloud Measurements

results from joint project with Fraunhofer IOF and EMI

“Hand"”-Build Test Structure 3D-Video of Crash
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Matching of 3D-Point Data and Simulation
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Path of Experiment Data in Simulation Space
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Analysis of Effect on von Mises-Stress
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find matching simulation: obtain information about von Mises-Stress on non-observed structure
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Analysis of CFD Simulation / Aeroacoustic Study on HVAC Channel

® study to find “good” discretization parameters, i.e. good enough, but not too fine

B treat simulation field over middle plane of cavity as surface

® only preliminary results so far inside EU-project Fortissimo 2 with CFD-Schuck
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Conclusion

integration of domain knowledge and/or assumptions into overall data analysis for complex
engineering data essential and possible

introduce decomposition of invariant operator for analysis of bundles of numerical simulations
gives joint basis for bundles of simulations, e.g. all can be visualised in time together
allows “virtual” simulations by interpolation in lower dimensional representation

use suitable distance measures on mesh to build domain assumptions into data representation
could use some more theory, e.g. in regard to approximation of eigenfunctions

further explore connection to shape spaces in computer graphics

is there a connection to representation theory ?

generalization from surface to full 3D data ?

preliminary results using an invariant basis in RBM-context

HDA2019: 8th Workshop on High-Dimensional Approximation
save the date: 9 — 13 September 2019 @ETH Zurich
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