Multilevel-Multifidelity Sampling and Emulation for Forward UQ

Michael S. Eldred, Gianluca Geraci, Alex A. Gorodetsky, John D. Jakeman
Sandia National Laboratories, Albuquerque NM / University of Michigan, Ann Arbor MI
IPAM Workshop: HPC and Data Science for Scientific Discovery, UCLA, October 15-19, 2018

UQ & Optimization: DOE/DOD Mission Deployment

Stewardship (NNSA ASC)
Safety in abnormal environments

Energy (ASCR, EERE, NE)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF, ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

Addtln. Office of Science: (SciDAC, EFRC)
Comp. Matls: waste forms / hazardous matls (WastePD, CHWM)
MHD: Tokamak disruption (TDS)

Common theme across these applications:
- High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
- Severe simulation budget **constraints** (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Focus on scalable algorithms in combination with approaches that can exploit a modeling hierarchy.
Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical
 • Multifidelity Opt, UQ, inference
• Support general case of discrete model forms
 • Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterization
 • Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model form uncertainty propagation
 • Intrusive, nonintrusive
• Within MF context: CV correlation

Discretization levels / resolution controls
• Exploit special structure: discrepancy $\rightarrow 0$ at order of spatial/temporal convergence

Combinations for multiphysics, multiscale
Multilevel-Multifidelity Concepts Have Broad Relevance

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy

- address scale and expense for high fidelity M&S applications in defense, energy, and climate
- render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Monte Carlo Methods (UQ)

Optimal resource allocation: multilevel (ML), multifidelity (MF), and combined (MLMF)

- More than order of magnitude speedup vs. MC
- Render HF UQ possible (e.g., only 9 LES in 24D)
- Integrate w/ active subspaces (enhance p, link ξ)
- Unification of ML, MF, MI approaches

Polynomial Chaos Methods (UQ)

- ML rate estimation, greedy ML adaptation
- Sparse grids, compressed sensing, fn train
- Exploit problem structure: sparsity, low rank
- Additional orders of magn. when regular
- Sparse grids in model space

Recursive Trust Region Methods (OUU)

- Extend trust-region model mgmt. to deep hierarchies
- Manage both simulation and stochastic fidelity
- Order of magnitude fewer HF runs
- More aggressive profile shaping than MG/Opt

![UCAV Nozzle](image1.png)

Scramjet

![A2e wake dynamics](image2.png)

![UCAV Nozzle OUU (Aero, Structural, Thermal)](image3.png)
Monte Carlo Methods
Monte Carlo Sampling Methods
MSE for mean estimator

Problem statement: We are interested in the expected value of $Q_M = g(X_M)$ where

- M is (related to) the number of spatial degrees of freedom
- $\mathbb{E} [Q_M] \xrightarrow{M \to \infty} \mathbb{E} [Q]$ for some RV $Q : \Omega \to \mathbb{R}$

Monte Carlo:

$$\hat{Q}_{MC, N}^{M} \overset{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{N} Q_M^{(i)} ,$$

two sources of error:

- **Sampling error:** replacing the expected value by a (finite) sample average
- **Spatial discretization:** finite resolution implies $Q_M \approx Q$

Looking at the Mean Square Error:

$$\mathbb{E} \left[(\hat{Q}_{MC, N}^{M} - \mathbb{E} [Q])^2 \right] = N^{-1} \text{Var} (Q_M) + (\mathbb{E} [Q_M - Q])^2$$

Accurate estimation \Rightarrow **Large number** of samples at high (spatial) resolution
Multilevel and Multifidelity Sampling Methods

Multilevel MC: decomposition of variance

Ingredients:

- \(\{M_\ell : \ell = 0, \ldots, L\} \) with \(M_0 < M_1 < \cdots < M_L \overset{\text{def}}{=} M \)
- Estimation of \(\mathbb{E}[Q_M] \) by means of correction w.r.t. the next lower level

\[
Y_\ell \overset{\text{def}}{=} Q_{M_\ell} - Q_{M_{\ell-1}} \quad \xrightarrow{\text{linearity}} \quad \mathbb{E}[Q_M] = \mathbb{E}[Q_{M_0}] + \sum_{\ell=1}^{L} \mathbb{E}[Q_{M_\ell} - Q_{M_{\ell-1}}] = \sum_{\ell=0}^{L} \mathbb{E}[Y_\ell]
\]

- Multilevel Monte Carlo estimator

\[
\hat{Q}_{ML}^{M_{\ell}} = \sum_{\ell=0}^{L} Y_{\ell,N_{\ell}} \quad \text{with} \quad Y_{\ell,N_{\ell}} = \sum_{\ell=0}^{L} \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} (Q_{M_\ell}^{(i)} - Q_{M_{\ell-1}}^{(i)})
\]

- The Mean Square Error is

\[
\mathbb{E}[(\hat{Q}_{ML} - \mathbb{E}[Q])^2] = \sum_{\ell=0}^{L} N_{\ell}^{-1} \text{Var}(Y_\ell) + (\mathbb{E}[Q_M - Q])^2
\]

Note: If \(Q_M \rightarrow Q \) (in a mean square sense), then \(\text{Var}(Y_\ell) \xrightarrow{\ell \to \infty} 0 \)
Multilevel and Multifidelity Sampling Methods
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

$$C(\hat{Q}_M^{ML}) = \sum_{\ell=0}^{L} N_\ell C_\ell$$

Determining the ideal number of samples per level (i.e. minimum cost at fixed variance)

$$C(\hat{Q}_M^{ML}) = \sum_{\ell=0}^{L} N_\ell C_\ell \quad \sum_{\ell=0}^{L} N_\ell^{-1} \text{Var} (Y_\ell) = \varepsilon^2 / 2$$

Balance ML estimator variance (stochastic error) and residual bias (deterministic error) → don’t over-resolve one at the expense of the other

Lagrange multiplier

$$N_\ell = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^{L} (\text{Var} (Y_k) / C_k) \right]^{1/2} \frac{\sqrt{\text{Var} (Y_\ell) / C_\ell}}{C_\ell}$$

Level independent

Optimal sample profile

Level dependent
Multilevel and Multifidelity Sampling Methods
Classical Control Variate → Multifidelity MC

A Control Variate MC estimator (function G with $\mathbb{E}[G]$ known)

$$\hat{Q}_N^{MCCV} = \hat{Q}_N^{MC} - \beta \left(\hat{G}_N^{MC} - \mathbb{E}[G] \right)$$

$$\underset{\beta}{\text{argmin}} \mathbb{V} \text{ar} \left(\hat{Q}_N^{MCCV} \right) \implies \beta = -\rho \frac{\mathbb{V} \text{ar}^{1/2}(Q)}{\mathbb{V} \text{ar}^{1/2}(G)}$$

$$\mathbb{V} \text{ar} \left(\hat{Q}_N^{MCCV} \right) = \mathbb{V} \text{ar} \left(\hat{Q}_N^{MC} \right) \left(1 - \rho^2 \right)$$

In our context, G is a low fidelity approximation of Q and its expectation is not known a priori.

Let’s modify the high-fidelity QoI, Q_{M}^{HF}, to decrease its variance

$$\hat{Q}_{M,N}^{HF,\text{CV}} = \hat{Q}_{M,N}^{HF} + \alpha \left(\hat{Q}_{M,N}^{LF} - \mathbb{E}[Q_{M}^{LF}] \right)$$

additional and independent set $\Delta^{LF} = r^{NF}$

Minimize CV estimator variance → control param. as before:

$$\frac{d \mathbb{V} \text{ar}(\hat{Q}_M^{HF,\text{MF}})}{d \alpha} = 0 \implies \alpha = -\rho \frac{\mathbb{V} \text{ar}^{1/2}(Q_{M}^{HF})}{\mathbb{V} \text{ar}^{1/2}(Q_{M}^{LF})}$$

Minimize total cost → optimal sample ratio: $r^* = -1 + \sqrt{\frac{w \rho^2}{1 - \rho^2}}$

MFMC cost relative to MC

Pasupathy et al., 2012; Ng and Willcox, 2014; Peherstorfer, Willcox, & Gunzburger, 2016; et al.
Multilevel – Multifidelity Sampling Methods
Combining ML and CV for multidimensional model hierarchies

\[\mathbb{E} \left[Q_{M}^{HF} \right] = \sum_{l=0}^{L_{HF}} \mathbb{E} \left[Y_{l}^{HF} \right] = \sum_{l=0}^{L_{HF}} \hat{Y}_{l}^{HF} \]

\(Y_{l}^{HF,*} = \hat{Y}_{l}^{HF} + \alpha_{l} \left(\hat{Y}_{l}^{LF} - \mathbb{E} \left[Y_{l}^{LF} \right] \right) \)

\[\L_{\ell}(r_{\ell}) \leq 1 - \rho_{\ell}^{2} \frac{r_{\ell}}{1 + r_{\ell}} \]

Cost per level is now \(C_{\ell}^{eq} = C_{\ell}^{HF} + C_{\ell}^{LF} (1 + r_{\ell}) \)

Optimal sample allocation across discretizations and model forms

\[N_{l}^{HF,*} = 2 \frac{\varepsilon^{2}}{\var_{y_{l}^{HF}}(1 - \rho_{\ell}^{2})} \left[\frac{\var_{y_{l}^{HF}}(1 - \rho_{\ell}^{2})}{C_{\ell}^{HF}} \right]^{1/2} \Lambda_{\ell} \]

Multilevel – Multifidelity Sampling Methods
Combining ML and CV for multidimensional model hierarchy

- Algorithmic-contained correlation improvement
- Optimality of the LF discrepancy

\[\hat{Y}_{\ell}^{\text{LF}} = \gamma_{\ell} Q_{\ell}^{\text{LF}} - Q_{\ell-1}^{\text{LF}}, \]

where \(\gamma \) is chosen in order to maximize the correlation between \(Y_{\ell}^{\text{HF}} \) and \(\hat{Y}_{\ell}^{\text{LF}} \)

Cost min s.t.
error balance

\[\theta_{\ell} = \frac{\text{Cov} \left(Y_{\ell}^{\text{LF}}, \hat{Y}_{\ell}^{\text{LF}} \right)}{\text{Cov} \left(Y_{\ell}^{\text{LF}}, Y_{\ell}^{\text{LF}} \right)} \]

\[\tau_{\ell} = \frac{\text{Var} \left(\hat{Y}_{\ell}^{\text{LF}} \right)}{\text{Var} \left(Y_{\ell}^{\text{LF}} \right)} \]

\[\Lambda_{\ell} = 1 - \rho_{\ell}^2 \frac{r_{\ell}^*}{1 + r_{\ell}^*} \]

\[r_{\ell}^* = -1 + \frac{\rho_{\ell}^2 \sigma_{\ell}^2}{1 - \rho_{\ell}^2 \sigma_{\ell}^2} \omega_{\ell} \]

Can be rewritten as

\[N_{\ell}^{\text{HF}} = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^{L_{\text{HF}}} \left(\frac{\text{Var} \left(Y_{k}^{\text{HF}} \right) C_{k}^{\text{HF}}}{1 - \rho_{HL}^2} \right)^{1/2} \Lambda_{k}(r_{k}) \right] \sqrt{\left(1 - \rho_{HL}^2 \right) \frac{\text{Var} \left(Y_{\ell}^{\text{HF}} \right)}{C_{\ell}^{\text{HF}}}} \]

Compared to previous

\[N_{\ell}^{\text{HF}} = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^{L_{\text{HF}}} \left(\frac{\text{Var} \left(Y_{k}^{\text{HF}} \right) C_{k}^{\text{HF}}}{1 - \rho_{HL}^2} \right)^{1/2} \Lambda_{k}(r_{k}) \right] \sqrt{\left(1 - \rho_{HL}^2 \right) \frac{\text{Var} \left(Y_{\ell}^{\text{HF}} \right)}{C_{\ell}^{\text{HF}}}} \]

Multilevel – Multifidelity Sampling Methods

Results on model problem: wave propagation in composites

- Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws
 \[
 \begin{align*}
 \sigma_A &= K_1^A \epsilon + K_2^A \epsilon^2, \quad K_1^A = 1 \quad \text{and} \quad K_2^A = \xi_j \\
 \sigma_B &= K_1^B \epsilon + K_2^B \epsilon^2, \quad K_1^B = 1.5 \quad \text{and} \quad K_2^A = 0.8
 \end{align*}
 \]

- Uncertain initial static \((u(x, t = 0) = 0)\) pre-tension state:
 \[
 \sigma(x) = \begin{cases}
 \xi_3 \exp \left(-\frac{(x - 0.35)(x - 0.25)}{2 \times 0.002} \right) & \text{if } 0 < x < 1/2 \quad \xi_3 \sim \mathcal{U}(0.5, 2) \\
 \xi_2 \exp \left(-\frac{(x - 0.65)(x - 0.75)}{2 \times 0.002} \right) & \text{if } 1/2 < x < 1 \quad \xi_2 \sim \mathcal{U}(0.5, 6.5)
 \end{cases}
 \]

- Spatially varying uncertain density: \(\rho(x) = \xi_1 + 0.5 \sin (2\pi x), \xi_1 \sim \mathcal{U}(1.5, 2)\)

- Clamped rod as B.C.

28 random variables
Two fidelities, each with 4 discretizations

<table>
<thead>
<tr>
<th>Level</th>
<th>MLMC (N_\ell)</th>
<th>MLMF-YI (N_{\ell}^{HF})</th>
<th>(N_{\ell}^{LF})</th>
<th>MLMF-QI (N_{\ell}^{HF})</th>
<th>(N_{\ell}^{LF})</th>
<th>(r_\ell)</th>
<th>(\rho_\ell^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80029</td>
<td>5960</td>
<td>243178</td>
<td>40</td>
<td>0.97</td>
<td>4682</td>
<td>192090</td>
</tr>
<tr>
<td>1</td>
<td>6282</td>
<td>2434</td>
<td>12487</td>
<td>14</td>
<td>0.49</td>
<td>1049</td>
<td>13781</td>
</tr>
<tr>
<td>2</td>
<td>1271</td>
<td>262</td>
<td>3877</td>
<td>14</td>
<td>0.82</td>
<td>151</td>
<td>3657</td>
</tr>
<tr>
<td>3</td>
<td>212</td>
<td>47</td>
<td>966</td>
<td>19</td>
<td>0.84</td>
<td>34</td>
<td>754</td>
</tr>
</tbody>
</table>
DARPA SEQUOIA: Hierarchy of Fidelity Levels

Low fidelity model
- Quasi 1D ideal/non ideal nozzle aero
- 1D heat transfer
- Coarse axisymmetric FEM model
- 30 seconds on one core

Medium fidelity model
- 2D Euler/RANS axisymmetric CFD
- 1D heat transfer
- Coarse axisymmetric FEM model
- 5 minutes on one core (2D Euler)

High fidelity model
- 3D non-axisymmetric Euler/RANS CFD
- 1D heat transfer
- Full 3D FEM model
- 2 hours on 20 cores (3D RANS, coarse mesh)

Multiple mesh refinements available for Medium & High (ragged ML-MF)
Context: Analysis of performance of UCAV nozzles subject to environmental, material, and manufacturing uncertainties.

Goal: Explore utility of low fidelity model (potential flow, hoop stress) alongside discretizations for medium fidelity (Euler, FEM)

<table>
<thead>
<tr>
<th>Target accuracy</th>
<th>LF Coarse</th>
<th>LF Medium</th>
<th>LF Fine</th>
<th>MF Coarse</th>
<th>MF Medium</th>
<th>MF Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>21143</td>
<td>1757</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.003</td>
<td>69580</td>
<td>5775</td>
<td>36</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.001</td>
<td>212828</td>
<td>17715</td>
<td>109</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal sample allocations based on relative cost, observed correlation between models, and observed variance distribution across levels.
Updated Deployment of MLCV MC to UCAV Nozzle UQ

<table>
<thead>
<tr>
<th></th>
<th>LF Variance reduction [%]</th>
<th>LF (updated) Variance reduction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>correlation</td>
<td></td>
</tr>
<tr>
<td>Thrust</td>
<td>0.997</td>
<td>91.42</td>
</tr>
<tr>
<td>Mechanical Stress</td>
<td>2.31e-5</td>
<td>2.12e-3</td>
</tr>
<tr>
<td>Thermal Stress</td>
<td>0.391</td>
<td>12.81</td>
</tr>
</tbody>
</table>

Estimator Variance (normalized)

Equivalent HF runs

<table>
<thead>
<tr>
<th>Accuracy ($\varepsilon^2/\varepsilon_0^2$)</th>
<th>LF Coarse</th>
<th>Medium Fidelity</th>
<th>LF (updated)</th>
<th>Medium Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
<td>Medium</td>
<td>Fine</td>
<td>Coarse</td>
</tr>
<tr>
<td>0.1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>404</td>
</tr>
<tr>
<td>0.01</td>
<td>21,143</td>
<td>1,757</td>
<td>20</td>
<td>3,091</td>
</tr>
<tr>
<td>0.003</td>
<td>69,580</td>
<td>5,775</td>
<td>36</td>
<td>N/A</td>
</tr>
<tr>
<td>0.001</td>
<td>212,828</td>
<td>17,715</td>
<td>109</td>
<td>32,433</td>
</tr>
</tbody>
</table>
DARPA EQUiPS (Scramjet UQ):
LES Models for Turbulent Reacting Flow in HIFiRE

- Provided benchmark LES calculations of the Hypersonic International Flight Research Experiment (HIFiRE) to support development of UQ
- Case of interest corresponds to the geometry and conditions of ground based experiments performed in the HIFiRE Direct Connect Rig (HDCR)
- A hierarchy of unit cases (including high-fidelity LES of the HDCR) has facilitated UQ tasks and provided optimal workflow between team members
- Unit cases are designed to emulate key QoIs while making comprehensive parametric studies possible

Model forms:
- 2D, 3D
Discretizations:
- d/{8,16,32,64}
3D LES simulation of scramjets is extremely expensive and a significant challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations, by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations.

UQ Approach: MLCV algorithm described previously.

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)
Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and, in turn, a more non-linear response of the system

<table>
<thead>
<tr>
<th></th>
<th>P_0,mean</th>
<th>$P_0,\text{rms,mean}$</th>
<th>M_{mean}</th>
<th>TKE_{mean}</th>
<th>χ_{mean}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d/8$</td>
<td>4.02554e-03</td>
<td>1.90524e-06</td>
<td>1.99236e-02</td>
<td>3.34905e-07</td>
<td>4.24520e-03</td>
</tr>
<tr>
<td>$d/16$</td>
<td>4.03350e-07</td>
<td>7.77838e-08</td>
<td>6.68974e-05</td>
<td>1.74847e-08</td>
<td>4.40048e-05</td>
</tr>
</tbody>
</table>

Table 2: Variance for the five QoIs of the P1 unit problem.

Observations from pilot sample: decay in variance across discretizations (LF d/8 and discrepancy d/16 – d/8) no longer observed for all QoI

Implications: requires more focused analysis of deterministic convergence properties → Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge QoI statistics that are closely tied to resolution of turbulence.
Multilevel – Multifidelity Sampling Methods

Cardiovascular flow

Model relationships / graph topologies

![Diagram showing model relationships and graph topologies](image)

Costs to achieve prescribed error tolerance

<table>
<thead>
<tr>
<th>Method</th>
<th>Effective Cost (3D Simulations)</th>
<th>No. 3D Simulations</th>
<th>No. 1D Simulations</th>
<th>No. 0D Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>9.885</td>
<td>9.885</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MFA</td>
<td>56</td>
<td>21</td>
<td>15,681</td>
<td>–</td>
</tr>
<tr>
<td>MFB</td>
<td>39</td>
<td>36</td>
<td>–</td>
<td>154,880</td>
</tr>
<tr>
<td>MLA</td>
<td>305</td>
<td>212</td>
<td>41,990</td>
<td>–</td>
</tr>
<tr>
<td>MLB</td>
<td>156</td>
<td>150</td>
<td>–</td>
<td>342,060</td>
</tr>
<tr>
<td>MLC</td>
<td>165</td>
<td>156</td>
<td>1,324</td>
<td>351,940</td>
</tr>
<tr>
<td>MLMF</td>
<td>165</td>
<td>156</td>
<td>1,249</td>
<td>362,590</td>
</tr>
</tbody>
</table>

Courtesies of C. Fleeter (Stanford), Prof. D. Schiavazzi (Notre Dame), Prof. A. Marden (Stanford)
Multilevel – Multifidelity Sampling Methods
Research Direction: Leveraging active directions (ECCOMAS, WCCM)

• Active subspaces, ridge approximation, adapted basis, …

Let’s introduce the $m \times m$ matrix C

$$C = \int \left(\nabla f \right) \left(\nabla f \right)^T \rho(x) \, dx$$

Since C is I) Positive semidefinite and II) Symmetric, it exists a real eigenvalue decomposition

$$C = W \Lambda W^T,$$ where

W is the $m \times m$ orthogonal matrix whose columns are the normalized eigenvectors

$\Lambda = \text{diag} \{ \lambda_1, \ldots, \lambda_m \}$ and $\lambda_1 \geq \cdots \geq \lambda_m \geq 0$

Let’s define two sets of variables

$$\begin{cases} y = W_A^T x \in \mathbb{R}^n & \text{(Active)} \\ z = W_I^T x \in \mathbb{R}^{(m-n)} & \text{(Inactive)} \end{cases}$$

$$\Rightarrow x = W_A y + W_I z \approx W_A y$$

• Main ideas:
 • For each model independently one can compute active directions
 • Sample along these shared active directions and map back to original model coords.
 • Principal directions for a shared QoI can bridge dissimilar parameterizations and demonstrate underlying shared processes

Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 1)

Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 1)

- Fixed computational budget of equivalent of 300 HF runs (LF cost ratio = 100)
- 1000 realizations for each estimator → pdf of estimated Expected Value
- Active subspace discovery for each realization during the pilot sample phase

Multilevel – Multifidelity Sampling Methods

Research Direction: leveraging active directions (example 2)

Wave propagation test problem

Enhances correlation (even if initially high) and links (dissimilar) model parameterizations

<table>
<thead>
<tr>
<th></th>
<th>N_x</th>
<th>N_{t}</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-fidelity</td>
<td>5</td>
<td>50</td>
<td>36×10^{-4}</td>
</tr>
<tr>
<td>High-fidelity</td>
<td>801</td>
<td>600</td>
<td>30×10^{-5}</td>
</tr>
</tbody>
</table>

![Graph showing Active Direction Agnostic sampling with $\rho^2 = 0.89$ and Active Direction Aware sampling with $\rho^2 = 0.99$.]

![Histogram showing 250 Estimator Realizations with Expected Value ranging from 2.8 to 5.0.]

<table>
<thead>
<tr>
<th>Method</th>
<th>HF runs</th>
<th>LF runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>40</td>
<td>5946</td>
</tr>
<tr>
<td>MC-MF</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>MC-MFAS</td>
<td>32</td>
<td>21185</td>
</tr>
</tbody>
</table>
Multilevel – Multifidelity Sampling Methods

Research Direction: Generalized control variates (in internal Sandia review)

- Unification of ML and CV approaches
- Look beyond (recursive) model pairings

\[\hat{Q}^{CV} = \hat{Q} + \sum_{i=1}^{M} \alpha_i \left(\hat{Q}_i - \mu_i \right) \]

\[\operatorname{arg min}_\alpha \operatorname{Var} \left[\hat{Q}^{CV}(\alpha) \right] \]

\[C \in \mathbb{R}^{M \times M} \ \text{covariance matrix among } Q_i \]
\[c \in \mathbb{R}^{M} \ \text{vector of covariances between } Q \]
\[\alpha^* = C^{-1} c \]

A. Gorodetsky, G. Geraci, E., J. Jakeman “Approximate Control Variates,” (in internal SNL R&A; expected on arxiv next week).
Multilevel – Multifidelity Sampling Methods
Research Direction: Generalized control variates (in internal Sandia review)

- Unification of ML and CV approaches
- Look beyond (recursive) model pairings

\[
\hat{Q}^{\text{CV}} = \hat{Q} + \sum_{i=1}^{M} \alpha_i \left(\hat{q}_i - \mu_i \right)
\]

\[
\arg\min_{\alpha} \text{Var} \left[\hat{Q}^{\text{CV}}(\alpha) \right] = \begin{cases}
C \in \mathbb{R}^{M \times M} & \text{covariance matrix among } Q_i \\
 c \in \mathbb{R}^{M} & \text{vector of covariances between } Q \text{ and each } Q_i \\
 \alpha^* = C^{-1}c
\end{cases}
\]

A. Gorodetsky, G. Geraci, E., J. Jakeman “Approximate Control Variates,” (in internal SNL R&A; expected on arxiv next week).
Summary: Monte Carlo Methods

The case for multilevel and multifidelity methods
- Push towards higher simulation fidelity can make propagation / inference / OUU untenable
- Multiple model fidelities / discretizations are often available that trade accuracy for cost
- Realistic deployments (nozzle, scramjet, cardio) → rich model ensemble, challenging QoI

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality
- Multilevel-multifidelity MC framework for cost-optimized variance reduction
 - ML MC targets variance decay within a discretization hierarchy
 - MF MC (control variates) targets correlation between HF and 1 or more LF models
 - ML-MF MC employs LF control variate at each HF discretization level → tailors approach to hierarchy type; leverages multiple variance reduction opportunities
 - Well suited for high dimensionality and/or low regularity

Research Directions
- Leverage active directions to enhance correlation and bridge dissimilar parameterizations
- Relax assumed model relationships / graph topologies to expose additional performance
Stochastic Polynomial Expansion Methods

• Projection, Regression, Interpolation
• Multilevel | Multifidelity expansions (heuristic)
Stochastic Expansions: Polynomial Chaos & Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fnns

\[R = \sum_{j=0}^{\infty} \alpha_j \Psi_j(\xi) \]

- Estimate \(\alpha_j \) using regression or numerical integration: sampling, tensor quadrature, sparse grids, or cubature

Stochastic collocation: instead of estimating coefficients for known basis functions, form interpolants for known coefficients

- **Global:** Lagrange (values) or Hermite (values+derivatives)
- **Local:** linear (values) or cubic (values+gradients) splines

- **Nodal** or **Hierarchical** interpolants

\[L_j = \prod_{k=1}^{m} \frac{\xi - \xi_k}{\xi_j - \xi_k} \]

Sparse interpolants formed using \(\sum \) of tensor interpolants

- **Tailor expansion form:**
 - p-refinement: anisotropic tensor/sparse, generalized sparse
 - h-refinement: local bases with dimension & local refinement

- **Method selection:** requirements for fault tolerance, decay, sparsity, error estimation
MF UQ with Spectral Stochastic Discrepancy Models

- High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
- Low fidelity “design” codes often exist that are predictive of basic trends
- Can we leverage LF codes w/i HF UQ in a rigorous manner? → global approxs. of model discrepancy

\[
\hat{f}_{hi}(\xi) = \sum_{j=1}^{N_{lo}} f_{lo}(\xi_j) L_j(\xi) + \sum_{j=1}^{N_{hi}} \Delta f(\xi_j) L_j(\xi)
\]

\(N_{lo} \gg N_{hi}\)

Sparse grid bi-fidelity: target reduced complexity in model discrepancy

Compressed sensing bi-fidelity: target sparsity

(Functional) tensor train bi-fidelity: target low rank

Stochastic Polynomial Expansion Methods
- Projection, Regression, Interpolation
- Multilevel | Multifidelity expansions (heuristic)
- Multilevel | Multifidelity expansions (optimized)
Formulations for Multilevel PCE / SC

1. **Optimal resource allocation:** parameterize estimator variance \rightarrow optimal N_l

 Global κ and $\gamma > 0$

 \[\text{Var}[\hat{Y}_l] = \frac{\text{Var}[Y_l]}{\gamma N_l^\kappa} \rightarrow N_l = \sqrt[\kappa+1]{\frac{2}{\varepsilon^2 \gamma}} \sum_{q=0}^{L} \sqrt[\kappa+1]{\text{Var}[Y_q] C_q^\kappa} \sqrt[\kappa+1]{\frac{\text{Var}[Y_l]}{C_l}} \]

 Main challenge: abrupt transitions in sparse / low rank recovery

2. **Restricted Isometry Property (RIP) for sparse recovery**

 \[N_l \geq s_l \log^3(s_l) L_l \log(C_l) \]

 Jakeman, Narayan, and Zhou, 2016

 Main challenge: compressible fns

 \rightarrow increasing s

 \rightarrow feedback not well controlled

3. **Greedy Multilevel refinement**

 ML competition with multiple level candidate generators

 Main challenges: scalable refinement schemes, loss of precision
ML PCE with rate estimation: Model Problem & UCAV Nozzle

\[-\frac{d}{dx} \left[a(x, \xi) \frac{du}{dx} (x, \xi) \right] = 10, \quad (x, \xi) \in (0, 1) \times I_\xi, \tag{22} \]

where \(x \) is the spatial coordinate, \(\xi \) a vector of independent random input parameters and \(a(x, \xi) \) denotes the (random) diffusivity field. The following Dirichlet boundary conditions are also assumed

\[u(0, \xi) = 0, \quad u(1, \xi) = 0. \tag{23} \]

We are interested in quantifying the uncertainty in the solution \(u \) at specified spatial locations: \(x = 0.05, 0.5, 0.95 \).

We represent the random diffusivity field \(a \) using the following expansion

\[a(x, \xi) = 1 + \sigma \sum_{k=1}^{d} \frac{1}{k^2} \cos(2\pi k x) \xi_k \tag{24} \]

Optimized resource allocation outperforms previous heuristics: \(\kappa > 1 \) is effective

Initial results were promising, but rate estimation impeded by abrupt transition in recovery

Optimal sample allocations based on relative cost, variance distribution across levels and \(\kappa = 2 \)

ML PCE shows more rapid convergence using coarse/medium/fine discretizations:
- Exploits smoothness in moderate dim.

ML PCE with rate estimation:
- Model Problem & UCAV Nozzle
- SS Diffusion
- Optimized resource allocation outperforms previous heuristics: \(\kappa > 1 \) is effective
- Initial results were promising, but rate estimation impeded by abrupt transition in recovery
- Optimal sample allocations based on relative cost, variance distribution across levels and \(\kappa = 2 \)
- ML PCE shows more rapid convergence using coarse/medium/fine discretizations:
 - Exploits smoothness in moderate dim.
Formulations for Multilevel PCE / SC

1. Optimal resource allocation: parameterize estimator variance → optimal N_l
 \[\frac{\text{Var}[\hat{Y}_l]}{\gamma N_l^\kappa} \rightarrow N_l = \left(\frac{2}{c^2 \gamma} \sum_{q=0}^{L} \kappa+1 \text{Var}[Y_q] C_q \right)^{\frac{1}{\kappa+1}} \text{Var}[Y_l] C_l \]
 Global κ and $\gamma > 0$

 Main challenge: abrupt transitions in sparse / low rank recovery

2. Restricted Isometry Property (RIP) for sparse recovery
 \[N_l \geq s_l \log^3(s_l) L_l \log(C_l) \]
 Main challenge: compressible fns → increasing s → feedback not well controlled

3. Greedy Multilevel refinement
 ML competition with multiple level candidate generators
 Main challenges: scalable refinement schemes, loss of precision
Multilevel-Multifidelity expansions – Greedy refinement

Compete level refinement candidates to maximize induced change per unit cost:
• 1 or more refinement candidates per level
• Measure impact on final QoI statistics (roll up multilevel estimates),
 • norm of change in response covariance (default)
 • norm of change in level mappings (goal-oriented: \(z/p/\beta/b^* \))
 normalized by relative cost of level increment (# new points * cost / point)
• Greedy selection of best candidate, which generates new candidate(s) for selected level

Level candidate generators:
• Uniform refinement of orders / levels (coarse-grained, 1 candidate per level)
 • Tensor / sparse grids: PCE and nodal/hierarchical SC
 • Regression PCE: least sq. / compressed sensing using fixed sample ratio
• Anisotropic refinement of orders / levels (coarse-grained, 1 candidate per level)
 • Tensor / sparse grids
• Index-set-based refinement (fine-grained, many candidates per level: exp growth w/ dim)
 • Generalized sparse grids: PCE and nodal/hierarchical SC
 • Regression PCE
• Adapted basis (coarse-grained, a few exp order frontier advancements per level)
 • Regression PCE

Multilevel-multifidelity expansion methods:
Greedy ML PCE: CS + uniform basis refinement

<table>
<thead>
<tr>
<th>Conv Tol</th>
<th>N_1</th>
<th>N_2</th>
<th>N_3</th>
<th>N_4</th>
<th>N_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.e-1</td>
<td>198</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1.e-2</td>
<td>644</td>
<td>198</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1.e-3</td>
<td>1802</td>
<td>644</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1.e-4</td>
<td>4505</td>
<td>1802</td>
<td>50</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Multilevel-multifidelity expansion methods
Greedy ML PCE: uniform/generalized sparse grids

Generalized sparse grid @ each level:
• Combinatorial growth in refinement candidates

![Graphs showing mean error and standard deviation error vs. equivalent HF simulations](image)

<table>
<thead>
<tr>
<th>Conv Tol</th>
<th>N_1</th>
<th>N_2</th>
<th>N_3</th>
<th>N_4</th>
<th>N_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.e-2</td>
<td>43</td>
<td>23</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1.e-4</td>
<td>211</td>
<td>83</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1.e-6</td>
<td>391</td>
<td>271</td>
<td>156</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1.e-8</td>
<td>1359</td>
<td>743</td>
<td>327</td>
<td>59</td>
<td>19</td>
</tr>
<tr>
<td>1.e-10</td>
<td>3535</td>
<td>2311</td>
<td>1039</td>
<td>391</td>
<td>19</td>
</tr>
<tr>
<td>1.e-12</td>
<td>10319</td>
<td>5783</td>
<td>2783</td>
<td>1343</td>
<td>43</td>
</tr>
<tr>
<td>1.e-14</td>
<td>26655</td>
<td>14991</td>
<td>8063</td>
<td>3703</td>
<td>1535</td>
</tr>
</tbody>
</table>

Greedy ML GSG sample profiles
Multilevel-multifidelity expansion methods
Greedy ML PCE: overlay all cases & references

CS approaches have greater flexibility at low sample levels (lower initialization cost), but accuracy currently limited by numerical issues for large systems allocated at coarse levels.
ML PCE / SC: Directions

Current developmental areas:

- Hierarchical interpolation (Δ precision for small grid increments)
- Functional tensor train (large systems: scalability of level solver, especially @ LF)
- Limiting number of level candidates (expanding front: MLMF scalability)
- Multidimensional model hierarchies → greedy sparse grids in model space

Interpolation via hierarchical surplus

From X. Ma, 2010

UCAV Nozzle for structural/thermal fidelity

J.D Jakeman, E., G. Geraci, A. Gorodetsky, “Adaptive Multi-index Collocation and Sensitivity Analysis” (in internal review)
Summary Remarks (ML PCE)

The case for multilevel and multifidelity methods
• Push towards higher simulation fidelity can make propagation / inference / OUU untenable
• Multiple model fidelities / discretizations are often available that trade accuracy for cost
• Deployments for CFD (nozzle, scramjet, wind) → rich model ensemble, challenging QoI

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality
• Multilevel-multifidelity MC framework for cost-optimized variance reduction
 • ML-MF MC employs LF control variate at each HF discretization level; tailor to hierarchy type
 • Well suited for high dimensionality and/or low regularity
• Multilevel PCE/SC: extend ML MC machinery with higher performance estimators
 extend heuristic multifidelity PCE/SC with optimal allocations
 • PCE CS / FT: exploit sparsity / low rank in δ; SC hierarchical interp: direct Δ calculation
 • Rate estimation of estimator variance: complicated by abrupt transitions in CS/FT recovery
 • RIP sampling: shape sample profile based on observed sparsity; issues w/ feedback
 • Greedy refinement: competition among multiple candidates per level, normalized by cost
 • ML compressed sensing with expansion order candidates
 • ML (generalized) sparse grids with level and index set candidates
 • Achieve more rapid convergence (sufficient regularity, moderate dimensionality)

Related Efforts:
• Multilevel Bayesian inference → exploit ML PCE/FT within emulator-based inference
• Multilevel Opt/OUU → move beyond common bi-fidelity to exploit deep / multi-D hierarchy