Exceptional service in the national interest

Multilevel-Multifidelity Sampling and Emulation for Forward UQ

<u>Michael S. Eldred</u>, Gianluca Geraci, Alex A. Gorodetsky, John D. Jakeman Sandia National Laboratories, Albuquerque NM / University of Michigan, Ann Arbor MI IPAM Workshop: HPC and Data Science for Scientific Discovery, UCLA, October 15-19, 2018

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

UQ & Optimization: DOE/DOD Mission Deployment In Sandia

Common theme across these applications:

- High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
 - → Severe simulation budget constraints (e.g., a handful of runs)
 - → Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Focus on scalable algorithms in combination with approaches that can exploit a modeling hierarchy.

Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of same physics

- A clear hierarchy of fidelity (from low to high)
- Exploit less expensive models to render HF practical
 - Multifidelity Opt, UQ, inference
- Support general case of discrete model forms
 - Discrepancy does not go to 0 under refinement

An ensemble of peer models lacking clear preference structure / cost separation: e.g., SGS models

• With data: model selection, inadequacy characterization

Increasing Model Fidelity

Large Eddy

Simulation (LES)

- Criteria: predictivity, discrepancy complexity
- *Without (adequate) data:* epistemic model form uncertainty propagation
 - Intrusive, nonintrusive
- Within MF context: CV correlation

Discretization levels / resolution controls

 Exploit special structure: discrepancy → 0 at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

Smagorinsky

Model

Model

Multilevel-Multifidelity Concepts Have Broad Relevance

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy

- > address scale and expense for high fidelity M&S applications in defense, energy, and climate
- > render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Monte Carlo Methods (UQ)

Optimal resource allocation: multilevel (ML), multifidelity (MF), and combined (MLMF)

Polynomial Chaos Methods (UQ)

- ML rate estimation, greedy ML adaptation
- Sparse grids, compressed sensing, fn train

Recursive Trust Region Methods (OUU)

- Extend trust-region model mgmt. to deep hierarchies
- Manage both simulation and stochastic fidelity

UCAV Nozzle OUU (Aero, Structural, Thermal)

- Order of magnitude fewer HF runs
- More aggressive profile shaping than MG/Opt

- More than order of magnitude speedup vs. MC
- Render HF UQ possible (e.g., only 9 LES in 24D)
- Integrate w/ active subspaces (enhance ρ , link ξ)
- Unification of ML, MF, MI approaches

• Exploit problem structure: sparsity, low rank •

• Additional orders of magn. when regular

Sparse grids in model space

Monte Carlo Methods

Monte Carlo Sampling Methods MSE for mean estimator

Problem statement: We are interested in the expected value of $Q_M = \mathcal{G}(\mathbf{X}_M)$ where

- M is (related to) the number of spatial degrees of freedom
- $\mathbb{E}[Q_M] \xrightarrow{M \to \infty} \mathbb{E}[Q]$ for some RV $Q: \Omega \to \mathbb{R}$

Monte Carlo:

$$\hat{Q}_{M,N}^{MC} \stackrel{ ext{def}}{=} rac{1}{N}\sum_{i=1}^N Q_M^{(i)},$$

two sources of error:

- Sampling error: replacing the expected value by a (finite) sample average
- Spatial discretization: finite resolution implies $Q_M pprox Q$

Looking at the Mean Square Error:

$$\mathbb{E}\left[(\hat{Q}_{M,N}^{MC} - \mathbb{E}\left[Q\right])^2\right] = N^{-1} \mathbb{V}ar\left(Q_M\right) + \left(\mathbb{E}\left[Q_M - Q\right]\right)^2$$

Accurate estimation \Rightarrow Large number of samples at high (spatial) resolution

Multilevel and Multifidelity Sampling Methods Multilevel MC: decomposition of variance

Multilevel MC: Sampling from several approximations Q_M of Q (Multigrid...)

Ingredients:

- $\{M_\ell : \ell = 0, \dots, L\}$ with $M_0 < M_1 < \dots < M_L \stackrel{\mathrm{def}}{=} M$
- Estimation of $\mathbb{E}[Q_M]$ by means of correction w.r.t. the next lower level

$$Y_{\ell} \stackrel{ ext{def}}{=} Q_{M_{\ell}} - Q_{M_{\ell-1}} \xrightarrow{linearity} \mathbb{E}\left[Q_{M}
ight] = \mathbb{E}\left[Q_{M_{0}}
ight] + \sum_{\ell=1}^{L} \mathbb{E}\left[Q_{M_{\ell}} - Q_{M_{\ell-1}}
ight] = \sum_{\ell=0}^{L} \mathbb{E}\left[Y_{\ell}
ight]$$

Multilevel Monte Carlo estimator

$$\hat{Q}_{M}^{\mathrm{ML}} \stackrel{\mathrm{def}}{=} \sum_{\ell=0}^{L} \hat{Y}_{\ell,N_{\ell}}^{\mathrm{MC}} = \sum_{\ell=0}^{L} \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} \left(Q_{M_{\ell}}^{(i)} - Q_{M_{\ell-1}}^{(i)} \right)$$

The Mean Square Error is

$$\mathbb{E}\left[(\hat{Q}_M^{ML} - \mathbb{E}\left[Q\right])^2 \right] = \sum_{\ell=0}^L N_\ell^{-1} \mathbb{V}ar\left(Y_\ell\right) + (\mathbb{E}\left[Q_M - Q\right])^2$$

Note If $Q_M o Q$ (in a mean square sense), then $\mathbb{V}ar(Y_\ell) \xrightarrow{\ell \to \infty} 0$

Multilevel and Multifidelity Sampling Methods Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

$$\mathcal{C}(\hat{Q}_M^{ML}) = \sum_{\ell=0}^L N_\ell \mathcal{C}_\ell$$

Determining the ideal number of samples per level (i.e. minimum cost at fixed variance)

M. Giles, "Multilevel Monte Carlo path simulation," 2008.

Multilevel and Multifidelity Sampling Methods Classical Control Variate → Multifidelity MC

A Control Variate MC estimator (function G with $\mathbb{E}[G]$ known)

$$\hat{Q}_{N}^{MCCV} = \hat{Q}_{N}^{MC} - eta \left(\hat{G}_{N}^{MC} - \mathbb{E} \left[G
ight]
ight)$$

$$\underset{\beta}{\operatorname{argmin}} \operatorname{\mathbb{V}ar}\left(\hat{Q}_{N}^{MCCV}\right) \to \beta = -\rho \frac{\operatorname{\mathbb{V}ar}^{1/2}\left(Q\right)}{\operatorname{\mathbb{V}ar}^{1/2}\left(G\right)} \qquad \qquad \operatorname{\mathbb{V}ar}\left(\hat{Q}_{N}^{MCCV}\right) = \operatorname{\mathbb{V}ar}\left(\hat{Q}_{N}^{MC}\right)\left(1-\rho^{2}\right)$$

In our context, G is a low fidelity approximation of Q and its expectation is not known a priori

Let's modify the high-fidelity QoI, Q_M^{HF} , to decrease its variance $\hat{Q}_{M,N}^{\text{HF},CV} = \hat{Q}_{M,N}^{\text{HF}} + \alpha \left(\hat{Q}_{M,N}^{\text{LF}} - \mathbb{E} \left[Q_M^{\text{LF}} \right] \right).$

additional and independent set $\Delta^{
m LF} = r N^{
m HF}$

Minimize CV estimator variance \rightarrow control param. as before:

$$rac{\mathrm{d}\,\mathbb{V}arig(\hat{Q}_M^{\mathrm{HF},\mathrm{MF}}ig)}{\mathrm{d}\,lpha}=0 \quad
ightarrow \quad lpha=-
horac{\mathbb{V}ar^{1/2}ig(Q_M^{\mathrm{HF}}ig)}{\mathbb{V}ar^{1/2}ig(Q_M^{\mathrm{LF}}ig)}$$

Minimize total cost \rightarrow optimal sample ratio: $r^{\star} = -1 + \sqrt{\frac{w\rho^2}{1-\rho^2}}$

$$\mathbb{V}ar\left(\hat{Q}_{M,N}^{\mathrm{HF},CV}
ight) = \mathbb{V}ar\left(\hat{Q}_{M}^{\mathrm{HF}}
ight)\left(1-rac{r}{1+r}
ho_{HL}^{2}
ight)$$

1

Pasupathy et al., 2012; Ng and Willcox, 2014; Peherstorfer, Willcox, & Gunzburger, 2016; et al.

Multilevel – Multifidelity Sampling Methods Combining ML and CV for multidimensional model hierarchies

OUTER SHELL – Multi-level

$$\mathbb{E}\left[Q_M^{ ext{HF}}
ight] = \sum_{l=0}^{L_{ ext{HF}}} \mathbb{E}\left[Y_\ell^{ ext{HF}}
ight] = \sum_{l=0}^{L_{ ext{HF}}} \hat{Y}_\ell^{ ext{HF}}$$

▶ INNER BLOCK – Multi-fidelity (*i.e.* control variate on each level)

$$Y_{\ell}^{\mathrm{HF},\star} = \hat{Y}_{\ell}^{\mathrm{HF}} + \alpha_{\ell} \left(\hat{Y}_{\ell}^{\mathrm{LF}} - \mathbb{E} \left[Y_{\ell}^{\mathrm{LF}} \right] \right)$$

- Cost per level is now $C_{\ell}^{\text{eq}} = C_{\ell}^{\text{HF}} + C_{\ell}^{\text{LF}} (1 + r_{\ell})$
- the (constrained) optimization problem is

$$\begin{split} \underset{N_{\ell}^{\mathrm{HF}}, r_{\ell}, \lambda}{\operatorname{argmin}} (\mathcal{L}), \quad \text{where} \quad \mathcal{L} &= \sum_{\ell=0}^{L_{\mathrm{HF}}} N_{\ell}^{\mathrm{HF}} \mathcal{C}_{\ell}^{\mathrm{eq}} + \lambda \left(\sum_{\ell=0}^{L_{\mathrm{HF}}} \frac{1}{N_{\ell}^{\mathrm{HF}}} \mathbb{V}ar \left(Y_{\ell}^{\mathrm{HF}} \right) \Lambda_{\ell}(r_{\ell}) - \varepsilon^{2}/2 \right) \\ & \blacktriangleright \Lambda_{\ell}(r_{\ell}) = 1 - \rho_{\ell}^{2} \frac{r_{\ell}}{1 + r_{\ell}} \\ \\ & \text{Optimal sample} \\ \text{allocation across} \\ \text{discretizations and} \\ & \text{model forms} \quad \begin{cases} r_{\ell}^{\star} = -1 + \sqrt{\frac{\rho_{\ell}^{2}}{1 - \rho_{\ell}^{2}}} w_{\ell}, & \text{where} \quad w_{\ell} = \mathcal{C}_{\ell}^{\mathrm{HF}} / \mathcal{C}_{\ell}^{\mathrm{LF}} \\ N_{\ell}^{\mathrm{HF}, \star} = \frac{2}{\varepsilon^{2}} \left[\sum_{k=0}^{L_{\mathrm{HF}}} \left(\frac{\mathbb{V}ar \left(Y_{\ell}^{\mathrm{HF}} \right) \mathcal{C}_{\ell}^{\mathrm{HF}}}{1 - \rho_{\ell}^{2}} \right)^{1/2} \Lambda_{\ell} \right] \sqrt{\left(1 - \rho_{\ell}^{2} \right) \frac{\mathbb{V}ar \left(Y_{\ell}^{\mathrm{HF}} \right)}{\mathcal{C}_{\ell}^{\mathrm{HF}}}} \end{split}$$

G. Geraci, E., G. Iaccarino, "A multifidelity control variate approach for the multilevel Monte Carlo technique," CTR Res Briefs 2015.

Multilevel – Multifidelity Sampling Methods Combining ML and CV for multidimensional model hierarchy

- Algorithmic-contained correlation improvement
 - ► Optimality of the LF discrepancy

$$\mathring{Y}_{\ell}^{\mathrm{LF}} = \gamma_{\ell} Q_{\ell}^{\mathrm{LF}} - Q_{\ell-1}^{\mathrm{LF}},$$

where γ is chosen in order to maximize the correlation between $Y_{\ell}^{\rm HF}$ and $\mathring{Y}_{\ell}^{\rm LF}$

$$\begin{array}{c} \text{Cost min s.t.} \\ \text{error balance} \end{array} \qquad N_{\ell}^{\text{HF},\star} = \frac{2}{\varepsilon^2} \Biggl[\sum_{k=0}^{L_{\text{HF}}} \left(\frac{\mathbb{Var}\left(Y_k^{\text{HF}}\right) c_k^{\text{HF}}}{1 - \rho_{\ell}^2 \frac{\theta_{\ell}^2}{\tau_{\ell}}} \right)^{1/2} \Lambda_k(r_k^{\star}) \Biggr] \sqrt{\left(1 - \rho_{\ell}^2 \frac{\theta_{\ell}^2}{\tau_{\ell}}\right) \frac{\mathbb{Var}\left(Y_\ell^{\text{HF}}\right)}{C_{\ell}^{\text{HF}}}} \\ \text{where} \qquad \theta_{\ell} = \frac{\text{Cov}\left(Y_\ell^{\text{LF}}, \dot{Y}_\ell^{\text{LF}}\right)}{\text{Cov}\left(Y_\ell^{\text{LF}}, Y_\ell^{\text{LF}}\right)} \qquad \tau_{\ell} = \frac{\mathbb{Var}\left(\dot{Y}_\ell^{\text{LF}}\right)}{\mathbb{Var}\left(Y_\ell^{\text{HF}}\right)} \qquad \Lambda_{\ell} = 1 - \rho_{\ell}^2 \frac{\theta_{\ell}^2}{\tau_{\ell}} \frac{r_{\ell}^{\star}}{1 + r_{\ell}^{\star}} \qquad r_{\ell}^{\star} = -1 + \sqrt{\frac{\rho_{\ell}^2 \frac{\theta_{\ell}^2}{\tau_{\ell}}}{1 - \rho_{\ell}^2 \frac{\theta_{\ell}^2}{\tau_{\ell}}} w_{\ell}} \\ \text{Can be rewritten as} \qquad \boxed{N_{\ell}^{\text{HF}} = \frac{2}{\varepsilon^2} \Biggl[\sum_{k=0}^{L_{\text{HF}}} \left(\frac{\mathbb{Var}\left(Y_k^{\text{HF}}\right) C_k^{\text{HF}}}{1 - \rho_{\ell}^2 \mu_{L}} \right)^{1/2} \Lambda_k(r_k) \Biggr] \sqrt{\left(1 - \rho_{\ell}^2\right) \frac{\mathbb{Var}\left(Y_\ell^{\text{HF}}\right)}{C_\ell^{\text{HF}}}} \\ \end{array}$$

Compared to previous

$$N_{\ell}^{\rm HF} = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^{L_{\rm HF}} \left(\frac{\mathbb{V}ar\left(Y_k^{\rm HF}\right)\mathcal{C}_k^{\rm HF}}{1-\rho_{\ell}^2} \right)^{1/2} \Lambda_k(r_k) \right] \sqrt{\left(1-\rho_{\ell}^2\right) \frac{\mathbb{V}ar\left(Y_{\ell}^{\rm HF}\right)}{\mathcal{C}_{\ell}^{\rm HF}}}$$

G. Geraci, E., G. laccarino, "A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications," AIAA 2017.

Multilevel – Multifidelity Sampling Methods Results on model problem: wave propagation in composites

Sandia

▶ Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws

$$\begin{cases} \sigma_A = K_1^A \epsilon + K_2^A \epsilon^2, \quad K_1^A = 1 \quad \text{and} \quad K_2^A = \xi_j \quad \xi_j \sim \mathcal{U}(0.01, 0) \\ \sigma_B = K_1^B \epsilon + K_2^B \epsilon^2, \quad K_1^A = 1.5 \quad \text{and} \quad K_2^A = 0.8 \end{cases}$$

• Uncertain initial static (u(x, t = 0) = 0) pre-tension state:

$$\sigma(x) = \begin{cases} \xi_3 \exp\left(-\frac{(x-0.35)(x-0.25)}{2\times 0.002}\right) & \text{if } 0 < x < 1/2 \quad \xi_3 \sim \mathcal{U}(0.5,2) \\ \xi_2 \exp\left(-\frac{(x-0.65)(x-0.75)}{2\times 0.002}\right) & \text{if } 1/2 < x < 1 \quad \xi_2 \sim \mathcal{U}(0.5,6.5) \end{cases}$$

- Spatially varying uncertain density: $\rho(x) = \xi_1 + 0.5 \sin(2\pi x), \xi_1 \sim \mathcal{U}(1.5, 2)$
- Clamped rod as B.C.

28 random variables Two fidelities, each with 4 discretizations

	N_x	N_t	Δ_t
Low fidelity	21	<mark>5</mark> 0	$3.6 imes 10^{-3}$
	41	100	1.8×10^{-3}
	81	150	$1.2 imes 10^{-3}$
	151	288	6.25×10^{-4}
High fidelity	101	200	9×10^{-4}
(MUSCL)	201	400	$4.5 imes10^{-4}$
(MOSCE)	401	900	2×10^{-4}
	1001	2000	$9 imes 10^{-5}$

Level	MLMC		MLMF-	YI			MLMF-	QI	
	N_ℓ	N_{ℓ}^{HF}	N_{ℓ}^{LF}	r_{ℓ}	$ ho_{\ell}^2$	N_{ℓ}^{HF}	N_{ℓ}^{LF}	r_{ℓ}	$\mathring{ ho}_{\ell}^2$
0	80029	5960	243178	40	0.97	4682	192090	40	0.97
1	6282	2434	12487	4	0.49	1049	13781	12	0.83
2	1271	262	3877	14	0.82	151	3657	23	0.92
3	212	47	966	19	0.84	34	754	21	0.86

0.1

0.01

0.001

MSE

DARPA SEQUOIA: Hierarchy of Fidelity Levels

Low fidelity model

- Quasi 1D ideal/non ideal nozzle aero
- 1D heat transfer
- Coarse axisymmetric FEM model
- 30 seconds on one core

Medium fidelity model

- 2D Euler/RANS axisymmetric CFD
- 1D heat transfer
- Coarse axisymmetric FEM model
- 5 minutes on one core (2D Euler)

High fidelity model

- 3D non-axisymmetric Euler/RANS CFD
- 1D heat transfer
- Full 3D FEM model
- 2 hours on 20 cores
 (3D RANS, coarse mesh)

Multiple mesh refinements available for Medium & High (ragged ML-MF)

Initial Deployment of MLCV MC to UCAV Nozzle UQ

<u>**Context:</u>** Analysis of performance of UCAV nozzles subject to environmental, material, and manufacturing uncertainties.</u>

<u>Goal:</u> Explore utility of low fidelity model (potential flow, hoop stress) alongside discretizations for medium fidelity (Euler, FEM)

(c) Fine

	LF	MF
Coarse	0.016	0.053
Medium	N/A	0.253
Fine	N/A	1.0

TABLE: Computational cost.

Optimal sample allocations based on relative cost, observed correlation between models, and observed variance distribution across levels

Target accuracy	LF		\mathbf{MF}	
	Coarse	Coarse	Medium	Fine
0.01	21143	1757	20	20
0.003	69580	5775	36	20
0.001	212828	17715	109	34

Updated Deployment of MLCV MC to UCAV Nozzle UQ

		LF	LF (updated)		
	correlation	Variance reduction [%]	correlation	Variance reduction [%]	
Thrust	0.997	91.42	0.996	94.2	
Mechanical Stress	2.31e-5	2.12e-3	0.944	89.2	
Thermal Stress	0.391	12.81	0.987	93.4	

Λ compose $\left(c^{2}/c^{2}\right)$	LF	Med	lium Fideli	ty	LF (updated)	Med	lium Fideli	ty
Accuracy $(\varepsilon / \varepsilon_0)$	Coarse	Coarse	Medium	Fine	Coarse	Coarse	Medium	Fine
0.1	N/A	N/A	N/A	N/A	404	20	20	20
0.01	21,143	1,757	20	20	3,091	177	31	20
0.003	$69,\!580$	5,775	36	20	N/A	N/A	N/A	N/A
0.001	212,828	17,715	109	34	32,433	1,773	314	20

DARPA EQUIPS (Scramjet UQ): LES Models for Turbulent Reacting Flow in HIFiRE

101.6 mm

Computatio

Isolato

Initial Deployment of MLCV MC for Scramjet UQ

<u>Context</u>: 3D LES simulation of scramjets is extremely expensive and a significant challenge for UQ; even more so for OUU.

MC

<u>Goal:</u> Demonstrate UQ in moderately high D using only a "handful" of HF simulations, by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

<u>UQ Approach</u>: MLCV algorithm described previously.

 ε/ϵ_0

	2D	3D
d/8	5E-4	0.11
d/16	0.014	1

TABLE: Computational cost.

	2D	3D
d/8	4,191	263
d/16	68	9

Optimal sample allocations based on relative cost, observed correlation between models, observed variance distribution across levels, and MSE target (.045 of pilot MSE)

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)

Updated Deployment of MLCV MC for Scramjet UQ

<u>P1 updated:</u> re-formulate inputs in order to obtain an higher level of turbulence and, in turn, a more non-linear response of the system

	P _{0,mean}	P _{0,rms,mean}	M _{mean}	TKE _{mean}	Xmean
			P1		
d/8	4.02554e-03	1.90524e-06	1.99236e-02	3.34905e-07	4.24520e-03
d/16	4.03350e-07	7.77838e-08	6.68974e-05	1.74847e-08	4.40048e-05
			P1 updated		
d/8	4.05795e-03	1.90612e-06	1.60029e-02	7.53353e-07	9.41403e-04
d/16	2.85017e-04	7.36978e-07	2.07638e-03	2.99744e-07	2.57399e-02

Table 2: Variance for the five QoIs of the P1 unit problem.

<u>Observations from pilot sample</u>: decay in variance across discretizations (LF d/8 and discrepancy d/16 – d/8) no longer observed for all Qol

<u>Implications</u>: requires more focused analysis of deterministic convergence properties \rightarrow Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge Qol statistics that are closely tied to resolution of turbulence.

Multilevel – Multifidelity Sampling Methods Cardiovascular flow

Solver	Cost (1 simulation)	Effective Cost (No. 3D Simulations)
3D	96 hr	1
1D	$11.67 \mathrm{\ min}$	2E-3
0D	$5 \sec$	1.45E-5

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi (Notre Dame), Prof. A. Marden (Stanford)

Model relationships / graph topologies

Costs to achieve prescribed error tolerance

Method	Effective Cost (3D Simulations)	No. 3D Simulations	No. 1D Simulations	No. 0D Simulations
MC	9885	9885	_	_
MFA	56	21	15681	—
MFB	39	36	—	154880
MLA	305	212	41990	—
MLB	156	150	—	342060
MLC	165	156	1324	351940
MLMF	165	156	1249	362590

Implies need for not presuming a fixed topology...

Multilevel – Multifidelity Sampling Methods (ECCOMAS, WCCM)

- Active subspaces, ridge approximation, adapted basis, ...
 - ► Let's introduce the $m \times m$ matrix \mathbf{C} $\mathbf{C} = \int (\vec{\nabla}f) (\vec{\nabla}f)^{\mathrm{T}} \rho(\mathbf{x}) d\mathbf{x}$ ► Since \mathbf{C} is I) Positive semidefinite and II) Symmetric, it exists a real eigenvalue decomposition $\mathbf{C} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^{\mathrm{T}}$, where ► \mathbf{W} is the $m \times m$ orthogonal matrix whose columns are the normalized eigenvectors ► $\mathbf{\Lambda} = \operatorname{diag} \{\lambda_1, \ldots, \lambda_m\}$ and $\lambda_1 \ge \cdots \ge \lambda_m \ge 0$ Let's define two sets of variables $\begin{cases} \mathbf{y} = \mathbf{W}_A^{\mathrm{T}} \mathbf{x} \in \mathbb{R}^n & (\operatorname{Active}) \\ \mathbf{z} = \mathbf{W}_I^{\mathrm{T}} \mathbf{x} \in \mathbb{R}^{(m-n)} & (\operatorname{Inactive}) \end{cases} \implies \mathbf{x} = \mathbf{W}_A \mathbf{y} + \mathbf{W}_I \mathbf{z} \approx \mathbf{W}_A \mathbf{y}$
- Main ideas:
 - For each model independently one can compute active directions
 - Sample along these shared active directions and map back to original model coords.
 - Principal directions for a shared QoI can bridge dissimilar parameterizations and demonstrate underlying shared processes

Multilevel – Multifidelity Sampling Methods Research Direction: leveraging active directions (example 1)

 $\rho^2 = 0.05$

 $\rho^2 = 0.9$

G. Geraci, E., "Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification," SAND2018-10817, Sept. 2018

Multilevel – Multifidelity Sampling Methods Research Direction: leveraging active directions (example 1)

- Fixed computational budget of equivalent of 300 HF runs (LF cost ratio = 100)
- 1000 realizations for each estimator → pdf of estimated Expected Value
- Active subspace discovery for each realization during the pilot sample phase

G. Geraci, E., "Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification," SAND2018-10817, Sept. 2018

Multilevel – Multifidelity Sampling Methods Research Direction: leveraging active directions (example 2)

Enhances correlation (even if initially high) and links (dissimilar) model parameterizations

Multilevel – Multifidelity Sampling Methods

Research Direction: Generalized control variates (in internal Sandia review)

A. Gorodetsky, G. Geraci, E., J. Jakeman "Approximate Control Variates," (in internal SNL R&A; expected on arxiv next week)

Multilevel – Multifidelity Sampling Methods

Research Direction: Generalized control variates (in internal Sandia review)

- Unification of ML and CV approaches
- Look beyond (recursive) model pairings

A. Gorodetsky, G. Geraci, E., J. Jakeman "Approximate Control Variates," (in internal SNL R&A; expected on arxiv next week)

Summary: Monte Carlo Methods

The case for multilevel and multifidelity methods

- Push towards higher simulation fidelity can make propagation / inference / OUU untenable
- Multiple model fidelities / discretizations are often available that trade accuracy for cost
- Realistic deployments (nozzle, scramjet, cardio) \rightarrow rich model ensemble, challenging Qol

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

- Multilevel-multifidelity MC framework for cost-optimized variance reduction
 - ML MC targets *variance decay* within a discretization hierarchy
 - MF MC (control variates) targets *correlation* between HF and 1 or more LF models
 - ML-MF MC employs LF control variate at each HF discretization level
 → tailors approach to hierarchy type; leverages multiple variance reduction opportunities
 - Well suited for high dimensionality and/or low regularity

Research Directions

- Leverage active directions to enhance correlation and bridge dissimilar parameterizations
- Relax assumed model relationships / graph topologies to expose additional performance

Stochastic Polynomial Expansion Methods

- Projection, Regression, Interpolation
- Multilevel | Multifidelity expansions (heuristic)

Stochastic Expansions: Polynomial Chaos & Stochastic Collocation

 $R \Psi_j \varrho(\boldsymbol{\xi}) d\boldsymbol{\xi}$

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

j=0	$R = \sum_{j=0}^{\infty} \alpha_j \Psi_j(\boldsymbol{\xi})$	usinę
-----	---	-------

$\Psi_0(oldsymbol{\xi})$	=	$\psi_0(\xi_1) \ \psi_0(\xi_2)$	=	1
$\Psi_1(oldsymbol{\xi})$	=	$\psi_1(\xi_1) \ \psi_0(\xi_2)$	=	ξ_1
$\Psi_2(oldsymbol{\xi})$	=	$\psi_0(\xi_1) \ \psi_1(\xi_2)$	=	ξ_2
$\Psi_3(oldsymbol{\xi})$	=	$\psi_2(\xi_1) \ \psi_0(\xi_2)$	=	ξ_1^2-1
$\Psi_4(oldsymbol{\xi})$	=	$\psi_1(\xi_1) \ \psi_1(\xi_2)$	=	$\xi_1 \xi_2$
$\Psi_5(oldsymbol{\xi})$	=	$\psi_0(\xi_1) \ \psi_2(\xi_2)$	=	ξ_2^2-1

		~	Bupport lange
$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$
$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]
$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1, 1]
e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$
$rac{x^{lpha}e^{-x}}{\Gamma(lpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$
	$\frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}}{\frac{1}{2}} e^{-\frac{x}{2}} e^{-$	$\begin{array}{c c} \frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}} & \text{Hermite } He_n(x) \\ \hline \frac{1}{2} & \text{Legendre } P_n(x) \\ \hline \frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)} & \text{Jacobi } P_n^{(\alpha,\beta)}(x) \\ e^{-x} & \text{Laguerre } L_n(x) \\ \hline \frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)} & \text{Generalized Laguerre } L_n^{(\alpha)}(x) \end{array}$	$\begin{array}{c c} \frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}} & \text{Hermite } He_n(x) & e^{-\frac{x}{2}} \\ \hline \frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}} & \text{Legendre } P_n(x) & 1 \\ \hline \frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)} & \text{Jacobi } P_n^{(\alpha,\beta)}(x) & (1-x)^{\alpha}(1+x)^{\beta} \\ e^{-x} & \text{Laguerre } L_n(x) & e^{-x} \\ \hline \frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)} & \text{Generalized Laguerre } L_n^{(\alpha)}(x) & x^{\alpha}e^{-x} \end{array}$

 $\alpha_j = -$

• Estimate α_j using regression or numerical integration: sampling, tensor quadrature, sparse grids, or cubature

Stochastic collocation: instead of estimating coefficients for known basis functions, form <u>interpolants</u> for known coefficients

- Global: Lagrange (values) or Hermite (values+derivatives)
- Local: linear (values) or cubic (values+gradients) splines
- Nodal or Hierarchical interpolants

$$L_{j} = \prod_{\substack{k=1\\k\neq j}}^{m} \frac{\xi - \xi_{k}}{\xi_{j} - \xi_{k}} \Longrightarrow R(\boldsymbol{\xi}) \cong \sum_{j_{1}=1}^{m_{i_{1}}} \cdots \sum_{j_{n}=1}^{m_{i_{n}}} r\left(\xi_{j_{1}}^{i_{1}}, \dots, \xi_{j_{n}}^{i_{n}}\right) \left(L_{j_{1}}^{i_{1}} \otimes \cdots \otimes L_{j_{n}}^{i_{n}}\right)$$

Sparse interpolants formed using Σ of tensor interpolants

- Tailor expansion form:
 - p-refinement: anisotropic tensor/sparse, generalized sparse
 - h-refinement: local bases with dimension & local refinement
- Method selection: requirements for fault tolerance, decay, sparsity, error estimation

MF UQ with Spectral Stochastic Discrepancy Models

- High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
- Low fidelity "design" codes often exist that are predictive of basic trends
- Can we leverage LF codes w/i HF UQ in a rigorous manner? → global approxs. of model discrepancy

Sparse grid bi-fidelity: target reduced complexity in model discrepancy Compressed sensing bi-fidelity: target sparsity (Functional) tensor train bi-fidelity: target low rank

Stochastic Polynomial Expansion Methods

- Projection, Regression, Interpolation
- Multilevel | Multifidelity expansions (heuristic)
- Multilevel | Multifidelity expansions (optimized)

Formulations for Multilevel PCE / SC

1. Optimal resource allocation: parameterize estimator variance \rightarrow optimal N_l Global κ and $\gamma > 0$

$$Var[\hat{Y}_{l}] = \frac{Var[Y_{l}]}{\gamma N^{\kappa}} \quad \rightarrow \quad N_{l} = \sqrt[\kappa]{\frac{2}{\epsilon^{2}\gamma} \sum_{q=0}^{L} \sqrt[\kappa+1]{Var[Y_{q}]C_{q}^{\kappa}}} \sqrt[\kappa+1]{\frac{Var[Y_{l}]}{C_{l}}}$$

E., G. Geraci, J.D. Jakeman, "Multilevel Monte Carlo Hybrids Exploiting Multidelity Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

 $N_{low} = 600$, degree=4

Main challenge: abrupt transitions in sparse / low rank recovery

2. Restricted Isometry Property (RIP) for sparse recovery

 $N_l \ge s_l \log^3(s_l) L_l \log(C_l)$

Jakeman, Narayan, and Zhou, 2016

Main challenge: compressible fns

 \rightarrow increasing s

- → feedback not well controlled
- 3. Greedy Multilevel refinement

ML competition with multiple level candidate generators

Main challenges: scalable refinement schemes, loss of precision

ML PCE with rate estimation: Model Problem & UCAV Nozzle

(24)

$$-\frac{d}{dx}\left[a(x,\boldsymbol{\xi})\frac{du}{dx}(x,\boldsymbol{\xi})\right] = 10, \quad (x,\boldsymbol{\xi}) \in (0,1) \times I_{\boldsymbol{\xi}},$$
(22)

where x is the spatial coordinate, $\boldsymbol{\xi}$ a vector of independent random input parameters and $a(x, \boldsymbol{\xi})$ denotes the (random) diffusivity field. The following Dirichlet boundary conditions are also assumed

$$u(0, \boldsymbol{\xi}) = 0, \quad u(1, \boldsymbol{\xi}) = 0.$$
 (23)

We are interested in quantifying the uncertainty in the solution u at specified spatial locations: $\bar{x} = 0.05, 0.5, 0.95$.

We represent the random diffusivity field a using the following expansion

Optimized resource allocation outperforms previous heuristics: $\kappa > 1$ is effective

Optimal sample allocations based on relative cost, variance distribution across levels and $\kappa = 2$

ML PCE shows more rapid convergence using coarse/medium/fine discretizations:

Exploits smoothness in moderate dim.

Initial results were promising, but rate estimation impeded by abrupt transition in recovery

Formulations for Multilevel PCE / SC

- Sandia National Laboratories
- 1. Optimal resource allocation: parameterize estimator variance \rightarrow optimal N_l Global κ and $\gamma > 0$

$$Var[\hat{Y_l}] = \frac{Var[Y_l]}{\gamma N^{\kappa}} \quad \to \quad N_l = \sqrt[\kappa]{\frac{2}{\epsilon^2 \gamma} \sum_{q=0}^{L} \sqrt[\kappa+1]{Var[Y_q]C_q^{\kappa}}} \sqrt[\kappa+1]{\frac{Var[Y_l]}{C_l}}$$

E., G. Geraci, J.D. Jakeman, "Multilevel Monte Carlo Hybrids Exploiting Multidelity Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Main challenge: abrupt transitions in sparse / low rank recovery

2. Restricted Isometry Property (RIP) for sparse recovery

 $N_l \ge s_l \log^3(s_l) L_l \log(C_l)$

Main challenge: compressible fns

- \rightarrow increasing s
- → feedback not well controlled
- 3. Greedy Multilevel refinement

ML competition with multiple level candidate generators

Main challenges: scalable refinement schemes, loss of precision

Multilevel-Multifidelity expansions – Greedy refinement 🕕

<u>Compete level refinement candidates</u> to maximize induced change per unit cost:

- 1 or more refinement candidates per level
- Measure impact on final QoI statistics (roll up multilevel estimates),
 - norm of change in response covariance (default)
 - norm of change in level mappings (goal-oriented: $z/p/\beta/\beta^*$) normalized by relative cost of level increment (# new points * cost / point)
- Greedy selection of best candidate, which generates new candidate(s) for selected level

Level candidate generators:

- Uniform refinement of orders / levels (coarse-grained, 1 candidate per level)
 - Tensor / sparse grids: PCE and nodal/hierarchical SC
 - Regression PCE: least sq. / compressed sensing using fixed sample ratio
- Anisotropic refinement of orders / levels (coarse-grained, 1 candidate per level)
 - Tensor / sparse grids
- Index-set-based refinement (fine-grained, many candidates per level: exp growth w/ dim)
 - Generalized sparse grids: PCE and nodal/hierarchical SC
 - Regression PCE
- Adapted basis (coarse-grained, a few exp order frontier advancements per level)
 - **Regression PCE** Jakeman, E., Sargsyan, "Enhancing *l*1-minimization estimates of polynomial chaos expansions using basis selection," *J. Comp. Phys.*, Vol. 289, May 2015.)

Multilevel-multifidelity expansion methods: Greedy ML PCE: CS + uniform basis refinement

Sandia

National Laboratories

Multilevel-multifidelity expansion methods Greedy ML PCE: overlay all cases & references

CS approaches have greater flexibility at low sample levels (lower initialization cost), but accuracy currently limited by numerical issues for large systems allocated at coarse levels

ML PCE / SC: Directions

Current developmental areas:

- Hierarchical interpolation (Δ precision for small grid increments)
- Functional tensor train (large systems: scalability of level solver, especially @ LF)
- Limiting number of level candidates (expanding front: MLMF scalability)
- Multidimensional model hierarchies \rightarrow greedy sparse grids in model space

J.D Jakeman, E., G. Geraci, A. Gorodetsky, "Adaptive Multi-index Collocation and Sensitivity Analysis" (in internal review)

UCAV Nozzle for structural/thermal fidelity

Summary Remarks (ML PCE)

The case for multilevel and multifidelity methods

- Push towards higher simulation fidelity can make propagation / inference / OUU untenable
- Multiple model fidelities / discretizations are often available that trade accuracy for cost
- Deployments for CFD (nozzle, scramjet, wind) \rightarrow rich model ensemble, challenging Qol

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

- Multilevel-multifidelity MC framework for cost-optimized variance reduction
 - ML-MF MC employs LF control variate at each HF discretization level; tailor to hierarchy type
 - Well suited for high dimensionality and/or low regularity
- Multilevel PCE/SC: extend ML MC machinery with higher performance estimators extend heuristic multifidelity PCE/SC with optimal allocations
 - PCE CS / FT: exploit sparsity / low rank in δ ; SC hierarchical interp: direct Δ calculation
 - *<u>Rate estimation of estimator variance</u>:* complicated by abrupt transitions in CS/FT recovery
 - <u>*RIP sampling:*</u> shape sample profile based on observed sparsity; issues w/ feedback
 - Greedy refinement: competition among multiple candidates per level, normalized by cost
 - ML compressed sensing with expansion order candidates
 - ML (generalized) sparse grids with level and index set candidates
 - Achieve more rapid convergence (sufficient regularity, moderate dimensionality)

Related Efforts:

- Multilevel Bayesian inference \rightarrow exploit ML PCE/FT within emulator-based inference
- Multilevel Opt/OUU → move beyond common bi-fidelity to exploit deep / multi-D hierarchy