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Multilevel-Multifidelity Sampling and Emulation for Forward UQ
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UQ & Optimization: DOE/DOD Mission Deployment
Stewardship (NNSA ASC)
Safety in abnormal environments

Energy (ASCR, EERE, NE)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF, ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

Common theme across these applications:
• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
à Severe simulation budget constraints (e.g., a handful of runs)
à Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Addtnl. Office of Science:
(SciDAC, EFRC)

Comp. Matls: waste forms / 
hazardous matls (WastePD, CHWM)

MHD: Tokamak disruption (TDS)

Focus on scalable algorithms in combination with approaches that can exploit a modeling hierarchy.

Statistical Inference for TDS

Pareto-
informed

Uniform

0.0

0.2

0.4

0.6

0.8

1.0

(3.00 (1.50 0.00 1.50 3.00 4.50 6.00 7.50 9.00

Pr
ob
ab
ili
ty

Activation:Energy:(eV)

WastePD: 
posterior

CHWM: push fwd



A clear hierarchy of fidelity (from low to high)

• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

Discretization levels / resolution controls

• Exploit special structure: discrepancy à 0 

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

An ensemble of peer models lacking clear preference 

structure / cost separation: e.g., SGS models

• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity

• Without (adequate) data: epistemic model 

form uncertainty propagation

• Intrusive, nonintrusive

• Within MF context: CV correlation



Multilevel-Multifidelity Concepts Have Broad Relevance

Greedy 
ML PCE for 
elliptic PDE

Baseline

Robust

UCAV Nozzle OUU (Aero, Structural, Thermal)

• Order of magnitude fewer HF runs
• More aggressive profile shaping than MG/Opt

Recurring R&D theme: couple scalable algorithms with exploiting a (multi-dimensional) model hierarchy
Ø address scale and expense for high fidelity M&S applications in defense, energy, and climate
Ø render UQ / optimization / OUU tractable for cases where only a handful of HF runs are possible

Monte Carlo Methods (UQ) Polynomial Chaos Methods (UQ) Recursive Trust Region Methods (OUU)
Optimal resource allocation: multilevel (ML), 
multifidelity (MF), and combined (MLMF)

• ML rate estimation, greedy ML adaptation
• Sparse grids, compressed sensing, fn train

• Extend trust-region model mgmt. to deep hierarchies
• Manage both simulation and stochastic fidelity

Scramjet
UCAV 
Nozzle

A2e wake 
dynamics
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MLMF (LF updated)

• More than order of magnitude speedup vs. MC
• Render HF UQ possible (e.g., only 9 LES in 24D)
• Integrate w/ active subspaces (enhance r, link x)
• Unification of ML, MF, MI approaches

• Exploit problem structure: sparsity, low rank
• Additional orders of magn. when regular
• Sparse grids in model space

UCAV Nozzle  
(1D, 2D Euler, 

3D RANS)



Monte Carlo Methods



Monte Carlo Sampling Methods
MSE for mean estimator



Multilevel and Multifidelity Sampling Methods
Multilevel MC: decomposition of variance



Multilevel and Multifidelity Sampling Methods
Multilevel MC: optimal resource allocation

Balance ML estimator variance 
(stochastic error) and residual 

bias (deterministic error) 
à don’t over-resolve one at 

the expense of the other
Optimal sample profile

Level 
independent

Level 
dependent

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.



Multilevel and Multifidelity Sampling Methods
Classical Control Variate à Multifidelity MC

In our context, G is a low fidelity approximation of Q and its expectation is not known a priori

Pasupathy et al., 2012; Ng and Willcox, 2014; Peherstorfer, Willcox, & Gunzburger, 2016; et al.

Minimize CV estimator variance à control param. as before:

Minimize total cost à optimal sample ratio:

MFMC cost relative to MC



Multilevel – Multifidelity Sampling Methods
Combining ML and CV for multidimensional model hierarchies

Optimal sample 
allocation across 

discretizations and 
model forms

G. Geraci, E., G. Iaccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.



Multilevel – Multifidelity Sampling Methods
Combining ML and CV for multidimensional model hierarchy

G. Geraci, E., G. Iaccarino, “A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications,” AIAA 2017.

Can be rewritten as

Compared to previous

Cost min s.t.
error balance

where



Multilevel – Multifidelity Sampling Methods
Results on model problem: wave propagation in composites

28 random variables
Two fidelities, each with 4 discretizations



DARPA SEQUOIA: Hierarchy of Fidelity Levels

Low fidelity model
§ Quasi 1D ideal/non ideal 

nozzle aero
§ 1D heat transfer
§ Coarse axisymmetric 

FEM model
§ 30 seconds on one core

Medium fidelity model
§ 2D Euler/RANS 

axisymmetric CFD
§ 1D heat transfer
§ Coarse axisymmetric 

FEM model
§ 5 minutes on one core 

(2D Euler)

High fidelity model
§ 3D non-axisymmetric 

Euler/RANS CFD
§ 1D heat transfer
§ Full 3D FEM model
§ 2 hours on 20 cores 

(3D RANS, coarse mesh)

Ideal nozzle modeling procedure
� Use quasi-1-D fluid equations of motion
� Adiabatic walls, frictionless nozzle
� Nozzle flow is dictated by  𝑃𝑡7 𝑃∞ & area

Cantwell, B. J. AA 210 Course Notes 2015

Subsonic flow  𝑃𝑡7 𝑃∞ <  𝑃𝑡 𝑃 𝑠𝑢𝑏𝑠𝑜𝑛𝑖𝑐

Shock in nozzle  𝑃𝑡 𝑃 𝑠𝑢𝑏𝑠𝑜𝑛𝑖𝑐 <  𝑃𝑡7 𝑃∞ <  𝑃𝑡 𝑃∞ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠ℎ𝑜𝑐𝑘 @ 𝑒𝑥𝑖𝑡

Under expanded  𝑃𝑡 𝑃∞ 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠ℎ𝑜𝑐𝑘 @ 𝑒𝑥𝑖𝑡 <  𝑃𝑡7 𝑃∞ <  𝑃𝑡 𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐

Fully expanded  𝑃𝑡7 𝑃∞ =  𝑃𝑡 𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐

Over expanded  𝑃𝑡 𝑃 𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐 <  𝑃𝑡7 𝑃∞

7 8 e 𝑃∞uniform inlet 
conditions

32

Multiple mesh refinements available for Medium & High (ragged ML-MF)



Optimal sample allocations based on relative 
cost, observed correlation between models, 

and observed variance distribution across levels

Initial Deployment of MLCV MC to UCAV Nozzle UQ

Context: Analysis of performance of UCAV 
nozzles subject to environmental, material, 
and manufacturing uncertainties. 

Goal: Explore utility of low fidelity model 
(potential flow, hoop stress) alongside 
discretizations for medium fidelity (Euler, FEM)

MF
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Updated Deployment of MLCV MC to UCAV Nozzle UQ
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Model forms: 
• 2D, 3D
Discretizations: 
• d/{8,16,32,64}

DARPA EQUiPS (Scramjet UQ): 
LES Models for Turbulent Reacting Flow in HIFiRE



Context: 3D LES simulation of scramjets is extremely expensive and a significant 
challenge for UQ; even more so for OUU. 

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations, 
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

Initial Deployment of MLCV MC for Scramjet UQ

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)

Optimal sample allocations based on relative 
cost, observed correlation between models, 
observed variance distribution across levels, 

and MSE target (.045 of pilot MSE)



Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and, 
in turn, a more non-linear response of the system

Observations from pilot sample: decay in variance across discretizations (LF d/8 and 
discrepancy d/16 – d/8) no longer observed for all QoI

Implications: requires more focused analysis of deterministic convergence properties à
Need to engage additional refinement levels (i.e., d/32, d/64) in order to converge QoI
statistics that are closely tied to resolution of turbulence.



Multilevel – Multifidelity Sampling Methods
Cardiovascular flow

Courtesy of C. Fleeter (Stanford), Prof. D. Schiavazzi
(Notre Dame), Prof. A. Marden (Stanford)

Model relationships / graph topologies Costs to achieve prescribed error tolerance

Implies need for not presuming a fixed topology…



Multilevel – Multifidelity Sampling Methods
Research Direction: Leveraging active directions (ECCOMAS, WCCM) 

• Active subspaces, ridge approximation, adapted basis, …

• Main ideas:
• For each model independently one can compute active directions
• Sample along these shared active directions and map back to original model coords.
• Principal directions for a shared QoI can bridge dissimilar parameterizations and 

demonstrate underlying shared processes

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018



Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 1)

r2 = 0.05

r2 = 0.9

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018



Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 1)

• Fixed computational budget of equivalent of 300 HF runs (LF cost ratio = 100)
• 1000 realizations for each estimator à pdf of estimated Expected Value
• Active subspace discovery for each realization during the pilot sample phase

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018



Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 2)

Wave propagation test problem

Enhances correlation (even if initially high) and links (dissimilar) model parameterizations



Multilevel – Multifidelity Sampling Methods
Research Direction: Generalized control variates (in internal Sandia review)

• Unification of ML and CV approaches
• Look beyond (recursive) model pairings

A. Gorodetsky, G. Geraci, E., J. Jakeman “Approximate Control Variates,” (in internal SNL R&A; expected on arxiv next week).



Multilevel – Multifidelity Sampling Methods
Research Direction: Generalized control variates (in internal Sandia review)

• Unification of ML and CV approaches
• Look beyond (recursive) model pairings

A. Gorodetsky, G. Geraci, E., J. Jakeman “Approximate Control Variates,” (in internal SNL R&A; expected on arxiv next week).



Summary: Monte Carlo Methods
The case for multilevel and multifidelity methods
• Push towards higher simulation fidelity can make propagation / inference / OUU untenable
• Multiple model fidelities / discretizations are often available that trade accuracy for cost
• Realistic deployments (nozzle, scramjet, cardio) à rich model ensemble, challenging QoI

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality
• Multilevel-multifidelity MC framework for cost-optimized variance reduction

• ML MC targets variance decay within a discretization hierarchy
• MF MC (control variates) targets correlation between HF and 1 or more LF models
• ML-MF MC employs LF control variate at each HF discretization level 

à tailors approach to hierarchy type; leverages multiple variance reduction opportunities
• Well suited for high dimensionality and/or low regularity

Research Directions
• Leverage active directions to enhance correlation and bridge dissimilar parameterizations
• Relax assumed model relationships / graph topologies to expose additional performance



Stochastic Polynomial Expansion Methods
• Projection, Regression, Interpolation
• Multilevel | Multifidelity expansions (heuristic)



Stochastic collocation: instead of estimating coefficients for 
known basis functions,  form interpolants for known coefficients
• Global:  Lagrange (values) or Hermite (values+derivatives)
• Local:    linear (values) or cubic (values+gradients) splines
• Nodal or Hierarchical interpolants

Sparse interpolants formed using S of tensor interpolants

Stochastic Expansions: Polynomial Chaos & Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate aj using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse
– h-refinement: local bases with dimension & local refinement

• Method selection: requirements for fault tolerance, decay, sparsity, error estimation



• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
• Low fidelity “design” codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner? à global approxs. of model discrepancy

MF UQ with Spectral Stochastic Discrepancy Models

Nlo >> Nhi

discrepancy

E., Ng, Barone, Domino, “Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models,” Handbook of UQ, 2015.

Sparse grid bi-fidelity: target reduced complexity in model discrepancy

Compressed sensing bi-fidelity: target sparsity

(Functional) tensor train bi-fidelity: target low rank



Stochastic Polynomial Expansion Methods
• Projection, Regression, Interpolation
• Multilevel | Multifidelity expansions (heuristic)
• Multilevel | Multifidelity expansions (optimized)



Formulations for Multilevel PCE / SC
1. Optimal resource allocation: parameterize estimator variance à optimal Nl

Global k and g > 0

Main challenge: abrupt transitions in sparse / low rank recovery

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Jakeman, Narayan, and Zhou, 2016

2. Restricted Isometry Property (RIP) for sparse recovery

Main challenge: compressible fns
à increasing s
à feedback not well controlled

3. Greedy Multilevel refinement
ML competition with multiple level candidate generators
Main challenges: scalable refinement schemes, loss of precision
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ML PCE CS 5 level κ = 2
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ML PCE with rate estimation: Model Problem & UCAV Nozzle

ML PCE shows more rapid convergence
using coarse/medium/fine discretizations: 
➢ Exploits smoothness in moderate dim.

Optimal sample allocations based on 
relative cost, variance distribution 

across levels and k = 2

Optimized resource allocation outperforms 
previous heuristics: k > 1 is effective

SS Diffusion

UCAV Nozzle

Initial results were promising, but rate estimation impeded by abrupt transition in recovery
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Formulations for Multilevel PCE / SC
1. Optimal resource allocation: parameterize estimator variance à optimal Nl

Global k and g > 0

Main challenge: abrupt transitions in sparse / low rank recovery

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Jakeman, Narayan, and Zhou, 2016

2. Restricted Isometry Property (RIP) for sparse recovery

Main challenge: compressible fns
à increasing s
à feedback not well controlled

3. Greedy Multilevel refinement
ML competition with multiple level candidate generators
Main challenges: scalable refinement schemes, loss of precision



Multilevel-Multifidelity expansions – Greedy refinement

Compete level refinement candidates to maximize induced change per unit cost:
• 1 or more refinement candidates per level
• Measure impact on final QoI statistics (roll up multilevel estimates),

• norm of change in response covariance (default)
• norm of change in level mappings (goal-oriented: z/p/b/b*)

normalized by relative cost of level increment (# new points * cost / point)
• Greedy selection of best candidate, which generates new candidate(s) for selected level

Level candidate generators:
• Uniform refinement of orders / levels (coarse-grained, 1 candidate per level)

• Tensor / sparse grids: PCE and nodal/hierarchical SC
• Regression PCE: least sq. / compressed sensing using fixed sample ratio

• Anisotropic refinement of orders / levels (coarse-grained, 1 candidate per level)
• Tensor / sparse grids

• Index-set-based refinement (fine-grained, many candidates per level: exp growth w/ dim)
• Generalized sparse grids: PCE and nodal/hierarchical SC
• Regression PCE

• Adapted basis (coarse-grained, a few exp order frontier advancements per level)
• Regression PCE Jakeman, E., Sargsyan, “Enhancing ℓ1-minimization estimates of polynomial 

chaos expansions using basis selection,”  J. Comp. Phys., Vol. 289, May 2015.)
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MF PCE CS 2 level ρ = 10
ML PCE CS 5 level κ = 1
ML PCE CS 5 level κ = 1.5
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Greedy ML PCE CS 5 level

Multilevel-multifidelity expansion methods:
Greedy ML PCE: CS + uniform basis refinement

Final sample profiles
101 102 103 104

10−7

10−6

10−5

10−4

10−3

10−2

Equivalent HF Simulations

M
ea

n 
Er

ro
r

 

 
PCE CS single level
MF PCE CS 2 level ρ = 10
ML PCE CS 5 level κ = 1
ML PCE CS 5 level κ = 1.5
ML PCE CS 5 level κ = 2
ML PCE CS 5 level κ = 3
Greedy ML PCE CS 5 level

101
10−6

10−5

10−4

10−3

10−2

Equivalent HF Simulations

St
d 

D
ev

ia
tio

n 
Er

ro
r

 

 
PCE CS single level
MF PCE CS 2 level ρ = 10
ML PCE CS 5 level κ = 1
ML PCE CS 5 level κ = 1.5
ML PCE CS 5 level κ = 2
ML PCE CS 5 level κ = 3
Greedy ML PCE CS 5 level



Multilevel-multifidelity expansion methods
Greedy ML PCE: uniform/generalized sparse grids

Generalized sparse grid @ each level:
• Combinatorial growth in refinement candidates
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PCE Uniform SG single level
PCE GSG single level
Greedy ML PCE Uniform SG 5 level
Greedy ML PCE GSG 5 level
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PCE GSG single level
Greedy ML PCE Uniform SG 5 level
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Greedy ML GSG sample profiles



Multilevel-multifidelity expansion methods
Greedy ML PCE: overlay all cases & references

CS approaches have greater flexibility at low sample levels (lower initialization cost), but 
accuracy currently limited by numerical issues for large systems allocated at coarse levels
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ML PCE / SC: Directions

Current developmental areas: 
• Hierarchical interpolation (D precision for small grid increments)

• Functional tensor train (large systems: scalability of level solver, especially @ LF)

• Limiting number of level candidates (expanding front: MLMF scalability)

• Multidimensional model hierarchies à greedy sparse grids in model space

UCAV Nozzle for structural/thermal fidelity 

From X. Ma, 2010

Interpolation via hierarchical surplus

J.D Jakeman, E., G. Geraci, A. Gorodetsky, “Adaptive Multi-index Collocation and Sensitivity Analysis” (in internal review)



Summary Remarks (ML PCE)
The case for multilevel and multifidelity methods
• Push towards higher simulation fidelity can make propagation / inference / OUU untenable

• Multiple model fidelities / discretizations are often available that trade accuracy for cost

• Deployments for CFD (nozzle, scramjet, wind) à rich model ensemble, challenging QoI

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality
• Multilevel-multifidelity MC framework for cost-optimized variance reduction

• ML-MF MC employs LF control variate at each HF discretization level; tailor to hierarchy type

• Well suited for high dimensionality and/or low regularity

• Multilevel PCE/SC: extend ML MC machinery with higher performance estimators
extend heuristic multifidelity PCE/SC with optimal allocations 

• PCE CS / FT: exploit sparsity / low rank in d;  SC hierarchical interp: direct D calculation

• Rate estimation of estimator variance: complicated by abrupt transitions in CS/FT recovery

• RIP sampling: shape sample profile based on observed sparsity; issues w/ feedback

• Greedy refinement: competition among multiple candidates per level, normalized by cost

• ML compressed sensing with expansion order candidates

• ML (generalized) sparse grids with level and index set candidates

• Achieve more rapid convergence (sufficient regularity, moderate dimensionality)

Related Efforts: 
• Multilevel Bayesian inference à exploit ML PCE/FT within emulator-based inference

• Multilevel Opt/OUU à move beyond common bi-fidelity to exploit deep / multi-D hierarchy


