

Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas

IPAM BDCWS2: HPC and DS for Scientific Discovery

Dirk Pflüger

Institute for Parallel and Distributed Systems / SimTech Cluster of Excellence, University of Stuttgart

joint work with H.-J. Bungartz, T. Dannert, M. Griebel, F. Jenko, et al.

October 17, 2018

PDE: Turbulence simulations of hot fusion plasmas

- Idea: new, CO2-free source of energy for the generations to come
- EXAHD with H.-J. Bungartz (TUM), M. Griebel (Bonn), T. Dannert (RZG), F. Jenko (IPP)

SimTech

er of Excellence

SPPEXA **Geege**

Gyrokinetics:

$$\left[\frac{\partial}{\partial t} + \vec{\tilde{v}} \cdot \frac{\partial}{\partial \vec{x}} + \tilde{F} \frac{\partial}{\partial v_{||}}\right] f(\vec{x}, v_{||}, \mu, t) = \Delta(t)$$

solve for density f

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Universität Stuttgart

Numerical Simulations for Actual Tokamaks with GENE

Aim: global simulations of ITER

ASDEX Upgrade

Gyrokinetic Electromagnetic Numerical Experiment

http://www.genecode.org

Numerical Simulations for Actual Tokamaks with GENE

Goal: global simulation with physical realism

- Szenario for simulation of "numerical ITER"
 - Global, non-linear runs
 - At least 10¹¹ grid points, 10⁶ time steps
 - >1 TB just to store single result in memory (complex)
- Possible at all?

Sparse Grids – Hierarchical Approach

- High-dimensional problems suffer "curse of dimensionality"
 - Effort $\mathcal{O}((2^n)^d) \Rightarrow$ too big data

	full grid
5d, level 10	$> 10^{15}$

2222		222	***	
2223			***	
2222		222	***	
2223	***		***	
2222		222	***	2222
****		ĕĕĕ	ěěě	
2223		222	222	2222
****		ĕĕĕ	ěěě	688¥
2223			222	2222
		***	è÷÷	

Sparse Grids – Hierarchical Approach

- High-dimensional problems suffer "curse of dimensionality"
 - Effort $\mathcal{O}((2^n)^d) \Rightarrow$ too big data
- Therefore: hierarchical discretization
 - Sparse grids: $\mathcal{O}(2^n \cdot n^{d-1})$ [Zenger 91]
 - Makes high-dimensional discretizations possible

	full grid	sparse grid	
5d, level 10	$> 10^{15}$	25,416,705	

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

SimTech

Sparse Grids – Hierarchical Approach

- High-dimensional problems suffer "curse of dimensionality"
 - Effort $\mathcal{O}((2^n)^d) \Rightarrow$ too big data
- Therefore: hierarchical discretization
 - Sparse grids: $\mathcal{O}(2^n \cdot n^{d-1})$ [Zenger 91]
 - Makes high-dimensional discretizations possible

	full grid	sparse grid	sg combination technique
5d, level 10	$> 10^{15}$	25,416,705	1,876 × 82,000

Combination technique (multivariate extrapolation-style scheme)
Multiple, but smaller grids: O(d · n^{d-1}) problems of size O(2ⁿ)

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

SimTech

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Basic Idea: Playing Battleships

Right strategy?

Right strategy? No! Target large (important) things first! Sparse grids do just that ...

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Å

Basic Idea: Hierarchical Basis

Hierarchical basis in 1d (here: piecewise linear)

adaptive, incremental

Example: Interpolation 1d

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Å

Sparse Grids, Basic Idea (2)

• Extension to *d*-dimensions via tensor product: $\varphi(\vec{x}) = \prod_{k=1}^{d} \varphi_k(x_k)$

luster of Excellence

SimTech

• Sparse grid space $V_n^{(1)}$:

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

K

Sparse Grid vs. Combination Technique

Motivation and Numerics

- Communication
- Load Balancing
- Algorithm-Based Fault Tolerance
 - Hard Faults
 - Silent/Soft Faults

Summary

Scalability

Problem of standard solver: global communication within each time-step

X

Scalability

Problem of standard solver: global communication within each time-step

Use hierarchical ansatz

- Two-level approach
- Numerics: decoupling into locally coupled problems
- Algorithms: second level of parallelism
- First level: no need to scale to exascale

- Gather-scatter steps every time-interval
- Remaining reduced global communication

X

Global Communication

Optimal communication schemes

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

X

Global Communication

SimTech

uster of Excellence

• Minimize number of communications (Range Query Trees):

 $\mathcal{O}(\log(dn^{d-1}))\times \mathcal{O}(2^nn^{d-1})$

Minimize package size

$$\mathcal{O}(2n \cdot n^{d-1}) \times \mathcal{O}(2^{n-1})$$

Derivation in BSP/PEM model

[joint work with R. Jacob (ITU, Algorithm Engineering)]

Load Balancing

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

×

Scalability: Load Balancing

Distribution of jobs based on master-worker scheme

- Simple scheduling:
 - Compute-time depends on number of unknowns

Scalability: Load Balancing

Distribution of jobs based on master-worker scheme

- Simple scheduling:
 - Compute-time depends on number of unknowns
- But: depends on individual properties
 - number of iterations for solvers,
 - parallelization depends on anisotropy of discretization
 - ... and on hardware,
 - load balancing on 1rst level,
 - ...

Scalability: Load Balancing (2)

Model:

$$t(\vec{l}) = t(N, \vec{s}_{\vec{l}}) = r(N)h(\vec{s}_{\vec{l}})$$
$$N := 2^{|\vec{l}|_1}$$
$$s_{\vec{l},i} = \frac{l_i}{|\vec{l}|_1}$$

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Å

Scalability: Load Balancing (3)

Results

SimTech

• Use coarse level solutions to predict fine level ones

Interplay of both levels works

SimTech Cluster of Excellence

Runtimes on Hazel Hen

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

X

Runtimes on Hazel Hen

Total time

SimTech

luster of Excellence

- Motivation and Numerics
- Scalability
 - Communication
 - Load Balancing

Algorithm-Based Fault Tolerance

- Hard Faults
- Silent/Soft Faults

Summary

Resilience for the Exa-Age

Ever decreasing mean time between failure

- Massive replication of hardware
- Smaller scales (higher integration)
- Hardware possibly with less checks
- ...

Cluster of Excellent

Resilience for the Exa-Age

Ever decreasing mean time between failure

- Massive replication of hardware
- Smaller scales (higher integration)
- Hardware possibly with less checks
- ...

Two categories:

- Hard faults
- Soft/silent faults

Hard Faults

Errors that trigger signals to the user

- Node, OS, network or process failure
- Software crashes
- \Rightarrow Default MPI response: abort application

Hard Faults

SimTech

Errors that trigger signals to the user

- Node, OS, network or process failure
- Software crashes
- \Rightarrow Default MPI response: abort application

Solutions

- Recompute (checkpoint-restart)
 - Checkpoint on HD / RAM
 - Lossless
 - Expensive storage/communication operations
 - Restart even more expensive

Hard Faults

SimTech

Errors that trigger signals to the user

- Node, OS, network or process failure
- Software crashes
- \Rightarrow Default MPI response: abort application

Solutions

- Recompute (checkpoint-restart)
 - Checkpoint on HD / RAM
 - Lossless
 - Expensive storage/communication operations
 - Restart even more expensive
- Continue w/o recomputation
 - Requires adapted numerical schemes
 - No/minor extra computational effort
 - Lossy
 - ⇒ algorithm-based fault-tolerance (ABFT)

No signal to user

- Faults unnoticed unless searched for
- Most common type: Silent Data Corruption (SDC) Errors in arithmetic operations, memory corruption, bit flips

1	0	1	0	1	1	1	0	1
1	0	1	0	0	1	1	0	1
-					=			
				_ >		2		

No signal to user

- Faults unnoticed unless searched for
- Most common type: Silent Data Corruption (SDC) Errors in arithmetic operations, memory corruption, bit flips

1	0	1	0	1	1	1	0	1
1	0	1	0	0	1	1	0	1
-					-			
				→				

Common solutions

- Checksums
- Replication (process/data)
- ⇒ Significant overhead (effort, resources)

Å

Master-worker model

Silent/Soft Faults

r of Excellence

SimTech

Exploit hierarchical approach

- Similar discretizations lead to similar results
- Exploit redundancy and hierarchical representation to check for faults
- Detection of outliers possible
- Direct integration into communication schemes possible (Subspace Reduce)

Software Stack

- Fault simulation layer
- Implements interface of ULFM plus kill_me() functionality

Selective Reliability

Focus on critical parts

Algorithm: The Combination Technique in Parallel

Selective Reliability

Focus on critical parts

Algorithm: The Combination Technique in Parallel

Selective Reliability

Focus on critical parts

Algorithm: The Combination Technique in Parallel

for all combination grids Ω_i do in parallel $u_i \leftarrow u(x, t = 0);$ // Set initial conditions while not converged do for all combination grids Ω_i do in parallel $U_i \leftarrow \text{solver}(u_i, N_t);$ // Solve the PDE on grid Ω_i (N_t timesteps) checkForSDC(): // Cheap sanity check mitigateFaults(); // Mitigate faults $U_n^{(c)} \leftarrow \text{reduce}(C_i U_i);$ // Combine solutions for all $\underline{i} \in \mathcal{I}_{n,q,\tau}$ do $| u_i \leftarrow \text{scatter}(u_n^{(c)});$ // Sample each U_i from new $U_n^{(c)}$

2D Example

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

2D Example

Find alternative combination, exclude missing solutions

• Starting point: standard CT coefficients

$$u_{\vec{n}}^{c}(\vec{x}) = \sum_{q=0}^{d-1} (-1)^{q} {d-1 \choose q} \sum_{\vec{l} \in \mathcal{I}_{\vec{n},q}} u_{\vec{l}}(\vec{x})$$

SimTech

er of Excellence

Find alternative combination, exclude missing solutions

• Starting point: standard CT coefficients

$$u_{\vec{n}}^{c}(\vec{x}) = \sum_{q=0}^{d-1} (-1)^{q} {d-1 \choose q} \sum_{\vec{l} \in \mathcal{I}_{\vec{n},q}} u_{\vec{l}}(\vec{x})$$

In case of failure: use inclusion-exclusion principle to determine adapted combination

Find alternative combination, exclude missing solutions

• Starting point: standard CT coefficients

$$u_{\vec{n}}^{c}(\vec{x}) = \sum_{q=0}^{d-1} (-1)^{q} \binom{d-1}{q} \sum_{\vec{l} \in \mathcal{I}_{\vec{n},q}} u_{\vec{l}}(\vec{x})$$

In case of failure: use inclusion-exclusion principle to determine adapted combination

Solve generalized coefficient problem (GCP):

$$\max_{w} Q'(w), \qquad Q'(w) := \sum_{l \in I \downarrow} 4^{-\|l\|_1} w_l, \qquad \text{s.t. } w_l \in \{0, 1\} \ \forall l \in I \downarrow$$

Find alternative combination, exclude missing solutions

• Starting point: standard CT coefficients

$$u_{\vec{n}}^{c}(\vec{x}) = \sum_{q=0}^{d-1} (-1)^{q} {d-1 \choose q} \sum_{\vec{l} \in \mathcal{I}_{\vec{n},q}} u_{\vec{l}}(\vec{x})$$

In case of failure: use inclusion-exclusion principle to determine adapted combination

Solve generalized coefficient problem (GCP):

$$\max_{w} Q'(w), \qquad Q'(w) := \sum_{l \in I \downarrow} 4^{-\|l\|_1} w_l, \qquad \text{s.t. } w_l \in \{0, 1\} \ \forall l \in I \downarrow$$

Obtain new combination coefficients:

$$c_l = (M^{-1}w)_l$$

• Extra computations only on lower scales required

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

2D Example

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

X

2D Example

Higher-D: Advection-Diffusion Equation

$$\partial_t u - \Delta u + \vec{a} \cdot \nabla u = f \qquad \text{in } \Omega \times [0, T)$$
$$u(\cdot, t) = 0 \qquad \text{in } \partial \Omega$$
$$u(\cdot, 0) = u_0 \qquad \text{in } \Omega$$

$$\Omega = [0, 1]^{d}, \vec{a} = (1, \dots, 1)^{T}, u_0 = e^{-100 \sum_{i=1}^{d} (x_i - 0.5)^2}$$

- Implemented in DUNE-pdelab
- FVM, explicit time integration

Results

SimTech

uster of Excellence

- Fault in second time step
- Relative error w.r.t. full-grid solution (n = 11 in 2D, n = 7 in 5D)
- Computations on Hazel Hen (HLRS)
- 2D, 5D:

Again: excellent recovery properties!

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Universität Stuttgart

Germany

SimTech

- 5D, target gridsize = (9,1,257,257,257), 512 processors
- Faults Weibull distribution: $f(t; \lambda, k) = \frac{k}{\lambda} (\frac{t}{\lambda})^k 1e^{-(t/\lambda)^k}$

Statistical error: different failure rates

SimTech

- 5D, target gridsize = (9,1,257,257,257), 512 processors
- Faults Weibull distribution: $f(t; \lambda, k) = \frac{k}{\lambda} (\frac{t}{\lambda})^k 1e^{-(t/\lambda)^k}$

Error depending on last occurence

Performance of FTCT

• 5D, target gridsize = (513,1,8193,8193,8193)

Maximum runtimes per step

Å

Performance of FTCT

• 5D, target gridsize = (513,1,8193,8193,8193)

Runtimes (avg)

More Resilience: Fine-Grained FT

- Library libSpina
 - manages spare ranks

r		SPP_0	СОММ			I
4	9	14	19	24	29	34
3	8	13	18	23	28	33
2	7	12	18	22	27	32
1	6	11	16	21	26	31
0	5	10	15	20	25	30
			P_COMM			

More Resilience: Fine-Grained FT

- Library libSpina
 - manages spare ranks
 - detects faulty ranks (ULFM-style)

		SPP_0	СОММ			ı
4	9	14	19	24	29	34
3	8	13	18	23	28	33
2	7	12	18	22	27	32
1	6	11	16	21	26	31
0	5	10	15	20	25	30
			P_COMM			

More Resilience: Fine-Grained FT

- Library libSpina
 - manages spare ranks
 - detects faulty ranks (ULFM-style)
 - sanitizes MPI environment

		SPP_0	сомм			I	
4	9	14	19	24	29		
3	8	13	18	23	28		
2	7	12	33	22	27	32	
1	6	34	16	21	26	31	18
0	5	10	15	20	25	30	11
			P_COMM				·

More Resilience: Fine-Grained FT

- Library libSpina
 - manages spare ranks
 - detects faulty ranks (ULFM-style)
 - sanitizes MPI environment

		SPP_0	сомм			I	
4	9	14	19	24	29		
3	8	13	18	23	28		
2	7	12	18	22	27	32	
1	6	11	16	21	26	31	18
0	5	10	15	20	25	30	11
			P_COMM	ALL	D		

More Resilience: Fine-Grained FT

- Library libSpina
 - manages spare ranks
 - detects faulty ranks (ULFM-style)
 - sanitizes MPI environment
 - provides basic checkpointing capabilites
 - causes little overhead
 - requires modest changes in code

		SPP_0	СОММ			I		
4	9	14	19	24	29			
3	8	13	18	23	28			
2	7	12	18	22	27	32		
1	6	11	16	21	26	31	18	
0	5	10	15	20	25	30	11	
	SPP_COMMALL							

FT-GENE Performance Loss Benchmark

# Nodes	Master	Spina	Loss
2	1.287	1.323	2.72%
4	1.293	1.235	-4.70%
8	1.290	1.272	-1.42%
16	1.356	1.321	-2.65%
32	1.332	1.318	-1.06%
64	1.369	1.349	-1.48%

- Average time (in seconds) per timestep, for 100 timesteps.
- Draco, 40 tasks per node, weakly scaled
- Fault-free nonlinear run

- Little to no overhead of core library
- Checkpointing: algorithm-dependent

- Motivation and Numerics
- Scalability
 - Communication
 - Load Balancing
- Algorithm-Based Fault Tolerance
 - Hard Faults
 - Silent/Soft Faults

Summary

SimTech

uster of Excellence

Gyrokinetics

- High-dimensional problem with urgent need for compute resources
- Sparse grids: hierarchy helps!

Summary

SimTech

Gyrokinetics

- High-dimensional problem with urgent need for compute resources
- Sparse grids: hierarchy helps!

Hierarchical multilevel splitting provides novel handles on exa-challenges

- Scalability
 - 2nd level of parallelism
 - Numerical decoupling, extrapolation
 - Exploit hierarchical splitting for optimal communication

Load balancing

- Fit analytic model to data
- Learn in future?

ABFT at low cost

- Exploit hierarchical scheme
- Recombination rather than recomputation

Summary

SimTech

Gyrokinetics

- High-dimensional problem with urgent need for compute resources
- Sparse grids: hierarchy helps!

Hierarchical multilevel splitting provides novel handles on exa-challenges

- Scalability
 - 2nd level of parallelism
 - Numerical decoupling, extrapolation
 - Exploit hierarchical splitting for optimal communication
- Load balancing
 - Fit analytic model to data
 - Learn in future?
- ABFT at low cost
 - Exploit hierarchical scheme
 - Recombination rather than recomputation

reduce data in communication

gather and use runtime data

avoid data storage and I/O

Thanks to:

... and all others!

Dirk Pflüger: Scalability and Fault Tolerance for Exascale Simulations of Hot Fusion Plasmas IPAM BDCWS2: HPC and DS for Scientific Discovery, October 17, 2018

Å

Thanks to:

... and all others!

Thank you for your interest!

Mario Heene, Alfredo Parra Hinojosa, Michael Obersteiner, Hans-Joachim Bungartz, and Dirk Pflüger. EXAHD: An exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and beyond.

In Wolfgang E. Nagel, Dietmar H. Kröner, and Michael M. Resch, editors, *High Performance Computing in Science and Engineering'* 17, pages 513–529, Cham, 2018. Springer International Publishing.

Michael Obersteiner, Alfredo Parra Hinojosa, Mario Heene, Hans-Joachim Bungartz, and Dirk Pflüger. A highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma simulations.

In Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA '17, pages 2:1–2:8, New York, NY, USA, 2017. ACM.

Philipp Hupp, Mario Heene, Riko Jacob, and Dirk Pflüger.

Global communication schemes for the numerical solution of high-dimensional PDEs. *Parallel Computing*, 52:78 – 105, 2016.

Scalable algorithms for the solution of higher-dimensional PDEs.

In Software for Exascale Computing-SPPEXA 2013-2015, pages 165–186. Springer International Publishing, 2016.

Alfredo Parra Hinojosa, Brendan Harding, Hegland Markus, and Hans-Joachim Bungartz.

Handling silent data corruption with the sparse grid combination technique. In *Proceedings of the SPPEXA Symposium*, Lecture Notes in Computational Science and Engineering. Springer-Verlag, February 2016.

Alfredo Parra Hinojosa, Christoph Kowitz, Mario Heene, Dirk Pflüger, and Hans-Joachim Bungartz.

Towards a fault-tolerant, scalable implementation of GENE.

In Recent Trends in Computational Engineering-CE2014, pages 47–65. Springer International Publishing, 2015.

