
© 2018 IBM Corporation

Carlos Costa
Data-Centric Solutions (DCS)
IBM T.J. Watson Research Center

chcost@us.ibm.com

Converged Ecosystem for
Data Analytics and
Extreme-Scale Computing

2Page© 2018 IBM Corporation

Era of Data-Centric and Intelligent Discovery

§ Explosion of data generated by large-scale simulation leading to a
paradigm shift: from simulation-centric to data-centric discovery

§ Data analytics and machine learning used to turn reams of
simulation data into actionable information that can be used for
better interpretation and steering

§ Applying machine learning for making existing simulation codes
more intelligent, more productive, and more robust

§ Increasing interest in large-scale analytics and machine
learning on high-end platforms

§ Emerging hybrid workflows that embody the entire inference
cycle of discovery

§ Co-deployment of heterogenous software stacks

Large-scale simulation

Data Analytics

Machine Learning

Imputation of
missing data,
detection and
classification

Feature
vectors for
training

Steering in high-
dimensional
parameter space;
in-situ processing

Data for training,
augmenting
real-world data

Physics-based
regularization

Replacement of
models with learned
functions; smart
data compression

Traditional HPC

Simulation-centric

Big Data Analytics

Data-centric

Diagram adapted from BDEC report
https://www.exascale.org/bdec/report

3Page© 2018 IBM Corporation

Towards a Converged Ecosystem
Simulation WorkflowsData Analytics

Unstructured or semi-structured data

Collaborative Filtering, clustering, …

Real-time analysis, anomaly detections

Sensor data filtering, classification, …
statistical averages/histogram, …

Support Vector Machine, Principle Component Analysis, …

Deep Learning

Structured data

Exascale data sets

Primarily scientific calculations

Ensemble analysis

Sensitive analysis

Uncertainty quantification

Heterogeneous
hardware

Layered storage and
IO performance

Data Management

Energy Efficiency

InifiniBand/RoCE, Flash, GPUs, …TCP/IP, HDDs, …

HPC ecosystem
C++/C, OpenMP, MPI, Cuda, …

RDMA Verbs, ...

Hadoop/Spark ecosystem
Spark API, Hadoop API, …

Python, Java, Scala, Python, TCP sockets, …

Converged
Ecosystem

High productivity and
High performance

Cloud-based, commodity clusters On-premise, dedicated HPC Platform

High productivity, fault-tolerance High performance, specialized hardware

Overarching
Challenges

4Page© 2018 IBM Corporation

Next-Gen Large-scale
Computing Platforms

5Page© 2018 IBM Corporation

Designing Next-Generation Systems

Data-centric approach

§ DoE’s CORAL systems, ORNL’s Summit
and LLNL’s Sierra, first instantiation of
IBM’s data-centric approach for system
design

§ Platforms for innovative emerging
workflows, laying the groundwork for
efficient scientific discovery at Exascale

§ Designed for data and AI from the ground
up

§ Summit, currently world’s most powerful
system

§ 5 2018 Gordon Bell finalists used Summit
or Sierra (including record 2.31 exaops)

Exascale

6Page© 2018 IBM Corporation

OpenPOWER CORAL Systems Design

Compute Rack:
18 Servers/rack
779 TFlop/rack
10.8 TB/rack

55 kWatts max

System:
200 Pflops compute
+ 5 PB Active Flash
+120 PB Disk

Scalable Active Network:
Mellanox IB4X EDR Switch

Converged 2U
server drawer for
HPC and Cloud

GSS Rack:

- Scalable system software and
data architecture

- LLVM Open Source compiler
- Water cooling
- Integrated Local Active

Storage

256 Compute Racks

40 Disk Racks

16 Optional Flash
Racks
TMS drawers or
Flash cards.
CAPI attached.
Globally
accessible with
local processing

POWER9:
22 Cores
4 Threads/core
0.65 DP TF/s
3.7 GHz

SXM2

Volta:
7.0 DP TF/s
16GB @ 1.2TB/s

POWER9 2-Socket Server
2 P9 + 4/6 Volta GPU (@7 TF/s)

512 GiB SMP Memory (32 GB DDR4 RDIMMs)
64/96GiB GPU Memory (HBM stacks)

7Page© 2018 IBM Corporation

CORAL Systems

ORNL’s Summit
§ 4,608 POWER9 nodes with

§ 6x Nvidia Volta GPU

§ 2,282,544 cores

§ ~10 PB (DDR4+HBM2+Non-
volatile) system memory

§ Dual-rail InfiniBand Fat tree
network

§ ~200PF peak

§ ~13 MW

LLNL’s Sierra
• ~4,474 POWER9 nodes with

4x Nvidia Volta GPU

• 1,572,480 cores

• ~1.9 PB system memory

• Dual-rail InfiniBand Fat tree
network

• ~125 PF peak

• ~ 11 MW

§ Scalable system solution – scale up, scale down – to address a wide range of application domains
§ Modular, flexible, cost-effective, 2U building blocks
§ Directly leverages OpenPOWER partnerships and IBM’s Power system roadmap
§ Can scale to over 500 PF
§ Air and water cooling

§ Heterogeneous compute elements
§ Power9 processor,
§ Nvidia Volta GPU coupled with NVLINK 2.0 (Coherent, high-bandwidth links to GPUs)

§ Heterogeneous memory elements
§ DRAM for low latency
§ HMC Stacked memory for high bandwidth
§ Flash for local store

§ System Resource Manager coupled with Platform Computing LSF

8Page© 2018 IBM Corporation

Challenges for a Converged
Software Ecosystem

9Page© 2018 IBM Corporation

Converged Software Ecosystem Challenges

process the torrents of business, industrial processes, and
social network data now being generated by consumer
devices and the burgeoning IoT. The pace of change in the
data analytics ecosystem is extraordinary, already render-
ing obsolete some of the elements in the figure above.

Thus, at least some of the major differences between the
HPC and the HDA ecosystems—software development
paradigms and tools, virtualization and scheduling strate-
gies, storage models (local vs cloud/SAN), resource alloca-
tion policies, strategies for redundancy, and fault
tolerance—can be accounted for by the fact that each
evolved during a distinctly different phase of the ongoing
digital revolution, driven by distinctly different optimiza-
tion criteria.3 For example, it can be reasonably argued that
scientific “big data” has existed for more than a decade, but
that it remained essentially “dark” (i.e. unavailable for
analysis) until commercial cloud technology and content
distribution networks began to provide broader access to
the computing power and data logistics needed by the com-
munities who wanted to analyze it.4 By contrast, the HPC
infrastructure model—a system of regional and national
supercomputing centers connected together by high-
performance research networks—was already fully mature
at the beginning of the century and serving the needs of the
modeling and simulation-centered parts of the scientific
community relatively well.

But even the ultimate convergence of the HPC and HDA
ecosystems, could it be achieved, would not help with the
ongoing breakdown of the other, more basic paradigm,

namely, the one in which networks only forward data-
grams, while all other storage and computation is per-
formed outside the network.

The problem is that much, if not most, of the explosive
growth in data generation today is taking place in “edge
environments” (i.e. outside of—and across the network
from—both HPC data centers and commercial cloud
machine rooms (Figure 2)). This includes not only major
scientific instruments, experimental facilities, and remote
sensors (e.g. satellite imagery), but even more importantly,
the incredible welter of digital data generators with which
the plans for “smart cities” and the IoT (Gorenberg et al.,
2016) are replete. For example, a recent National Science
Foundation workshop on the future of wireless networking
concluded that the ubiquitous deployment of sensor tech-
nologies that are a standard element in such plans will
“ . . . generate massive data inflows [that produce] as much
if not more data and network traffic than the World Wide
Web” and will therefore “ . . . reverse current loads, where
most data is produced in the cloud and consumed at the
edge” (Banerjee and Wu, 2013). Likewise, the authors of
the 2017 European Network on High Performance and
Embedded Architecture and Compilation report con-
cluded that

. . . to stem the flood of data from the Internet of things, we

must employ intelligent local data processing on remote

devices that use minimal energy. . . . This may well require

Ethernet
Switches

Local Node
Storage

X86 Racks +
GPUs or

Accelerators

In-situ
Processing

Infiniband +
Ethernet
Swtiches

SAN + Local
Node

Storage

Commodity X86
Racks

Lustre (Parallel
File System)

Batch Scheduler
(e.g., SLURM) HDFS (Hadoop File System)

System
Monitoring

Tools

Applications and Community Codes

Hbase BigTable
(key-value store)

AVRO

Sci. Vis.

Zookeeper (coordination)

Map-Reduce Storm

Hive Pig Sqoop Flume

Mahout, R and Applications

Domain-specific Libraries

FORTRAN, C, C++ and IDEs

Cloud Services (e.g., AW
S)) Virtual Machines and Cloud Services

Containers (Kubernetes, Docker, etc.)
Containers

(Singularity, Shifter, etc.)

DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM

MPI/OpenMP
+Accelerator

Tools

Numerical
Libraries

Performance &
Debugging
(e.g., PAPI)

Figure 1. Different software ecosystems for HDA and traditional computational science. Credit: Reed and Dongarra (2015). HDA:
high-end data analysis.

440 The International Journal of High Performance Computing Applications 32(4)

Spark
(MLlib, GraphX, …)

Big Data Applications

Bifurcated software
development paradigms and
cultures

Distinct scheduling
(stateless vs state full) and
deployment requirements
and strategies

Disjoint data management
approaches and lack of a
unified data flow model

Distinct storage and
computing models

Diagram adapted from BDEC report
https://www.exascale.org/bdec/report

10Page© 2018 IBM Corporation

Converged Software Ecosystem Challenges

§ Need for better resource managers
and schedulers

§ Enabling co-existence of batch
processing and interactive analysis

§ Need of interoperability of data
formats

§ Enabling integration of on-premises
and cloud HPC environments

§ Enabling cloud bursting

Mesos

11Page© 2018 IBM Corporation

Genomics ML/DL Data Analytics
Front-ends

MLLib

DL4J

Towards a Common Platform for Analytics

12Page© 2018 IBM Corporation

Benefits
§ Functional programming targeting data analytics that

naturally apply the same operation to multiple data items

§ Operators expressive enough to capture wide class of
computation and cluster programming models
(MapReduce, SQL, Pregel, …) for analytics

Challenges
§ JVM-based approach creates challenges with specialized

hardware (GPU, FPGA, transport off-load)

§ Challenges managing data across frameworks
§ Efforts in the community with off-JVM heap optimizations

and native code generation (Tungsten and Catalyst
projects)

Worker Node 1

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

Worker Node 2

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

Java
Sockets

Worker Node k

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

Java
Sockets

…

Benefits and Challenges with Spark-based Stack

13Page© 2018 IBM Corporation

Accelerated Middleware for
High-End Analytics

14Page© 2018 IBM Corporation

Accelerated and Scalable Middleware for HDA

Big Data Analytics Workflows

RDMA GPUDirect OpenCAPI
Flash/RDMANVMe

JVMSO
FT

W
AR

E
H

AR
D

W
AR

E Data Broker

Native C/C++
(functionality, low-level integration)

transport offload storage/communication

unified data layer

GPU/NVLink
FPGA

Spectrum LSF IBM Cloud Private

optimizations
(code changes, plugins, wrappers, …)

accelerator

15Page© 2018 IBM Corporation

Transparent Acceleration for HDA on Spark

asynchronous event-driven network framework

OFED – RDMA software stack

JVM and Spark level profiling and tuning
§ Large-memory/core count optimization
§ JVM-level optimization/tuning for POWER
Performance profiling and prediction tool
§ Model to evaluate performance optimizations for network and storage

Adaptive and memory-efficient shuffle strategy for large-scale
§ Low-memory utilization shuffle block transfer

RDMA-based transport
§ Native transport interface with Rsocket (RDMA)
§ FileRegion over Rsocket (fast transferring of shuffle blocks)

Epoll/sendfile support
§ repoll - wrapper for IB mechanism for event notification
§ rsendfile - transfer data over RDMA between file descriptors

HI
GH

-L
EV

EL
 D

AT
A

PR
O

CE
SS

IN
G

FR
AM

EW
O

RK
CO

M
M

UN
IT

AC
TI

O
N

AP
I

LO
W

-L
EV

EL
 N

ET
W

O
RK

SO
FT

W
AR

E
ST

AC
K

KV-based shuffle

Adapter
§ Bypass file-based shuffle and allows finer granularity
§ Eliminates filesystem dependency and overhead

Data Broker/KVS

Shuffle

JNIScala/JVM-based

JNI

MLLib

GPU-accelerated kernels
§ Transparent calls to GPU accelerated ML kernels

JNI JNIData I/O

16Page© 2018 IBM Corporation

Transparent Transport Acceleration

30%

NIO is unstable,
Varying performance
(task fail more frequently)

RDMA is more stable
(no tasks failed)

32768 (no of key-value pairs) 32768 (key size)

TPC-H/Spark SQL

§ Lower CPU
utilization leading
to higher
throughput

§ Same or better
performance

§ Improved stability
(less memory
pressure)

§ RDMA-based shuffle
§ Replaces Java socket-based transfer of temporary shuffle files

RDMA-enabled

RSockets

§ Netty RDMA-enabled
§ Extends native socket support with Rsockets
§ Packaged as a Spark option (shuffle.io.mode)
§ Requires custom IBM-provided Netty and OFED

Implementation (two options)

§ IBM OpenJ9 with Java Sockets over RDMA (JSoR)
§ JVM-level support to transparent switch Java

sockets over RDMA (supports NIO)
§ Enabled with Java option (-Dcom.ibm.nio.rdma)
§ Fully packaged as a featured in IBM Java SDK

37%

17Page© 2018 IBM Corporation

Adaptive I/O to Optimize Collective Data Shuffling

Current approach
§ Current implementation is unaware of load distribution and randomizes
block requests

§ Shuffle data is acquired much faster than it can be consumed with
faster transport

§ Large amounts of memory used for prefetching shuffle data

Adaptive approach
§ Mechanism to monitor load and latency based on block request and
wait time

§ Algorithm to assign a score to each remote host with decentralized
coordination

§ Dynamically optimizes block fetch requests to minimize latency

Benefits
§ Improved network utilization with low memory utilization

§ Improved load balancing

§ Benefits as a function of number of cores/nodes

Status
§ Patch for Spark 1.5.1, 1.6; 2.0+

Fig. 2. Adaptive shuffle block transfer as integrated in the Spark shuffle logic.
New and modified components are highlighted with a dark background color.

with its remote counterpart. implementation,
Default static shuffle strategy: Spark uses a static

strategy to pull the remote shuffle blocks. Specifically, each
reduce task pre-computes a data transfer plan according to the
following scheme: all fetch requests addressed to the same
executor are packed together in a set of requests that are not
larger than one fifth of the in-flight limit. The rationale of using
one fifth is purely empiric and is based on the intuition that
spreading the fetch requests over multiple executors reduces
the risk of bottlenecks compared to the case when all requests
are issued to the same executor. Then, all requests addressed
to all executors are randomly shuffled and placed in a queue,
in order to achieve a rough form of load balancing. Initially,
a number of requests that add up to the in-flight limit are
dequeued and the amount of in-flight data is monitored. Then,
every time a shuffle block was received, once enough room for
the head request in the queue exists (i.e., in-flight data smaller
than one fifth of the in-flight limit), the request is dequeued and
processed. The process repeats until all requests were issued.
Independently, the reduce tasks wait on a separate queue
where the shuffle blocks accumulate in order to consume the
intermediate data.

Adaptive shuffle strategy: To adopt the principles pro-
posed in Section IV, we implemented a new dynamic scheme
that builds requests on the fly and eliminates the need for a
request queue: once enough room (i.e., in-flight increment) is
available to construct a new request, the BlockTransferService
asks the BlockTransferMonitor to recommend an executor.
Then, a new request to that executor is constructed by packing
together as many shuffle blocks as possible up to the in-
flight increment. This process is repeated until the elastic in-
flight limit is reached, which is constantly adjusted by the
the ShuffleBlockFetcherIterator to match the consumption rate
of the Shuffle Manager. Using this approach, the BlockTrans-
ferService knows in advance what blocks go together and can
optimize the construction of the RPC calls.

The BlockTransferMonitor is responsible to keep track of
each executor and make a recommendation based on the
combined score. Since the ShuffleBlockFetcherIterator inter-

acts both with the reducers and the BlockTransferService
directly, the BlockTransferMonitor relies on each ShuffleBlock-
FetcherIterator to report the relevant monitoring information,
which is then aggregated and used for the recommendation.

VI. EXPERIMENTAL EVALUATION

This section focuses on comparing our proposal with the
state-of-art to understand the benefits and trade-offs with
respect to performance, memory utilization and scalability.

Setup: The experiments were performed on an IBM
POWER8 cluster consisting of 14 nodes interconnected with
high-speed Mellanox Infiniband EDR ConnectX-4 adapters
(100Gb/s). Each node is an IBM POWER8 non-virtualized
(PowerNV) S822LC server, featuring two POWER8 SCM (10-
core), with 8 hardware threads per core (SMT8) for a total of
160 hardware threads, 512 GB of RAM per machine, and one
1 TB HDD for local storage. This gives us a total of 2240
processing units. With respect to the software configuration,
the compute infrastructure resources are managed with IBM
Platform LSF. Each node runs RedHat Linux Enterprise 7.2,
while the Spark version used is 1.6.0. Spark runs on the cluster
as an exclusive LSF job (i.e., does not share the node with
any other job) and is configured to make use of all available
capacity of the workers. IBM General Parallel File System
(GPFS) is used as the underlying distributed storage layer.

Deployment and co-location: Spark was configured to
deploy 19 worker instances per node, using a total of 152
threads and 480 GB of RAM from each node. This granularity
was chosen in order to enable NUMA awareness: each worker
is allocated pre-defined groups of hardware threads by pinning
them on the same core, thus maximizing performance for
our architecture. We decided to leave 8 hardware threads and
30 GB of RAM free in order to deal with operating system
noise. One node acts as the master, while all other nodes host
the workers. Each worker runs a single executor. Thus, the
largest setup has 1946 reducers with 8 reducers per executor
sharing the same initial shuffle blocks. Each reducer needs to
fetch additional shuffle blocks from up to 18 other node-local
executors (local workers) and 246 remote executors (remote
workers).

Approaches: We compare three approaches throughout
the evaluation: (1) our proposal (described in Section IV); (2)
the default shuffle strategy implemented in Spark (described
in Section V); (3) a naive limitless strategy that issues all
requests to all nodes in advance and accumulates all shuffle
blocks as they arrive. For the rest of this paper, we refer
to our proposal as adaptive and to the default Spark shuffle
strategy as default. Furthermore, in both cases we use a
predefined reducer in-flight limit that is configured using the
spark.reducer.maxSizeInFlight option. For conciseness, we re-
fer to any strategy and in-flight limit pair simply as adaptive-N,
and, respectively, default-N, with N expressed in Megabytes.
The naive limitless strategy is achieved by simply using a very
large N for default, which forces the desired behavior. Its
purpose is to act as a baseline from a theoretical perspective,
where memory would not be a limitation and shuffle blocks

Adaptive and memory integrated in the Spark logic

modified blocks highlighted

IEEE CCGrid’16 paper [1]

http://ieeexplore.ieee.org/abstract/document/7740885/

18Page© 2018 IBM Corporation

Adaptive I/O to Optimize Collective Data Shuffling

Raw shuffle performance
§ GroupByKey: raw performance of groupBy

§ SortByKey: raw performance of sortBy

Experimental evaluation
§ ~2,240 cores - POWER8 (PowerNV) S822LC (2x SCM 10-core, SMT8)

§ Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)

§ 512 GB of RAM per machine

§ 1 TB HDD

§ Shuffle I/O: 1TB, 1.4TB (GroupBy, SortBy)

Results
§ up to 40% faster and
50% less memory
utilization

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 20 30 50 100 unlim

C
o

m
p

le
tio

n
 t

im
e

 (
s)

Reducer buffer size (MB)

default
adaptive

(a) groupByKey: Completion time for a variable reducer in-flight limit

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

10 20 30 50 100 unlim

P
e

a
k

sh
u

ff
le

 u
til

iz
a

tio
n

 (
M

B
)

Reducer buffer size (MB)

default
adaptive

(b) groupByKey: Peak shuffle memory utilization for a variable reducer in-
flight limit

 0

 200

 400

 600

 800

 1000

10 20 30 50 100 unlim

C
o

m
p

le
tio

n
 t

im
e

 (
s)

Reducer buffer size (MB)

default
adaptive

(c) sortByKey: Completion time for a variable reducer in-flight limit

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10 20 30 50 100 unlim

P
e

a
k

sh
u

ff
le

 u
til

iz
a

tio
n

 (
M

B
)

Reducer buffer size (MB)

default
adaptive

(d) sortByKey: Peak shuffle memory utilization for a variable reducer in-
flight limit

Fig. 3. Performance vs. memory utilization for the largest problem size: 1976 cores for groupByKey, 1824 cores for sortByKey.

the speed-up increases 3x from 5% to 15%. Given this trend,
an even wider performance gap between adaptive and default
can be expected at scales beyond 2000 cores. With respect to
memory utilization, a consistent trend is visible: regardless of
the number of cores, adaptive utilizes 40%-50% less memory
than default. At scale, this memory saving can become a
critical asset that can be used for user data rather than
buffering.

Interesting to note is that the speed-up increases despite a
constant memory saving. A possible explanation for this is that
every reducer needs to communicate at larger scale with more
workers, which emphasizes the need to introduce an optimized
worker selection algorithm.

C. System-Level CPU and Network Utilization Analysis

This section aims to study the previous findings by zooming
on two low-level system metrics: average aggregated CPU
and network utilization (calculated as explained above in

Section VI). We focus on these two metrics to complement
the memory utilization that was analyzed so far.

We focus on these two system-level metrics for both
workloads at the extreme spectrum of the in-flight reducer
limit: adaptive-10 and the corresponding default-10, as well
as adaptive-unlim vs. default-unlim for the largest problem
size considered for each of the two benchmarks: 1976 cores
for groupByKey and 1840 cores for sortByKey.

The CPU utilization results are depicted in Figure 5(a)
and Figure 5(c), while the network traffic is depicted in
Figure 5(b) and Figure 5(d). Note that the depicted system-
level parameters include both the data generation phase and
the actual workload, as they were monitored throughout the
execution time of the benchmark. Since the data generation
phase does not involve any shuffling and is identical for
both default and adaptive, the parameters almost overlap until
network traffic starts emerging, which signals the beginning
of the shuffle phase. It is this part that represents the actual

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 20 30 50 100 unlim

C
o
m

p
le

tio
n
 t
im

e
 (

s)

Reducer buffer size (MB)

default
adaptive

(a) groupByKey: Completion time for a variable reducer in-flight limit

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

10 20 30 50 100 unlim

P
e
a
k

sh
u
ff
le

 u
til

iz
a
tio

n
 (

M
B

)

Reducer buffer size (MB)

default
adaptive

(b) groupByKey: Peak shuffle memory utilization for a variable reducer in-
flight limit

 0

 200

 400

 600

 800

 1000

10 20 30 50 100 unlim

C
o
m

p
le

tio
n
 t
im

e
 (

s)

Reducer buffer size (MB)

default
adaptive

(c) sortByKey: Completion time for a variable reducer in-flight limit

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10 20 30 50 100 unlim

P
e
a
k

sh
u
ff
le

 u
til

iz
a
tio

n
 (

M
B

)

Reducer buffer size (MB)

default
adaptive

(d) sortByKey: Peak shuffle memory utilization for a variable reducer in-
flight limit

Fig. 3. Performance vs. memory utilization for the largest problem size: 1976 cores for groupByKey, 1824 cores for sortByKey.

the speed-up increases 3x from 5% to 15%. Given this trend,
an even wider performance gap between adaptive and default
can be expected at scales beyond 2000 cores. With respect to
memory utilization, a consistent trend is visible: regardless of
the number of cores, adaptive utilizes 40%-50% less memory
than default. At scale, this memory saving can become a
critical asset that can be used for user data rather than
buffering.

Interesting to note is that the speed-up increases despite a
constant memory saving. A possible explanation for this is that
every reducer needs to communicate at larger scale with more
workers, which emphasizes the need to introduce an optimized
worker selection algorithm.

C. System-Level CPU and Network Utilization Analysis

This section aims to study the previous findings by zooming
on two low-level system metrics: average aggregated CPU
and network utilization (calculated as explained above in

Section VI). We focus on these two metrics to complement
the memory utilization that was analyzed so far.

We focus on these two system-level metrics for both
workloads at the extreme spectrum of the in-flight reducer
limit: adaptive-10 and the corresponding default-10, as well
as adaptive-unlim vs. default-unlim for the largest problem
size considered for each of the two benchmarks: 1976 cores
for groupByKey and 1840 cores for sortByKey.

The CPU utilization results are depicted in Figure 5(a)
and Figure 5(c), while the network traffic is depicted in
Figure 5(b) and Figure 5(d). Note that the depicted system-
level parameters include both the data generation phase and
the actual workload, as they were monitored throughout the
execution time of the benchmark. Since the data generation
phase does not involve any shuffling and is identical for
both default and adaptive, the parameters almost overlap until
network traffic starts emerging, which signals the beginning
of the shuffle phase. It is this part that represents the actual

IEEE TPDS’17 article [2]

http://ieeexplore.ieee.org/document/7740885/

19Page© 2018 IBM Corporation

Adaptive I/O to Optimize Collective Data Shuffling
Experimental evaluation
§ ~ 2,240 (PowerNV) S822LC (2x SCM 10-core, SMT8; total 160
hw threads)
§ Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
§ 512 GB of RAM per machine
§ 1 TB HDD

(a) groupByKey: average CPU utilization for 10 MB and unlimited reducer
in-flight limit

(b) groupByKey: average network traffic for 10 MB and unlimited reducer
in-flight limit

(c) sortByKey: average CPU utilization for 10 MB and unlimited reducer
in-flight limit

(d) sortByKey: average network traffic for 10 MB and unlimited reducer
in-flight limit

Fig. 5. Average CPU utilization and network traffic per node as they evolve in time during shuffling

key finding is that our proposal exhibits increasing speed-up
at scale vs. the default strategy when using an small reducer
in-flight limit: from 5% for both benchmarks at around 600
cores up to 15% and, respectively, 40% at 2000 cores. This
translates to an increase in speed-up of 8x and, respectively
3x, for a corresponding 3x increase in the number of cores.

Given this trend, we predict even higher speed-up at larger
scale. Furthermore, the speed-up comes with the added benefit
of halving the memory requirement for the buffering of accu-
mulated shuffle blocks. Since less and less memory per core
is available, due to an increase in number of cores per node,
this translates to significant savings at scale. We explained
these findings by analyzing CPU and network utilization,
showing more consistent use of both resources. This more
stable usage of CPU and networking infrastructure is also

interesting because it creates opportunities for less interference
and better co-location with other workloads.

Encouraged by these promising results, we see several inter-
esting avenues to be explored in future work. First, we decided
to avoid synchronization across nodes due to extra overhead.
However, if this overhead can be masked by piggy-backing
extra information on top of regular shuffle block transfers,
then this could potentially be leveraged asynchronously to
for better selection and transfer planning. Second, we did
not explore the interference between independent shuffles that
run concurrently or the result that shows better stability of
CPU utilization and network transfers. There are multiple
interesting aspects to explore in this context, such as how
to co-optimize independent shuffles or minimize interference
with other (Spark or non-Spark) workloads.

(a) groupByKey: average CPU utilization for 10 MB and unlimited reducer
in-flight limit

(b) groupByKey: average network traffic for 10 MB and unlimited reducer
in-flight limit

(c) sortByKey: average CPU utilization for 10 MB and unlimited reducer
in-flight limit

(d) sortByKey: average network traffic for 10 MB and unlimited reducer
in-flight limit

Fig. 5. Average CPU utilization and network traffic per node as they evolve in time during shuffling

key finding is that our proposal exhibits increasing speed-up
at scale vs. the default strategy when using an small reducer
in-flight limit: from 5% for both benchmarks at around 600
cores up to 15% and, respectively, 40% at 2000 cores. This
translates to an increase in speed-up of 8x and, respectively
3x, for a corresponding 3x increase in the number of cores.

Given this trend, we predict even higher speed-up at larger
scale. Furthermore, the speed-up comes with the added benefit
of halving the memory requirement for the buffering of accu-
mulated shuffle blocks. Since less and less memory per core
is available, due to an increase in number of cores per node,
this translates to significant savings at scale. We explained
these findings by analyzing CPU and network utilization,
showing more consistent use of both resources. This more
stable usage of CPU and networking infrastructure is also

interesting because it creates opportunities for less interference
and better co-location with other workloads.

Encouraged by these promising results, we see several inter-
esting avenues to be explored in future work. First, we decided
to avoid synchronization across nodes due to extra overhead.
However, if this overhead can be masked by piggy-backing
extra information on top of regular shuffle block transfers,
then this could potentially be leveraged asynchronously to
for better selection and transfer planning. Second, we did
not explore the interference between independent shuffles that
run concurrently or the result that shows better stability of
CPU utilization and network transfers. There are multiple
interesting aspects to explore in this context, such as how
to co-optimize independent shuffles or minimize interference
with other (Spark or non-Spark) workloads.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 600 800 1000 1200 1400 1600 1800 2000

A
d

a
p

tiv
e

 v
s.

 d
e

fa
u

lt
sp

e
e

d
u

p
 (

%
)

Total number of cores (152 per node)

groupByKey
sortByKey

(a) Speedup of completion time for adaptive vs. default

 0

 10

 20

 30

 40

 50

 60

 600 800 1000 1200 1400 1600 1800 2000

A
d

a
p

tiv
e

 v
s.

 d
e

fa
u

lt
m

e
m

o
ry

 s
a

vi
n

g
 (

%
)

Total number of cores (152 per node)

groupByKey
sortByKey

(b) Memory saving for adaptive vs. default

Fig. 4. Weak performance scalability and memory efficiency for an increasing number of nodes and problem scale using a reducer in-flight limit of 10 MB.
Higher is better.

workload and is interesting to analyze.
As can be observed, in the case of default-10, large fluctua-

tions in both CPU utilization and network traffic happen over
short periods of time for both benchmarks. It indicates the
reducers are competing for a large number of shuffle blocks,
which creates memory pressure and leads to imbalances,
effectively resulting in the reducers “backing off” shortly
after. Then, once the pressure is alleviated, the reducers start
again competing for shuffle blocks and the cycle repeats. This
has negative consequences beyond the fact that it leads to
performance degradation and higher memory utilization: these
peaks and lows create an unstable pattern that poses difficul-
ties when the infrastructure is shared with other workloads,
because it can lead to interference that makes it harder to
take appropriate co-scheduling decisions. This is true both if
the other workloads are Spark jobs or completely different
workloads.

A sharp contrast can be observed when analyzing adaptive-
10 for groupByKey: the CPU utilization and network traffic
are much more stable over time, which is a consequence of
adapting to the computation and improving the load balancing.
This in turn helps achieve higher performance and with less
memory utilization.In case of sortByKey, a better load balanc-
ing translates into a noticeably lower CPU utilization. This
stability could potentially be leveraged by schedulers to make
better co-deployment decisions and to improve the quality-of-
service. Finally, for both benchmarks there the network traffic
is concentrated in fewer spikes of higher amplitude, which
shows that the interaction of reducers with remote workers is
improved and the bandwidth of the network interface can be
better utilized.

When comparing adaptive-unlim with default-unlim, two
interesting observations emerge: first, the CPU utilization is
visibly smaller for adaptive-unlim in both benchmarks during
the shuffle phase. Second, the network utilization shows fewer

spikes of higher amplitude, similar to the 10 MB inflight limit
case.

Finally, when comparing the 10 MB in-flight limit with
the unlimited case, an interesting trend is visible for both
benchmarks: the peak network utilization is much higher for
the 10 MB inflight limit for both benchmarks. The difference
can be as high as 2x higher network throughput in the case of
sortByKey: from 1 GB/s in the case of unlimited to 2 GB/s in
the case of 10 MB in-flight limit. This shows again the com-
plexity of the interplay between buffering, memory pressure
and the computation, which leads to the observed counter-
intuitive behavior that exhibits lower network throughput for
a larger buffer.

VII. CONCLUSIONS

In this paper we have proposed a novel dynamic data
shuffling strategy that is specifically designed to deliver high
performance and scalability with minimal memory utilization.
Our proposal is based on the idea of adapting the accumulation
of shuffle blocks to the individual rate of processing for each
reducer task, while coordinating the reducers to collaborate
in the optimal selection of the sources where to fetch shuf-
fle blocks from. This improves load balancing and avoids
stragglers, while reducing the memory which is needed for
buffering purposes.

To demonstrate the benefits of our proposal, we developed
an experimental prototype that we integrated into the Spark
framework as an alternative data shuffling strategy. We ran
extensive experiments on high-end HPC infrastructure with
large core count per node and fast interconnect to compare
this alternative data shuffling strategy with the default one
for two shuffle-intensive benchmarks. Our first key finding
is the following: when under memory pressure, the default
settings considered best practice are not optimal and a small
reducer in-flight limit is necessary to achieve both the best
performance and minimum memory utilization. Our second

Results
§ Increase in speed-up with increasing size of Spark deployment

§ greater speed-up with increasing number of cores

§ Alleviates memory pressure, leading to better load balance

§ Even more benefits at larger scale both for performance and memory utilization

higher network utilization
with adaptive

better load-balancing
with adaptive

Raw shuffle performance

§GroupByKey: raw performance of groupBy

§SortByKey: raw performance of sortBy

IEEE TPDS’17 article [2]

http://ieeexplore.ieee.org/document/7740885/

20Page© 2018 IBM Corporation

Adaptive I/O to Optimize Collective Data Shuffling

that every reducer needs to communicate at larger scale
with more executors, which emphasizes the need to intro-
duce an optimized source selection algorithm.

6.4 System-Level CPU and Network Utilization
Analysis

This section aims to study the previous findings by zooming
on two low-level system metrics: average aggregated CPU
and network utilization (calculated as explained above in
Section 6.1.4). We focus on these two metrics to complement
the memory utilization that was analyzed so far.

We focus on these two system-level metrics for both
workloads at the extreme spectrum of the in-flight reducer
limit: adaptive-10 and the corresponding default-10, as well
as adaptive-unlim versus default-unlim for the largest problem
size considered for each of the two benchmarks: 1,976 cores
for groupByKey and 1,840 cores for sortByKey.

The CPU utilization results are depicted in Figs. 5a and
5c, while the network traffic is depicted in Figs. 5b and 5d.
Note that the depicted system-level parameters include
both the data generation phase and the actual workload, as
they were monitored throughout the execution time of the
benchmark. Since the data generation phase does not
involve any shuffling and is identical for both default and
adaptive, the parameters almost overlap until network traffic
starts emerging, which signals the beginning of the shuffle

phase. It is this part that represents the actual workload and
is interesting to analyze.

As can be observed, in the case of default-10, large fluctu-
ations in both CPU utilization and network traffic happen
over short periods of time for both benchmarks. It indicates
the reducers are competing for a large number of shuffle
blocks, which creates memory pressure and leads to imbal-
ances, effectively resulting in the reducers “backing off”
shortly after. Then, once the pressure is alleviated, the
reducers start again competing for shuffle blocks and the
cycle repeats. This has negative consequences beyond
the fact that it leads to performance degradation and higher
memory utilization: these peaks and lows create an unstable
pattern that poses difficulties when the infrastructure is
shared with other workloads, because it can lead to interfer-
ence that makes it harder to take appropriate co-scheduling
decisions. This is true both if the other workloads are Spark
jobs or completely different workloads.

A sharp contrast can be observed when analyzing adap-
tive-10 for groupByKey: the CPU utilization and network traf-
fic are much more stable over time, which is a consequence
of adapting to the computation and improving the load bal-
ancing. This in turn helps achieve higher performance and
with less memory utilization. In case of sortByKey, a better
load balancing translates into a noticeably lower CPU utili-
zation. This stability could potentially be leveraged by

Fig. 6. GroupByKey: Heat map of the CPU utilization for all nodes as it evolves during runtime. The adaptive strategy consolidates CPU utilization
uniformly over a shorter time compared with the default strategy, which leads to better performance.

1672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

that every reducer needs to communicate at larger scale
with more executors, which emphasizes the need to intro-
duce an optimized source selection algorithm.

6.4 System-Level CPU and Network Utilization
Analysis

This section aims to study the previous findings by zooming
on two low-level system metrics: average aggregated CPU
and network utilization (calculated as explained above in
Section 6.1.4). We focus on these two metrics to complement
the memory utilization that was analyzed so far.

We focus on these two system-level metrics for both
workloads at the extreme spectrum of the in-flight reducer
limit: adaptive-10 and the corresponding default-10, as well
as adaptive-unlim versus default-unlim for the largest problem
size considered for each of the two benchmarks: 1,976 cores
for groupByKey and 1,840 cores for sortByKey.

The CPU utilization results are depicted in Figs. 5a and
5c, while the network traffic is depicted in Figs. 5b and 5d.
Note that the depicted system-level parameters include
both the data generation phase and the actual workload, as
they were monitored throughout the execution time of the
benchmark. Since the data generation phase does not
involve any shuffling and is identical for both default and
adaptive, the parameters almost overlap until network traffic
starts emerging, which signals the beginning of the shuffle

phase. It is this part that represents the actual workload and
is interesting to analyze.

As can be observed, in the case of default-10, large fluctu-
ations in both CPU utilization and network traffic happen
over short periods of time for both benchmarks. It indicates
the reducers are competing for a large number of shuffle
blocks, which creates memory pressure and leads to imbal-
ances, effectively resulting in the reducers “backing off”
shortly after. Then, once the pressure is alleviated, the
reducers start again competing for shuffle blocks and the
cycle repeats. This has negative consequences beyond
the fact that it leads to performance degradation and higher
memory utilization: these peaks and lows create an unstable
pattern that poses difficulties when the infrastructure is
shared with other workloads, because it can lead to interfer-
ence that makes it harder to take appropriate co-scheduling
decisions. This is true both if the other workloads are Spark
jobs or completely different workloads.

A sharp contrast can be observed when analyzing adap-
tive-10 for groupByKey: the CPU utilization and network traf-
fic are much more stable over time, which is a consequence
of adapting to the computation and improving the load bal-
ancing. This in turn helps achieve higher performance and
with less memory utilization. In case of sortByKey, a better
load balancing translates into a noticeably lower CPU utili-
zation. This stability could potentially be leveraged by

Fig. 6. GroupByKey: Heat map of the CPU utilization for all nodes as it evolves during runtime. The adaptive strategy consolidates CPU utilization
uniformly over a shorter time compared with the default strategy, which leads to better performance.

1672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 6, JUNE 2017

§ Load balancing
§ Better resource allocation

GroupByKey
2,240 POWER8 (PowerNV) S822LC (2x SCM 10-core, SMT8;
total 160 hw threads)
§ Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
§ 512 GB of RAM per machine
§ 1 TB HDD

IEEE TPDS’17 article [2]

http://ieeexplore.ieee.org/document/7740885/

21Page© 2018 IBM Corporation

Optimizing the JVM for Analytics
§ OpenJ9: high-performance JVM tuned for analytics
§ J9 improvements with significant impact on Spark performance

§ Java object models with smaller memory footprint
§ More efficient garbage collection technologies (gencon with

Concurrent Scavenge)
§ More efficient JVM lock contention schemes
§ Just-in-time compilation (Testarossa JIT compiler)
§ GPU-enabled JIT
§ Shared classes technology (stores ahead of time (AOT)

compiled code)
Java Sockets over RDMA (JSoR)

JIT with GPU-offload

§ IBM Java SDK enhancements
§ Transparent RDMA acceleration (Java Sockets

over RDMA - JSoR)

https://www.eclipse.org/openj9/

22Page© 2018 IBM Corporation

GPU/FPGA

Enabling Transparent GPU-acceleration
GPU/FPGA-enable Spark Apps
§ Off-load compute-intensive kernels in Spark’s native

apps/libraries
§ GPU-enable MLLib/SparkSQL/GrapX
§ e.g., IBM SparkGPU: GPU code generation for

Tungsten; CUDA code GPU accelerated MLLib
algorithms)

§ GPU/FPGA acceleration of genomics kernels
(FPGA-based PairHMM in GATK4-Spark)

Spark-enable GPU accelerated Apps Spark Apps
§ Distributed deep learning (e.g. Spark port of existing GPU-

enabled frameworks like TensorFlow, Caffe, Theano, …)
§ Third-party frameworks (e.g H2O) and home-grown apps in

financial services
Optimizations
§ Reduced communication overhead for Spark-native apps

(data layer in the JVM path – e.g., MLLib)
§ Efficient direct communication among accelerators (e.g.,

Spark used for job distribution with compute and
communication off the JVM path)

§

Worker Node 1

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

RDMA

GPU/FPGA

Worker Node 2

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

RDMA

GPU/FPGA

Worker Node k

JVM

TaskTask
Task

RDD block 0

RDD block 1

RDD block 2

RDD block n

C/C++, Python, …

…

Storage

co
m

pu
te

da
ta

RDMA

Spark Master

Driver

https://github.com/IBMSparkGPU

23Page© 2018 IBM Corporation

Data Broker

Files IO
§ Longer latency
§ Less granularity
Sockets
§ Longer latency
§ Multiple sockets per application
§ Discovery for new apps is complicated

Data Broker
§ Each app connects to data broker
§ Distributes data in DRAM over multiple

nodes
§ Latency generally lower
§ Data Broker can be accelerated via H/W
§ Discovery of apps via data broker

vs.

Modeling and
Simulation

Analytics

Visualization

AI

Filesyste
m Modeling and

Simulation

Visualization

Filesyste
m

AnalyticsAI Data Broker

Data Broker

KV
namespace

KV namespace

KV namespace

KV
namespace

app app app

https://github.com/IBM/data-broker

24Page© 2018 IBM Corporation

Data Broker

25Page© 2018 IBM Corporation

Enhancing Spark with Data Broker

GATK4-ReadsPipeLine (shuffle stage) GroupBy Test

Acceleration opportunity

§ Filesystem dependency and IO limitations
§ Current shuffle implementation stores data in blocks

on local disk I/O for data shuffling
§ Major overhead on the OS

§ both the source and the destination side requires many
file and network I/O operations

§ Data aggregation techniques are used for filesystem
and communication optimization but this adds extra
computation overheads

26Page© 2018 IBM Corporation

Enhancing Spark with Data Broker

27Page© 2018 IBM Corporation

Enhancing Spark with Data Broker

§ Implementation of Data Broker concept used to
accelerate shuffle and enable efficient data
management across frameworks

§ Bypass of filesystem with data sharing based on
tuples

Spark-Databroker Connector

DBR API

jDatabroker

Databroker

GasNet Redis

Spark-Data Broker adapter
§ Overwrites shuffle related classes
§ Software-based Tuple Space implementation
§ Customized Spark Shuffle Write/Read operations

through jDatabroker
§ API for reading/writing to/from the Data BrokerModeling and

Simulation

Analytics

Visualization

Cognitive Data

…

28Page© 2018 IBM Corporation

Ecosystem for High Performance Workloads

29Page© 2018 IBM Corporation

HPC Benchmarks on a Cloud Stack

SUMMARY (16 nodes)

Bench
ICp

(metal)
ICp

(containers)
Factor

HACC 7.07 7.44 0.95

Nekbone 8.75E+02 7.74E+02 0.88

AMG 1.16E+10 1.13E+10 0.97

Quicksilver 1.58E+06 1.59E+06 1.00

Jitter-Bench 4.21% 4.27% 0.99

CORAL2 Benchmarks on ICp (selected)

§ HACC (MPI/OpenMP/C++)
§ Compute intensity, random memory access, all-

to-all communication

§ Nekbone (MPI/Fortran/C)
§ Compute intensity, small messages, all-reduce

§ AMG (MPI/OpenMP/C)
§ Algebraic Multi-Grid linear system solver for

unstructured mesh physics packages.

§ Quicksilver (MPI/OpenMP/C++)
§ Monte Carlo transport benchmark

§ Demonstrated relevant HPC benchmarks in a container

environment

§ Measured small performance degradation in comparison

with bare metal

Container vs bare metal performance comparison

30Page© 2018 IBM Corporation

Enabling Large-Scale
Analytics for Hybrid
Workflows

31Page© 2018 IBM Corporation

Knowledge Discovery at Scale
LLNL’s SparkPlug
§ Addressing recurrent data challenges in mission

application

§ Huge data sets, sparse labels, heterogeneous,
complex structure

§ Density estimation toolbox for big data machine learning
at scale

§ Distributions, estimators, combinators, graphical
model templates, samplers

§ Implemented as a Spark library allowing modeling
without requirement advanced software development
background

§ Allows complex models able to utilize application specific
understanding

§ Scalable design supports large data sizes

§ Current collaboration focusing on the scaling of
SparkPlug’s LDA implementation on LLNL’s Sierra

LLNL’s
SparkPlug
(statistical
modeling)

Cyber security
application

Data-driven
treatment plans

Data mining and
knowledge

discovery: topic
modeling

LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet
IBM: Carlos Costa, Claudia Misale, Guojing Cong

32Page© 2018 IBM Corporation

Knowledge Discovery at Scale

LLNL-PRES-691883
15$

SparkPlug)func3onality)to)date)

!  Distribu;ons$/$samplers$
—  Beta$

—  Binomial$

—  Categorical$

—  CensoredExponen;al$

—  CensoredGeometric$

—  Composite$

—  Condi;onal$

—  Either$

—  Exponen;al$

—  Gamma$

—  Geometric$

—  HMM$

—  Hierarchical$mixture$

—  Inverse$gamma$

—  Inverse$Wishart$

—  Markov$chain$

—  Mul;nomial$

—  Mul;nomial$logis;c$regression$

—  Mul;variate$Gaussian$

—  Nega;ve$binomial$

—  Normal$inverse$gamma$

—  Pareto$

!  MCMC$es;mators$

—  Binomial$

—  Categorical$

—  Composite$

—  Dirichlet$

—  Exponen;al$

—  Geometric$

—  Mul;nomial$

—  Mul;nomial$logis;c$regression$

—  Mul;variate$Gaussian$

—  Pareto$

—  Poisson$

—  Uniform$

—  Univariate$Gaussian$

!  Distributed$MCMC$

—  Neiswanger$nonparametric$

—  Neiswanger$semiparametric$

—  Neiswanger$parametric$

—  Dunson$median$posterior$

—  Markov$chain$

—  Mul;nomial$

—  Mul;nomial$logis;c$regression$

—  Mul;variate$Gaussian$

—  Nega;ve$binomial$

—  Pareto$

—  Poisson$

—  Product$

—  TwoPlevel$mixture$

—  Uniform$

—  Univariate$Gaussian$

—  von$Mises$

—  ZeroPaltered$nega;ve$binomial$

—  ZeroPaltered$Poisson$

!  MixtureModel$

!  HierarchicalMixtureModel$

!  Clustering$

—  KPmeans$

—  Poisson$

—  Product$

—  TwoPlevel$mixture$

—  Uniform$

—  Univariate$Gaussian$

—  von$Mises$

—  ZeroPaltered$nega;ve$binomial$

—  ZeroPaltered$Poisson$

!  EM$es;mators$
—  Binomial$

—  Categorical$

—  CensoredExponen;al$

—  CensoredGeometric$

—  Composite$

—  Condi;onal$

—  Either$

—  Exponen;al$

—  Gamma$

—  Geometric$

—  HMM$

—  Hierarchical$mixture$

—  Linear$regression$

$

LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet
IBM: Carlos Costa, Claudia Misale, Guojing Cong

33Page© 2018 IBM Corporation

Knowledge Discovery at Scale

D2D1 Dn

Corpus: Partitioned Space

Worker Space

Global Space Spark Driver Program

LDA0 Loop LDA1 Loop LDAn-1 Loop

Count
Reduce
FMap
ReduceByKey
Collect
Map Reduce
Map Reduce
Map Reduce

θ!" : Topic Estimate
Driver Communications:
collect(), reduce()

Count
Reduce
FMap
ReduceByKey
Collect
Map Reduce
Map Reduce
Map Reduce

Count
Reduce
FMap
ReduceByKey
Collect
Map Reduce
Map Reduce
Map Reduce

LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet
IBM: Carlos Costa, Claudia Misale, Guojing Cong

Topic Modeling
§ Used in text-mining and detection of hidden instructive

structures in data such as genetic information, images and
networks

§ e.g. What is document A discussing? How similar are documents A and B? If I am
interested in topic X, which documents should I read first?

Latent Dirichlet Allocation (LDA)
§ Generative statistical model that allows sets of observations to

be explained by unobserved groups that explain why some
parts of the data are similar

§ Widely used clustering/latent factors model and commonly part
of analytics pipelines

From [1]

Fig. 1: Plate notation for the LDA model..

but basically the same model has been proposed by Pritchard
et al. [cit] in 2000 in the context of the study of genetics of the
population. In their work, they demonstrated the presence of
population structure by assigning individuals to populations,
studying hybrid zones, and identifying migrants and admixed
individuals. In this paper, we refer to the model proposed by
Blei et al., used in the context of modeling text corpora and
other collections of discrete data. We recall that LDA model
is not tied to text, and it has been successfully applied to
problems involving collections of data, including data from
domains such as collaborative filtering, content-based image
retrieval and bioinformatics [ref needed].

A. Model Formalization

The main entities in the LDA model are words, documents
and corpora.

- Word: is the basic unit of discrete data, and it is defined
as an item from a vocabulary indexed by {1, . . . , V }.
Words are represented as unit-basis vectors having one
component set to 1 and the rest to 0;

- Document: is a sequence of n words, denoted as w =
(w1, w2, . . . , wn);

- Corpus: is a collection of M documents denoted by D =
{w1,w2, . . . ,wm};

Given these definitions, we recall LDA is a generative model
of a corpus, where the basic idea is that documents are
represented as random mixture over latent topics and, each
topic, is characterized by a distribution over words. We use
plate notation to represent probabilistic graphical models. In
Fig. ??, the outer plate represents documents, while the inner
plate represents the repeated choice of words within a certain
document. Topic distribution is assumed to have a sparse
Dirichlet1 prior encoding the fact that documents cover a small
set of topics and, those topics, use only a small amount of
words frequently. Variables in Fig. ?? are defined as follows:

• ↵: parameter of the Dirichlet prior on the per-document
topic distribution;

1The Dirichlet distribution is a family of continuous multivariate probability
distributions parameterized by a vector ↵ of positive reals, commonly used
as prior distributions in Bayesian statistics.

• �: parameter of the Dirichlet prior on the per-topic
distribution;

• ⇥m: topic distribution over the document m;
• 'k: word distribution over the topic k;
• Znm: topic for the n-th word in document m;
• wnm: specific word n in document m.

B. Topic Assignment Process

The process involves to main steps: a generative process and
the inference process. Given a corpus D of M documents of
length Ni, LDA assumes the following generative process.

1) Define ⇥i ⇠ Dir(↵) : i 2 {1, . . . ,M}, with Dir(↵) a
Dirichlet distribution;

2) Define 'k ⇠ Dir(�) : k 2 {1, . . . ,M}, j 2
{1, . . . , Ni};

3) For each word wi,j : i 2 {1, . . . ,M}, j 2 {1, . . . , Ni}:
• Choose topic zi,j ⇠ Multinomial(⇥i)
• Choose word wi,j ⇠ Multinomial('zi,j)

The inference process is a problem of Bayesian inference,
and it involves learning the various distributions, namely:
the set of topics with their associated word probabilities,
the topic of each word, and topics in each document. Blei
et al. proposed a variational Bayes approximation of the
posterior distribution, but alternative inference techniques use
Gibbs sampling or expectation propagation. In this paper, we
consider an implementation of the inference process based on
...??

IV. SPARKPLUG

• Whatever is possible to say (i.e., from published slides)
• Spark
• Improvements implemented and provided (i.e., adaptive

shuffle, ibm jvm)
• Spark limitations

Developed at Lawrence Livermore National Laboratory,
SparkPlug is a density estimation toolbox for Big Data Ma-
chine Learning at scale, implemented in Scala on top of
Apache Spark . It provides users with implementations for dis-
tributions, estimators, combinators, graphical model templates
and samplers. [descriptions needed!!]

In this paper, we focus on the implementation of LDA and
we show the optimizations we applied in order to overcome
bottlenecks limitating scalability.

A. Bottlenecks

• disk IO
• collect
• broadcast

Fig. 1: Plate notation for the LDA model..

but basically the same model has been proposed by Pritchard
et al. [cit] in 2000 in the context of the study of genetics of the
population. In their work, they demonstrated the presence of
population structure by assigning individuals to populations,
studying hybrid zones, and identifying migrants and admixed
individuals. In this paper, we refer to the model proposed by
Blei et al., used in the context of modeling text corpora and
other collections of discrete data. We recall that LDA model
is not tied to text, and it has been successfully applied to
problems involving collections of data, including data from
domains such as collaborative filtering, content-based image
retrieval and bioinformatics [ref needed].

A. Model Formalization

The main entities in the LDA model are words, documents
and corpora.

- Word: is the basic unit of discrete data, and it is defined
as an item from a vocabulary indexed by {1, . . . , V }.
Words are represented as unit-basis vectors having one
component set to 1 and the rest to 0;

- Document: is a sequence of n words, denoted as w =
(w1, w2, . . . , wn);

- Corpus: is a collection of M documents denoted by D =
{w1,w2, . . . ,wm};

Given these definitions, we recall LDA is a generative model
of a corpus, where the basic idea is that documents are
represented as random mixture over latent topics and, each
topic, is characterized by a distribution over words. We use
plate notation to represent probabilistic graphical models. In
Fig. ??, the outer plate represents documents, while the inner
plate represents the repeated choice of words within a certain
document. Topic distribution is assumed to have a sparse
Dirichlet1 prior encoding the fact that documents cover a small
set of topics and, those topics, use only a small amount of
words frequently. Variables in Fig. ?? are defined as follows:

• ↵: parameter of the Dirichlet prior on the per-document
topic distribution;

1The Dirichlet distribution is a family of continuous multivariate probability
distributions parameterized by a vector ↵ of positive reals, commonly used
as prior distributions in Bayesian statistics.

• �: parameter of the Dirichlet prior on the per-topic
distribution;

• ⇥m: topic distribution over the document m;
• 'k: word distribution over the topic k;
• Znm: topic for the n-th word in document m;
• wnm: specific word n in document m.

B. Topic Assignment Process

The process involves to main steps: a generative process and
the inference process. Given a corpus D of M documents of
length Ni, LDA assumes the following generative process.

1) Define ⇥i ⇠ Dir(↵) : i 2 {1, . . . ,M}, with Dir(↵) a
Dirichlet distribution;

2) Define 'k ⇠ Dir(�) : k 2 {1, . . . ,M}, j 2
{1, . . . , Ni};

3) For each word wi,j : i 2 {1, . . . ,M}, j 2 {1, . . . , Ni}:
• Choose topic zi,j ⇠ Multinomial(⇥i)
• Choose word wi,j ⇠ Multinomial('zi,j)

The inference process is a problem of Bayesian inference,
and it involves learning the various distributions, namely:
the set of topics with their associated word probabilities,
the topic of each word, and topics in each document. Blei
et al. proposed a variational Bayes approximation of the
posterior distribution, but alternative inference techniques use
Gibbs sampling or expectation propagation. In this paper, we
consider an implementation of the inference process based on
...??

IV. SPARKPLUG

• Whatever is possible to say (i.e., from published slides)
• Spark
• Improvements implemented and provided (i.e., adaptive

shuffle, ibm jvm)
• Spark limitations

Developed at Lawrence Livermore National Laboratory,
SparkPlug is a density estimation toolbox for Big Data Ma-
chine Learning at scale, implemented in Scala on top of
Apache Spark . It provides users with implementations for dis-
tributions, estimators, combinators, graphical model templates
and samplers. [descriptions needed!!]

In this paper, we focus on the implementation of LDA and
we show the optimizations we applied in order to overcome
bottlenecks limitating scalability.

A. Bottlenecks

• disk IO
• collect
• broadcast

Fig. 1: Plate notation for the LDA model..

but basically the same model has been proposed by Pritchard
et al. [cit] in 2000 in the context of the study of genetics of the
population. In their work, they demonstrated the presence of
population structure by assigning individuals to populations,
studying hybrid zones, and identifying migrants and admixed
individuals. In this paper, we refer to the model proposed by
Blei et al., used in the context of modeling text corpora and
other collections of discrete data. We recall that LDA model
is not tied to text, and it has been successfully applied to
problems involving collections of data, including data from
domains such as collaborative filtering, content-based image
retrieval and bioinformatics [ref needed].

A. Model Formalization

The main entities in the LDA model are words, documents
and corpora.

- Word: is the basic unit of discrete data, and it is defined
as an item from a vocabulary indexed by {1, . . . , V }.
Words are represented as unit-basis vectors having one
component set to 1 and the rest to 0;

- Document: is a sequence of n words, denoted as w =
(w1, w2, . . . , wn);

- Corpus: is a collection of M documents denoted by D =
{w1,w2, . . . ,wm};

Given these definitions, we recall LDA is a generative model
of a corpus, where the basic idea is that documents are
represented as random mixture over latent topics and, each
topic, is characterized by a distribution over words. We use
plate notation to represent probabilistic graphical models. In
Fig. ??, the outer plate represents documents, while the inner
plate represents the repeated choice of words within a certain
document. Topic distribution is assumed to have a sparse
Dirichlet1 prior encoding the fact that documents cover a small
set of topics and, those topics, use only a small amount of
words frequently. Variables in Fig. ?? are defined as follows:

• ↵: parameter of the Dirichlet prior on the per-document
topic distribution;

1The Dirichlet distribution is a family of continuous multivariate probability
distributions parameterized by a vector ↵ of positive reals, commonly used
as prior distributions in Bayesian statistics.

• �: parameter of the Dirichlet prior on the per-topic
distribution;

• ⇥m: topic distribution over the document m;
• 'k: word distribution over the topic k;
• Znm: topic for the n-th word in document m;
• wnm: specific word n in document m.

B. Topic Assignment Process

The process involves to main steps: a generative process and
the inference process. Given a corpus D of M documents of
length Ni, LDA assumes the following generative process.

1) Define ⇥i ⇠ Dir(↵) : i 2 {1, . . . ,M}, with Dir(↵) a
Dirichlet distribution;

2) Define 'k ⇠ Dir(�) : k 2 {1, . . . ,M}, j 2
{1, . . . , Ni};

3) For each word wi,j : i 2 {1, . . . ,M}, j 2 {1, . . . , Ni}:
• Choose topic zi,j ⇠ Multinomial(⇥i)
• Choose word wi,j ⇠ Multinomial('zi,j)

The inference process is a problem of Bayesian inference,
and it involves learning the various distributions, namely:
the set of topics with their associated word probabilities,
the topic of each word, and topics in each document. Blei
et al. proposed a variational Bayes approximation of the
posterior distribution, but alternative inference techniques use
Gibbs sampling or expectation propagation. In this paper, we
consider an implementation of the inference process based on
...??

IV. SPARKPLUG

• Whatever is possible to say (i.e., from published slides)
• Spark
• Improvements implemented and provided (i.e., adaptive

shuffle, ibm jvm)
• Spark limitations

Developed at Lawrence Livermore National Laboratory,
SparkPlug is a density estimation toolbox for Big Data Ma-
chine Learning at scale, implemented in Scala on top of
Apache Spark . It provides users with implementations for dis-
tributions, estimators, combinators, graphical model templates
and samplers. [descriptions needed!!]

In this paper, we focus on the implementation of LDA and
we show the optimizations we applied in order to overcome
bottlenecks limitating scalability.

A. Bottlenecks

• disk IO
• collect
• broadcast

Fig. 1: Plate notation for the LDA model..

but basically the same model has been proposed by Pritchard
et al. [cit] in 2000 in the context of the study of genetics of the
population. In their work, they demonstrated the presence of
population structure by assigning individuals to populations,
studying hybrid zones, and identifying migrants and admixed
individuals. In this paper, we refer to the model proposed by
Blei et al., used in the context of modeling text corpora and
other collections of discrete data. We recall that LDA model
is not tied to text, and it has been successfully applied to
problems involving collections of data, including data from
domains such as collaborative filtering, content-based image
retrieval and bioinformatics [ref needed].

A. Model Formalization

The main entities in the LDA model are words, documents
and corpora.

- Word: is the basic unit of discrete data, and it is defined
as an item from a vocabulary indexed by {1, . . . , V }.
Words are represented as unit-basis vectors having one
component set to 1 and the rest to 0;

- Document: is a sequence of n words, denoted as w =
(w1, w2, . . . , wn);

- Corpus: is a collection of M documents denoted by D =
{w1,w2, . . . ,wm};

Given these definitions, we recall LDA is a generative model
of a corpus, where the basic idea is that documents are
represented as random mixture over latent topics and, each
topic, is characterized by a distribution over words. We use
plate notation to represent probabilistic graphical models. In
Fig. ??, the outer plate represents documents, while the inner
plate represents the repeated choice of words within a certain
document. Topic distribution is assumed to have a sparse
Dirichlet1 prior encoding the fact that documents cover a small
set of topics and, those topics, use only a small amount of
words frequently. Variables in Fig. ?? are defined as follows:

• ↵: parameter of the Dirichlet prior on the per-document
topic distribution;

1The Dirichlet distribution is a family of continuous multivariate probability
distributions parameterized by a vector ↵ of positive reals, commonly used
as prior distributions in Bayesian statistics.

• �: parameter of the Dirichlet prior on the per-topic
distribution;

• ⇥m: topic distribution over the document m;
• 'k: word distribution over the topic k;
• Znm: topic for the n-th word in document m;
• wnm: specific word n in document m.

B. Topic Assignment Process

The process involves to main steps: a generative process and
the inference process. Given a corpus D of M documents of
length Ni, LDA assumes the following generative process.

1) Define ⇥i ⇠ Dir(↵) : i 2 {1, . . . ,M}, with Dir(↵) a
Dirichlet distribution;

2) Define 'k ⇠ Dir(�) : k 2 {1, . . . ,M}, j 2
{1, . . . , Ni};

3) For each word wi,j : i 2 {1, . . . ,M}, j 2 {1, . . . , Ni}:
• Choose topic zi,j ⇠ Multinomial(⇥i)
• Choose word wi,j ⇠ Multinomial('zi,j)

The inference process is a problem of Bayesian inference,
and it involves learning the various distributions, namely:
the set of topics with their associated word probabilities,
the topic of each word, and topics in each document. Blei
et al. proposed a variational Bayes approximation of the
posterior distribution, but alternative inference techniques use
Gibbs sampling or expectation propagation. In this paper, we
consider an implementation of the inference process based on
...??

IV. SPARKPLUG

• Whatever is possible to say (i.e., from published slides)
• Spark
• Improvements implemented and provided (i.e., adaptive

shuffle, ibm jvm)
• Spark limitations

Developed at Lawrence Livermore National Laboratory,
SparkPlug is a density estimation toolbox for Big Data Ma-
chine Learning at scale, implemented in Scala on top of
Apache Spark . It provides users with implementations for dis-
tributions, estimators, combinators, graphical model templates
and samplers. [descriptions needed!!]

In this paper, we focus on the implementation of LDA and
we show the optimizations we applied in order to overcome
bottlenecks limitating scalability.

A. Bottlenecks

• disk IO
• collect
• broadcast

Fig. 1: Plate notation for the LDA model..

but basically the same model has been proposed by Pritchard
et al. [cit] in 2000 in the context of the study of genetics of the
population. In their work, they demonstrated the presence of
population structure by assigning individuals to populations,
studying hybrid zones, and identifying migrants and admixed
individuals. In this paper, we refer to the model proposed by
Blei et al., used in the context of modeling text corpora and
other collections of discrete data. We recall that LDA model
is not tied to text, and it has been successfully applied to
problems involving collections of data, including data from
domains such as collaborative filtering, content-based image
retrieval and bioinformatics [ref needed].

A. Model Formalization

The main entities in the LDA model are words, documents
and corpora.

- Word: is the basic unit of discrete data, and it is defined
as an item from a vocabulary indexed by {1, . . . , V }.
Words are represented as unit-basis vectors having one
component set to 1 and the rest to 0;

- Document: is a sequence of n words, denoted as w =
(w1, w2, . . . , wn);

- Corpus: is a collection of M documents denoted by D =
{w1,w2, . . . ,wm};

Given these definitions, we recall LDA is a generative model
of a corpus, where the basic idea is that documents are
represented as random mixture over latent topics and, each
topic, is characterized by a distribution over words. We use
plate notation to represent probabilistic graphical models. In
Fig. ??, the outer plate represents documents, while the inner
plate represents the repeated choice of words within a certain
document. Topic distribution is assumed to have a sparse
Dirichlet1 prior encoding the fact that documents cover a small
set of topics and, those topics, use only a small amount of
words frequently. Variables in Fig. ?? are defined as follows:

• ↵: parameter of the Dirichlet prior on the per-document
topic distribution;

1The Dirichlet distribution is a family of continuous multivariate probability
distributions parameterized by a vector ↵ of positive reals, commonly used
as prior distributions in Bayesian statistics.

• �: parameter of the Dirichlet prior on the per-topic
distribution;

• ⇥m: topic distribution over the document m;
• 'k: word distribution over the topic k;
• Znm: topic for the n-th word in document m;
• wnm: specific word n in document m.

B. Topic Assignment Process

The process involves to main steps: a generative process and
the inference process. Given a corpus D of M documents of
length Ni, LDA assumes the following generative process.

1) Define ⇥i ⇠ Dir(↵) : i 2 {1, . . . ,M}, with Dir(↵) a
Dirichlet distribution;

2) Define 'k ⇠ Dir(�) : k 2 {1, . . . ,M}, j 2
{1, . . . , Ni};

3) For each word wi,j : i 2 {1, . . . ,M}, j 2 {1, . . . , Ni}:
• Choose topic zi,j ⇠ Multinomial(⇥i)
• Choose word wi,j ⇠ Multinomial('zi,j)

The inference process is a problem of Bayesian inference,
and it involves learning the various distributions, namely:
the set of topics with their associated word probabilities,
the topic of each word, and topics in each document. Blei
et al. proposed a variational Bayes approximation of the
posterior distribution, but alternative inference techniques use
Gibbs sampling or expectation propagation. In this paper, we
consider an implementation of the inference process based on
...??

IV. SPARKPLUG

• Whatever is possible to say (i.e., from published slides)
• Spark
• Improvements implemented and provided (i.e., adaptive

shuffle, ibm jvm)
• Spark limitations

Developed at Lawrence Livermore National Laboratory,
SparkPlug is a density estimation toolbox for Big Data Ma-
chine Learning at scale, implemented in Scala on top of
Apache Spark . It provides users with implementations for dis-
tributions, estimators, combinators, graphical model templates
and samplers. [descriptions needed!!]

In this paper, we focus on the implementation of LDA and
we show the optimizations we applied in order to overcome
bottlenecks limitating scalability.

A. Bottlenecks

• disk IO
• collect
• broadcast

34Page© 2018 IBM Corporation

Large-scale Latent Dirichlet Allocation (LDA)
§ Demonstrated large-scale topic modeling with all-languages

Wikipedia database on LLNL’s Sierra

§ 300+ raw dump files from Wikimedia.org (all
languages)

§ ~34 million unique words (including non-Latin
alphabets)

§ 100 topics

§ Sierra runs: up to ~20,000 cores

§ Significant acceleration with optimized stack (2x faster)
§ Improved scaling

§ Optimized all-to-one operations (treeAggregate)
§ On-going work on further scaling improvements for collect

operation

Knowledge Discovery at Scale LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet
IBM: Carlos Costa, Claudia Misale, Guojing Cong

35Page© 2018 IBM Corporation

Genomics Analysis Toolkit (GATK4)

Next-Gen: GATK4 - Spark-based GATK for Cloud-Based
Access
§ Spark being used to facilitate parallelism and in-memory

computation to speedup methods

§ Broad Institute working with collaborators to develop

scalable options to expand access and facilitate usage

§ Critical to accelerate precision medicine by lowering the

cost of genome sequencing

§ GATK4 will extend the range of use cases supported to

include cancer, structural variation, copy number variation,

and more

§ Genome analysis can be seen as one step in potentially

larger workflows applying machine learning to personalized

treatment plans

https://www.broadinstitute.org/news/8065

GATK4 Collaboration Members

GATK: High-throughput Sequencing (HTS) data analysis
workflow
§ Pipeline of a variety of tools with a primary focus on variant

discovery and genotyping

§ 31,000 registered users of GATK (providers, clinicians,

research centers, focused on personalized medicine)

§ Requires extensive local compute and storage infrastructure

to process vast amount of data required to conduct

personalized analysis

MIT/Harvard - world’s leading
biomedical and genomic research
center

36Page© 2018 IBM Corporation

GATK4-Spark Pipelines on POWER

§ Heterogenous pipeline (Spark with calls to
native code OpenMP and accelerators)

§ Significant speedup with

§ Strong scaling for BWA (dominant stage)

§ Better performance with higher memory
bandwidth and SMTs on POWER

SNP pipeline

POWER8 Minsky 8335-GTB
2-socket, 10-core SCM
512GB
2.9 TB Local NVMe
InfiniBand EDR (100Gb/s)

Spectrum LSF (Spark standalone
scheduler)
Spectrum ESS

Burrows-Wheeler Aligner (BWA)

Input: G15512.HCC1954.bam (WGS)

Haplotype caller
PairHMM (native C++)

BWA/C++/OpenMP

Spark native

~3.8TB shuffle data
per whole genome

ML

37Page© 2018 IBM Corporation

GATK4 Genomics Workflow on the Cloud

GATK4-Spark on IBM cloud platform
§ Scalable SNP pipeline with optimized Spark and JVM for efficient

resource utilization

§ Benefits from high-bandwidth network and Spark configuration and JVM
tuning and enhancements with Eclipse OpenJ9 (efficient garbage
collection, optimized Just-in-time compilation, JVM lock contention
schemes, …)

< 1hr whole genome pipeline

Whole genome SNP processing in less than <1hr
§ ~32hrs: GATK3-Walker mode (single node)

§ Single node: 36 cores (Intel Xeon processor E5-2699 v3 @ 2.30 GHz,
256 GB RAM) 1

§ ~57min: GATK4-Spark on cloud platform
§ 22 VMs: 18x m1.16x128 + 4x m1.32x128 (416 cores; 3.25TB RAM)

38Page© 2018 IBM Corporation

TUDelft Genomics Workflow

DNA variant discovery uses a pipeline of
different tools
§ Phase 1
§ Custom approach from Delft University to

parallelize BWA, GATK, and Piccard

§ Leveraged native code tuned for POWER

(vectorized code for PairHMM)

§ Demonstrated whole SNP pipeline at low-cost

with POWER at the Spark Summit (first

appearance of POWER)

§ Phase 2 (on-going)
§ Extension for population genomics analysis

(thousands of full genomes)

§ NVLink, heterogeneous CPU-GPU computing

kernels

§ RDMA-based communication

https://spark-summit.org/2016/events/a-spark-framework-for-100-1-hour-accurate-personalized-dna-analysis-at-scale/

ACM BCB’17 paper [3]

39Page© 2018 IBM Corporation

LLNL’s Precision Medicine: SPLASH Workflow
Simulate the Bending of Lipid Cell membrane
• Impacts how molecules (drugs) enter the cell
• Surrounding environment impacts how membrane

bends

Accelerate particles with
parallel replica dynamics

Continuum
(Phase Field)

Coarse Grain
Beads Atomistic

Multiscale code framework:
§ The WorkFlow (WF) Manager connects two scales: Dynamic Density

Functional Theory (DDFT) and coarse grain (CG)

§ Frames resulting from the DDFT simulation are decomposed into patches,
and the WF Manager feeds them to the machine learning (ML)
infrastructure, which maintains a priority queue of candidate patches.

§ When new resources become available, the WF Manager picks top
candidates and uses the Flux resource manager to start new CG
simulations.

§ Data transfer and messaging is handled through the DataBroker (DBR),
which implements a fast, system-wide key-value store. Thickness of black
arrows represents the bandwidth of data flow to and from the DBR.

40Page© 2018 IBM Corporation

Other Use Cases: Engineering
Simulation Data:
• Inputs / Execution Snapshots
• Various Grid Mappings for

different components of workflow
Engineering Data:
• Designs
• Experimental Results
Analysis Results
• Visualizations
• UQ and Sensitivity Data
• Engineering Analyses

Data Prep
• Mesh Generation
• Model setup, initial conditions

Modeling and Simulation
• Computational Modeling

Analysis, UQ, Engineering
Evaluation
• Visualization
• Post Processing
• UQ, Sensitivity Analysis
• Engineering Analyses

Data Prep
Analysis, UQ,
Engineering
Evaluations

Modeling and
Simulation

C
om

pu
te

 a
nd

A

ct
iv

e
S

to
ra

ge
D

en
se

C

om
pu

te
Lo

ng
 T

er
m

S

to
ra

ge

Engineering Data

Simulation Data (Active Working Sets)

Analyses Results

Engineering Data (Active Working Sets)

Simulation Data

Analyses Results (Active Working Sets)

41Page© 2018 IBM Corporation

Climate Use Case
Climate Data:
•Inputs / Execution Snapshots
•Physics Parameterizations and
variable forcing data
•Various Grid Mappings for different
components of workflow
•Various Scientific Outputs
•Experimental Data Sets for
Validation and Verification

Climate Model Simulation
•Climate Simulation over multiple
years, compute intense

Post Processing and Analysis
•Analysis of climate runs
•Visualization
•UQ, Sensitivity Analysis

Science Ready Products
•Generation of various
“downstream” products that predict
different impacts of climate
projections in different sectors

Climate Model
Simulation

Generation of
Science Ready
Products

Post Processing
and Analysis

C
om

pu
te

 a
nd

Ac

tiv
e

St
or

ag
e

D
en

se

C
om

pu
te

Lo
ng

 T
er

m

St
or

ag
e

Active Science Ready products

Sets of Model Simulation Restarts/Outputs

Active Science Analysis products

Diagnostic Data

Active Model Simulation Restarts/Outputs

Sets of Science Ready products

Sets of Science Analysis products

42Page© 2018 IBM Corporation

Full organ simulation Use Case
Experimental Data
•Scans of actual human hearts
•Diagnostic Information
Simulation Data
•Domain decomposed grids with
structure, circulatory system, cell
types for individual simulations
•Generated Simulation Histories
UQ, Sensitivity Analysis
Scientific Output Data
•Predicted Diagnostic Information
(ECG’s …)

Heart Model Simulations:
•Generates computational
simulations of heart
Post Processing:
•Visualization,
•Generation of ECG, other
diagnostic data
Science Output:
•Generated “downstream” data
used to apply simulation in given
scenario (e.g. Drug Evaluation,
Device Evaluation, etc)

Heart Model
Simulations

Science Output

Post Processing
and Analysis
• Visualization
• Diagnostic

Information

C
om

pu
te

 a
nd

Ac

tiv
e

St
or

ag
e

D
en

se

C
om

pu
te

Lo
ng

 T
er

m

St
or

ag
e

Sets of Saved Simulation Data

Corpus of Diagnostic / Experimental Data

Sets of Science Output Data

Active Simulation Data

Active Science Output Data

Active Diagnostic / Experimental Data

43Page© 2018 IBM Corporation

Next Steps

§ Workflows
§ Continue to explore unified data layer to accelerate data analytics across frameworks in

a heterogeneous workflow
§ Demonstrate extreme-scale heterogeneous workflows on leading HPC systems

44Page© 2018 IBM Corporation

Thank you!

45Page© 2018 IBM Corporation

Publications/Presentations
§ [1] Towards memory-optimized data shuffling patterns for big data analytics. B Nicolae, C

Costa, C Misale, K Katrinis, Y Park - Cluster, Cloud and Grid Computing (CCGrid), 2016
§ [2] Leveraging adaptive I/O to optimize collective data shuffling patterns for big data

analytics. B Nicolae, CHA Costa, C Misale, K Katrinis, Y Park - IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2017

§ [3] SparkGA: A Spark Framework for Cost Effective, Fast and Accurate DNA Analysis at
ScaleH Mushtaq. F Liu, C Costa, G Liu, P Hofstee, Z Al-Ars - 8th ACM International
Conference on Bioinformatics, Computational Biology,and Health Informatics (ACM-BCB),
2017

§ [4] A Spark Frameowkr for < $100,< 1Hour, Accurate Personalized DNA Analysis at Scale –
Spark Summit, 2016

