Converged Ecosystem for
Data Analytics and
Extreme-Scale Computing

Carlos Costa
Data-Centric Solutions (DCS)
IBM T.J. Watson Research Center

chcost@us.ibm.com

IBM Research



Era of Data-Centric and Intelligent Discovery IBM Research

Machine Learning

Replacement of
models with learned
functions; smart
data compression

| Data for training,
I augmenting
: real-world data

Traditional HPC Big Data Analytics

Imputation of

Feature e
vectors for Large-scale simulation missing data,
training detection and
Simulation-centric | classification Data-centric

Steering in high- I .
dimensional Physics-based
parameter space; | regularization
in-situ processing 1

\/
Data Analytics

= Explosion of data generated by large-scale simulation leading to a = Increasing interest in large-scale analytics and machine
paradigm shift: from simulation-centric to data-centric discovery learning on high-end platforms

= Data analytics and machine learning used to turn reams of = Emerging hybrid workflows that embody the entire inference
simulation data into actionable information that can be used for cycle of discovery

better interpretation and steering = Co-deployment of heterogenous software stacks

= Applying machine learning for making existing simulation codes
more intelligent, more productive, and more robust

, Diagram adapted from BDEC report
©2018 IBM Corporation Page 2 https://www.exascale.org/bdec/report



Towards a Converged Ecosystem IBM Research

NEHS! ching Simulation Workflows

Challenges
Unstructured or semi-structured data
Structured data
Collaborative Filtering, clustering, ... Heterogeneous
hardware Exascale data sets

Real-time analysis, anomaly detections
y y Layered storage and

IO performance

Primarily scientific calculations

Sensor data filtering, classification, ... ]
statistical averages/histogram, ... Ensemble analysis

Data Management

Support Vector Machine, Principle Component Analysis, ... Sensitive analysis

Energy Efficiency

Deep Learning Uncertainty quantification

e

Hadoop/Spark ecosystem

C++/C, OpenMP, MPI, Cuda, ...
RDMA Verbs, ...

Converged
Ecosystem

High productivity, fault-tolerance High performance, specialized hardware

TCP/IP, HDDs, ... InifiniBand/RoCE, Flash, GPUs, ...

Cloud-based, commodity clusters On-premise, dedicated HPC Platform

High productivity and

High performance
© 2018 IBM Corporation Page 3



Next-Gen Large-scale
Computing Platforms

PPPPP




Designing Next-Generation Systems

“a

1954

The Naval
Ordnance Research
Calculator helped
forecast weather
and performed

other complex
calculations.

1961

The IBM 7030
was capable of
2 million
operations

per second

© 2018 IBM Corporation

1966

The IBM 360 and its
successors helped
power NASA's Apollo
program.

1997

Deep Blue wins its

match with chess
grandmaster Garr
Kasparov.

Page 5

2004

Blue Gene ushers in
a new era of
high-performance

computing as it helps

biologists explore
gene development

2008

Built for Los Alamos
National Laboratory,

y Roadrunner is the first
supercomputer in the
world to reach petaflop
speed.

2011

Watson beats human
competitors on
Jeopardy!, earning a
million-dollar jackpot
for charity.

2012

Sequoia, the
third-generation
Blue Gene system),
reaches speeds of
16.32 petaflops.

2018

Summit begins
work at Oak Ridge
National Laboratory;
a sister machine,
Sierra, launches at
Lawrence Livermore
National Laboratory.

Data-centric approach

IBM Research

Exascale

DoE’s CORAL systems, ORNL’s Summit
and LLNL’s Sierra, first instantiation of
IBM’s data-centric approach for system
design

Platforms for innovative emerging
workflows, laying the groundwork for
efficient scientific discovery at Exascale

Designed for data and Al from the ground
up

Summit, currently world’s most powerful
system

52018 Gordon Bell finalists used Summit
or Sierra (including record 2.31 exaops)



OpenPOWER CORAL Systems Design

© 2018 IBM Corporation

POWER9:

22 Cores

0.65 DP TF/s

i 4 Threads/core
I 3.7 GHz

1

1

1

i Volta:

| 7.0DPTF/s

I 16GB @ 1.2TB/s
1

1

Compute Rack: .

18 Servers/rack

779 TFlop/rack
10.8 TB/rack

55 kWatts max

Page 6

Scalable system software and

data architecture

LLVM Open Source compiler

Water cooling

Integrated Local Active

&

GSS Rack:

Storage

Scalable Active Network:
Mellanox IB4X EDR Switch

"

256 Compute Racks

40 Disk Racks

POWER9 2-Socket Server

2 P9 +4/6 Volta GPU (@7 TF/s)
512 GiB SMP Memory (32 GB DDR4 RDIMMs)
64/96GiB GPU Memory (HBM stacks)

16 Optional Flash
Racks

TMS drawers or
Flash cards.
CAPI attached.
Globally
accessible with
localprocessing

IBM Research

Converged 2U
server drawer for
HPC and Cloud

System:

200 Pflops compute
+ 5 PB Active Flash
+120 PB Disk




CORAL Systems

Scalable system solution — scale up, scale down — to address a wide range of application domains
= Modular, flexible, cost-effective, 2U building blocks
= Directly leverages OpenPOWER partnerships and IBM’s Power system roadmap
= Can scale to over 500 PF
= Air and water cooling

= Heterogeneous compute elements
= Power9 processor,
= Nvidia Volta GPU coupled with NVLINK 2.0 (Coherent, high-bandwidth links to GPUs)

= Heterogeneous memory elements
= DRAM for low latency
= HMC Stacked memory for high bandwidth
= Flash for local store

System Resource Manager coupled with Platform Computing LSF

ORNL’s Summit LLNL’s Sierra

- 4,608 POWERS9 nodes with . ~4,474 POWER9 nodes with
6x Nvidia Volta GPU 4x Nvidia Volta GPU
2,282,544 cores . 1,572,480 cores
~10 PB (DDR4+HBM2+Non- . ~1.9 PB system memory
volatile) system memory - Dual-rail InfiniBand Fat tree
Dual-rail InfiniBand Fat tree network
LTS ~125 PF peak
~200PF peak

~11 MW

~13 MW

© 2018 IBM Corporation Page 7

IBM Research




Challenges for a Converged
Software Ecosystem |

PPPPP



Converged Software Ecosystem Challenges

IBM Research

APPLICATION Big Data Applications Applications and Community Codes
LEVEL
- ok AT FORTRAN, C, C++ and IDEs
i ar
Bifurcated software g N
. 3  (MLlib, GraphX, ...)
@
development paradigms and 3 Storm Domain-specific Libraries "
cultures MIDDLEWARE& 2 & z 2
o
MANAGEMENT =3 ) Hbase BigTable =] MPI/OpenMP Numerical Performance & %
< +Accelerator o Debugging
L = (key-value store) Tools Libraries (e.g., PAPI)
= [ 4
Disjoint data management 5 g SR ER— System
- 1 ustre (Faralle atc cheduler T
approaches and lack of a = HDFS (Hadoop File System) FloSystem) (e, SLURM)  Monitring
unified data flow model e
>
L . =
Distinct scheduling g Virtual Machines and Cloud Services Containers
(stateless Vs state fuII) and SYSTEM Containers (Kubernetes, Docker, etc.) (Singularity, Shifter, etc.)
deployment requirements SOFTWARE
o CLUSTER Ethernet Local Node ~ Commodity X86 N R o ity
T r n
Distinct .storage and LaTUSTRR Switches Storage Racks Swiches Storage  Accelerators | oo
computing models
DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM

© 2018 IBM Corporation Page 9

Diagram adapted from BDEC report
https://www.exascale.org/bdec/report



Converged Software Ecosystem Challenges

= Need for better resource managers
and schedulers

= Enabling co-existence of batch
processing and interactive analysis

= Need of interoperability of data
formats

= Enabling integration of on-premises
and cloud HPC environments

= Enabling cloud bursting

© 2018 IBM Corporation Page 10

HPC/

Cluster

Usage: Job
submission as
service (MPI Batch
jobs)

Pros:

Preconfigured
cluster;

Cons:
* not dynamic

Usage: Batch jobs
and web apps (?7?)
Pros:
Preconfigured
cluster;
Cons:
* No multi-tenancy
No isolation between
WLs
* Performance
characteristics TBD

Usage: Batch jobs
and web apps
* MPI as service
+ Spark as service
*+ Web app as
service
* GPU as service
Pros:
Users can submit
any type of jobs with
all dependencies
Cons:
Implement proper
resource mgmt, apis,
etc.

IBM Research

Web App/

Container
Cloud

Usage: web apps
Pros:
+ Package app as
container
* Rich api’s for long
running apps
* Multi-tenancy;
Cons:
only web apps; no
support for other
types of apps



Towards a Common Platform for Analytics

Genomics

gatk< [l gTet1

EZBROAD

INSTITUTE

© 2018 IBM Corporation Page 11

Front-ends
ML/DL

MLLib Caffe

1’ theano

TensorFlow

DL4J @D

IBM Research

Data Analytics

Spor‘ll(? sQL

\

D

cassandra



Benefits and Challenges with Spark-based Stack IBM Research

Benefits i Vol Vo \
1
: : : : : iz 2y = Al o :
= Functional programming targeting data analytics that : Sl Scckets 7] ;
. . . 1 1 -
naturally apply the same operation to multiple data items ! 1 Uk T Task -3 !
i 1 1 1 . 1 i
= Operators expressive enough to capture wide class of ] N RODblocko Py I | | RDDblock0 ey 1 !
computation and cluster programming models : ! i { | Ropbiocc 1 1 | P RoDbooc | I b
. 1 [ 1 [0}
(MapReduce, SQL, Pregel, ...) for analytics : m:g { | RDDblock2 || § :é o RoDbock2 || o 15 |
i 1ISte . 1S | ol o
Challenges | 181 U rmooen JiT18 1T [ ronmonn )| 1015
1 1 1 1 1 1 | 1 i
. - i [ o
= JVM-based approach creates challenges with specialized i JVM ; P JVM ; || i ; : |
1 1
hardware (GPU, FPGA, transport off-load) : \ S \ ST N
H C/C++, Python, ... i H C/C++, Python, ... i ! C/C++, Python, ... |
. 1 1 1
= Challenges managing data across frameworks : P . |
= Efforts in the community with off-JVM heap optimizations i P b |
. - 1 1
and native code generation (Tungsten and Catalyst o WorkerRoded s WorkerNodez S WorkerNode k- J
projects)
Worker Node
Executor | Cache
points = spark.textFile(...).map(parsePoint).cache() fb
w = numpy.random.ranf(size = D) # current separating plane Driver Program N
for i in range(ITERATIONS):
gradient = points.map( SparkContext » Cluster Manager
lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) = 1) * p.y * p.x - Worker Node
L.I:d:::((j:::da a, b: a + b) \ Executor | Cache
print "Final separating plane: %s" % w qur’(
e —

© 2018 IBM Corporation Page 12



Accelerated Middleware for
High-End Analytics |




Accelerated and Scalable Middleware for HDA IBM Research

[ Big Data Analytics Workflows J
i
< optimizations Native C/C++
E (code changes, plugins, wrappers, ...) (functionality, low-level integration)
O
7
Bl 5V Cloud Private i
t Vo }
_ i | | GPU/NVLink | -
[ RDMA ] [GPUDlrectJ | [ NVMe J [F?;;hf;g’gfﬂ'AJ 1 FPea ||
'ﬂ.(é i Data Broker
% transport offload i storage/communication . | accelerator |
S RN
- .
< @ unified data layer
@ OpenPOWER IBMPower Systems

© 2018 IBM Corporation Page 14



Transparent Acceleration for HDA on Spark IBM Research

[ Spoﬁ'{z #Scala ]

JVM and Spark level profiling and tuning JNI Data /O | JNI
= |large-memory/core count optimization

= JVM-level optimization/tuning for POWER

Performance profiling and prediction tool

= Model to evaluate performance optimizations for network and storage

MLLib

GPU-accelerated kernels
Shuffle = Transparent calls to GPU accelerated ML kernels

HIGH-LEVEL DATA PROCESSING
FRAMEWORK

Scala/JVM-based JNI

Adaptive and memory-efficient shuffle strategy for large-scale
= Low-memory utilization shuffle block transfer

[ \*’/Netrg asynchronous event-driven network framework ] [ KV-based shuffle ]

g

5 RDMA-based transport Adapter

<

== = Native transport interface with Rsocket (RDMA) = Bypass file-based shuffle and allows finer granularity

% = FileRegion over Rsocket (fast transferring of shuffle blocks) ® Eliminates filesystem dependency and overhead

[e]
(TG T 5 )
i e OFED — RDMA software stack H E Data Broker/KVS i
E e e ,,,,,,,,,,,,,,,,—,———————— )

x JNI

o3

E b Epoll/sendfile support

z g = repoll - wrapper for IB mechanism for event notification

% 2 = rsendfile - transfer data over RDMA between file descriptors

z9

o

© 2018 IBM Corporation Page 15



Transparent Transport Acceleration

= RDMA-based shuffle

= Replaces Java socket-based transfer of temporary shuffle files

|
File |

Implementation (two options)

= Netty RDMA-enabled
= Extends native socket support with Rsockets
= Packaged as a Spark option (shuffle.io.mode)
= Requires custom IBM-provided Netty and OFED

= IBM Opend9 with Java Sockets over RDMA (JSoR)

. JVM-level support to transparent switch Java
sockets over RDMA (supports NIO)

. Enabled with Java option (-Dcom. ibm.nio.rdma)
= Fully packaged as a featured in IBM Java SDK

© 2018 IBM Corporation Page 16

shbEEL LT PP

Java application off
server heap
RDMA processing
[ Bufter Buffer_Jo-~f == -=n-==m==-nn"

Operating system

== Sockets
:

Ethernet or

____________________________

_____________

i

YR
Netty ::
1

]

1

_____________ T
gmmmmmmmmm———— \ o mmm—————— N
1 e |

| RSockets h |
(N 71 i
A \|= Eclipse OpenJ9 :
1 1
1 i 1
i Open)DK i
i 1! 1
\ A /

_____________

TPC-H/Spark SQL

Qg Q1 Q2

_ .

Query execution time

GroupBy - TCP/IPoIB vs JSoR

best case

1000

900

800

700

600

500

Query time (s)

400

200

100

I 37%

WTCP/IPoIB ®JSOR

IBM Research

NIO is unstable,
Varying performance
(task fail more frequently)

TPC-H 100 GB - Q1/Q2/Q18

a

worst case

32768 (no of key-value pairs) 32768 (key size)

I 30%
I I

ENIO ®Rsocket

RDMA is more stable
(no tasks failed)

= Lower CPU
utilization leading
to higher
throughput

= Same or better
performance

= Improved stability
(less memory
pressure)



Adaptive I/O to Optimize Collective Data Shuffling  IBM Research

Current approach

= Current implementation is unaware of load distribution and randomizes
block requests

= Shuffle data is acquired much faster than it can be consumed with
faster transport

-
= Large amounts of memory used for prefetching shuffle data

A A
nextBlock nextBlock

Adaptive approach

(ShufﬂeBIoc kFetcherlterato r) (shufﬂeBloc kFetcherIterator)

= Mechanism to monitor load and latency based on block request and 2 7 x 4
wait time Get local : lf '

) ) ) ) blocks - ---------- Recommend _ '
= Algorithm to assign a score to each remote host with decentralized remote BlockManager +

coordination ( Block Manager )

= Dynamically optimizes block fetch requests to minimize latency
Get remote

Benefits blocks Get remote blocks
= Improved network utilization with low memory utilization A RPC call over network

= Improved load balancing

Block Manager

BlockTransferService

= Benefits as a function of number of cores/nodes
Status | |

= Patch for Spark 1.5.1, 1.6; 2.0+ B o
modified blocks highlighted

IEEE CCGrid’16 paper [1]

© 2018 IBM Corporation Page 17


http://ieeexplore.ieee.org/abstract/document/7740885/

(100Gb/s)

IBM Research

PowerNV) S822LC (2x SCM 10-core, SMT8)

>

m

Q

=]

(@)

—

()

Y—

® (@)

g 3

T 2 c

B = @

< 3 S

c =% 2 8 o
= (]

Q 3 2 c G

= < =3 © mu
P32 ¢ £

Tecs - & &

© S ©

3 WEE & € =

- 228 - g >

aOmp N ()

- 2 X

@ sEX o S5 @

E 8x08=2 £ 2

rOmBHb 0N =

Q I89mE 3 o

w 977 ¢ .

unlim

100

Reducer buffer size (MB)

default oo
%
10

adaptive ©

35000
30000
25000
20000
15000 -
10000
5000

(W) uonezjin ajynys yead

B R O O
B R R IIOLI%

unlim

D

100

50
Reducer buffer size (MB)

30

20

10

s
3
[
=

400
350
300
250
200
150
100
50

(s) awn uonaidwon

Adaptive I/O to Optimize Collective Data Shuffling

= SortByKey: raw performance of sortBy

(b) groupByKey: Peak shuffle memory utilization for a variable reducer in-

flight limit

(a) groupByKey: Completion time for a variable reducer in-flight limit

1S9 N;
n 9
= 0
o
X E
< @ m
¥ 00F
s *— 8
(=]
N QX =
Q Sos
X .. >
t B
==
o o o o o o o o o
o o o o o o o o
o o o o o o o o
o v o v o v o w
< @ (3] (Y 3V — —
(GIN) uorezIin sjynys yead
= O
S5
]
|
o

1000

800 |
600 |
400 |
200 |

(s) swn uonajdwo)

IEEE TPDS’17 article [2]

unlim

100

20

10

20 30 50 100  unlim
Reducer buffer size (MB)

10

Reducer buffer size (MB)

(d) sortByKey: Peak shuffle memory utilization for a variable reducer in-

flight limit

(c) sortByKey: Completion time for a variable reducer in-flight limit

Page 18

© 2018 IBM Corporation


http://ieeexplore.ieee.org/document/7740885/

Adaptive I/O to Optimize Collective Data Shuffing  IBM Research

10MB/unI|m|ted reducer in-flight

5 100 . ‘ 10MB(unIimiFed requcer inl—flight g 1800 Experlmental evaluatlon
g : : 2 1600[ higher network utlllzatlon
S 80f e o g |58 adaptive10m 2 1400 with adaptwe : o...[ 28 adaptive10m = ~ 2,240 (PowerNV) S822LC (2x SCM 10-core, SMT8; total 160
s : \ e ; T T
§ | § betterload-balgnamg?. 4,4 | 12001 e I hw threads)
| " with adaptive HEIE TR S Do I S E = Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
= H : ] \ e e no 2 800 HU -
5 4o M R RS R AT S sool L = 512 GB of RAM per machine
: I oy ¢ 1o | @1 o .

& 20| \" AN & L =3 zztgg e L 1 TB HDD
g b o\ ‘ : BRSSO SO SOOI SO :
E 0 ; ; ; i ; ; ; S 2’ 0 e, H H H i i %

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
3 100 gm" ' : ; ! " [o o defauitun
< : : : efault-unlim
S sol %10007 B s S . Raw shuffle performance
8 6ol ‘F:u 800- e o E e e - =GroupByKey: raw performance of groupBy
5 : 600} .
2 ao0l¥ v o =SortByKey: raw performance of sortBy
O t < 4001
[ L g
g 20 ; ® 200
% 0 L i -l i i L :(>” 0 k R 1 i h

0 100 200 300 400 500 600 700 0 100 200 300 200 500 600 700

Execution time (s) Execution time (s)
40 : : : :
GroupByRey —— Results
35 L sortB B o i

= Increase in speed-up with increasing size of Spark deployment
= greater speed-up with increasing number of cores

] = Alleviates memory pressure, leading to better load balance
] = Even more benefits at larger scale both for performance and memory utilization

Adaptive vs. default speedup (%)

600 800 1000 1200 1400 1600 1800 2000

Total number of cores (152 per node) IEEE TPDS,1 7 artiCIe [2]

(a) Speedup of completion time for adaptive vs. default

© 2018 IBM Corporation Page 19


http://ieeexplore.ieee.org/document/7740885/

Adaptive I/O to Optimize Collective Data Shuffing  IBM Research

100%

= Load balancing
Better resource allocation

Node #
~

100%

100 150 200 250 300 3
Execution Time (s)

(a) Default strategy using 10 MB reducer in-flight lim
5

75%

50%

GroupByKey
2,240 POWERS (PowerNV) S822LC (2x SCM 10-core, SMTS; s
total 160 hw threads)

= Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s) 10

= 512 GB of RAM per machine
= 1TB HDD

Node #
~

25%

11

12|
0%

13|

100 150 200 250 300 350 400
Execution Time (s)

IEEE TPDS’17 article [z] (b) Adaptive strategy using 10 MB reducer in-flight limit

© 2018 IBM Corporation Page 20


http://ieeexplore.ieee.org/document/7740885/

Optimizing the JVM for Analytics

= Opend9: high-performance JVM tuned for analytics
= J9 improvements with significant impact on Spark performance

Speedup over Java code for CPU

(log scale)

Java object models with smaller memory footprint

More efficient garbage collection technologies (gencon with
Concurrent Scavenge)

More efficient JVM lock contention schemes
Just-in-time compilation (Testarossa JIT compiler)
GPU-enabled JIT

Shared classes technology (stores ahead of time (AOT)
compiled code)

JIT with GPU-offload

1000.0 W vs. 1 CPU thread (for-loop)

2601 <@eHi i 317.0
Higher is better for GPU vs. 160 CPU threads (parallel stream)

100.0 58.9
215
14.8
10.0 6.8
47 5.4 37
1.0 oS
0.1
MM SpMM Jacobi2D LifeGame Geometric Mean

© 2018 IBM Corporation Page 21

IBM Research

J9

https://www.eclipse.org/openj9/

= |BM Java SDK enhancements

= Transparent RDMA acceleration (Java Sockets
over RDMA - JSoR)

Java Sockets over RDMA (JSoR)

Spark HiBench TeraSort [30GB]

TCP/P 556s

Elapsed time with 30 GB of
data, 32 GB executor

0 100 200 300 400 500 600

Execution Time (sec)

32 cores (1 master, 4 nodes x 8 cores/node, 32GB Mem/node), IBM Java 8



Enabling Transparent GPU-acceleration

GPU/FPGA-enable Spark Apps

= Off-load compute-intensive kernels in Spark’s native
apps/libraries

=  GPU-enable MLLib/SparkSQL/GrapX

= e.g., IBM SparkGPU: GPU code generation for
Tungsten; CUDA code GPU accelerated MLLib
algorithms)

=  GPU/FPGA acceleration of genomics kernels
(FPGA-based PairHMM in GATK4-Spark)
Spark-enable GPU accelerated Apps Spark Apps

= Distributed deep learning (e.g. Spark port of existing GPU-
enabled frameworks like TensorFlow, Caffe, Theano, ...)

= Third-party frameworks (e.g H,O) and home-grown apps in
financial services

Optimizations

= Reduced communication overhead for Spark-native apps
(data layer in the JVM path — e.g., MLLib)

= Efficient direct communication among accelerators (e.g.,
Spark used for job distribution with compute and
communication off the JVM path)

© 2018 IBM Corporation Page 22

IBM Research

Spark Master

4
] ]
1 1
1 1
1 1 1
1 ——
i Task =-— -
i 1 o 1
i o 1
1 1 1
! RDD block 0 L RDD block 0 i1
i 1 1
I RDD block 1 I Lo RDD block 1 I
i ] Ia) P | 1 Iw
! RDD block 2 Icls 1 i RDD block 2 TLE]
1 —aga ! 1 PN =X
: 18 18le
! RDD block n 1 :8 P RDD block n 1 :8
1 I 1 1 I
i P b JVM P!
i | I 1
: Yy i A
i i
E : H
i C/C++, Python, ... i ! C/C++, Python, ...
1 - .
1 R
I =1 .
1 GPU/FPGA IR GPU/FPGA
P S
i Do
1 : 1
| !
i Do
:‘ Worker Node 1 /: : Worker Node 2
\

_________________________

_________________________

RDMA | i

J—
ll

RDD block 0
RDD block 1
RDD block 2

RDD block n

JVM

data
compute

P pm——

P -

C/C++, Python, ...

GPU/FPGA

Worker Node k

_________________________

) nttps://github.com/IBMSparkGPU



Data Broker IBM Research

Pl

VS.
Files 10 Data Broker
= Longer latency = Each app connects to data broker
= Less granularity = Distributes data in DRAM over multiple
Sockets nodes
= Longer latency = Latency generally lower
= Multiple sockets per application = Data Broker can be accelerated via H/W

= Discovery for new apps is complicated = Discovery of apps via data broker

O https://github.com/IBM/data-broker

© 2018 IBM Corporation Page 23



Data Broker

© 2018 IBM Corporation

Data Broker Management Functions

Name Description Name
dbrCreate()  Create a new Data Broker dbrPut()
dbrDelete()  Delete an existing Data Broker dbrRead()
dbrAttach()  Attach to an existing Data Broker dbrGet()
dbrDetach()  Detach from an existing Data Broker dbrReadA()
dbrQuery() Query information about an existing Data Broker dbrPutA()
dbrTest() Test the status of an asynchronous call dbrGetA()
dbrCancel()  Cancel an asynchronous call dbrMove()

IBM Research

Data Broker Access Functions

Description

Insert a tuple in the Data Broker

Read a tuple in the Data Broker

Pop a tuple in the Data Broker

Read a tuple in the Data Broker, non blocking
Put a tuple in the Data Broker, non blocking
Pop a tuple in the Data Broker, non blocking

Move a tuple from a source namespace to a destination namespace

Benchmarking: 1M requests, key size 1K, data size 4K, 5 nodes

Put

Time avg/p: 81774.3ms Time avg/p: 61279.5ms
requests: 1.6e+07

IOPS: 195660

BW: 801.425MB/s
min: 427.197ms
max: 2206.72ms

Page 24

Get

requests: 1.6e+07

IOPS: 261099
BW: 1069.46MB/s
min: 451.922ms
max: 1618.8ms

Read

Time avg/p: 48877.2ms
requests: 1.6e07

IOPS: 327351

BW: 1340.83MB/s
min: 345.789ms

max: 902.828ms

jsrun --nrs 160 --rs_per_host 32 parallel -d 4096 -k 1024 -p 1000 -t READ/PUT/GET -n 100000



Enhancing Spark with Data Broker IBM Research

Executor Executor
[ partition | | partition || partition | ... | partition | ‘ partition | | partition | | partition | ... | partition |
. . . . T T T | ‘ T I
» Filesy dependency and 10 | | =
les Stem ependency an Imltatlons Shuteis Shutfle e shufle {[ shuffle Shutfle Shuffle Shutrie
MapTask MapTask MapTask MapTask i|  MapTask MapTask MapTask MapTask

* Current shuffle implementation stores data in blocks | | | | Loy - |

. . Sort records based on target partitions, Sort records based on target partitions,
on |oca| dlSk I/O for- data Sh uffl I ng spill to disk, merge spill files spill to disk, merge spill files

= Major overhead on the OS ﬁ e -h' *ﬁ o e o

( N N\ ) R | N O N[

. 3 . . partition, || partition, partition, par"titioﬂ partition, || partition, partition, partition,
= both the source and the destination side requires many | ; ....

LJ

Map Stage

file and network I/O operations = = =
partition, || partition, || partition, partition, pa o || a || pa " pai
. . . _ ﬁie, N file, )\ _ fueC Y, \_file. Ji] I\__file J\_ file, J\ file )\ file.
= Data aggregation techniques are used for filesystem N s S e it S [
and communication optimization but this adds extra HUEFLE
computation overheads : LN - " o AY
| S S PAESE -
% al on ar on al on al on
GATK4-ReadsPipeLine (shuffle stage) GroupBy Test
50000 48056 4000 1.4)(
2.4x
E a0 unv E 3143
Acceleration opportunity £ E .
g = g 2000 1903
Spare WirodFiei OryCompie ° Spark WithoutFileWrite OnlyCompute

© 2018 IBM Corporation Page 25



Enhancing Spark with Data Broker

© 2018 IBM Corporation

IBM Research

Executor Executor
| Partition ‘ ‘ Partition || Partition | | Partition | | Partition ‘ ‘ Partition |
% ' \ \ \ ' \ ! \
@ v A 4 v v A 4 v
g Shuffle Shuffle Shuffle Shuffle Shuffle Shuffle Shuffle Shuffle
= MapTask MapTask MapTask MapTask MapTask MapTask MapTask MapTask
™=~ | | ! =~ F=s [
1
No File I/O
No Disk Access
No Sorting
Simpler Shuffle
Y
N
Ay
Ay
N
A}
\
\
\
A
\
1
gn v
§ Partition Partition Partition Partition Partition Partition Partition Partition
£
23
o
Page 26



Enhancing Spark with Data Broker IBM Research

= |mplementation of Data Broker concept used to Spark-Data Broker adapter
accelerate shuffle and enable efficient data = Overwrites shuffle related classes

management across frameworks
] ) ) = Software-based Tuple Space implementation
= Bypass of filesystem with data sharing based on

tuples = Customized Spark Shuffle Write/Read operations
. through jDatabroker
wMOOSE NNSYS :
Modeling and = API for reading/writing to/from the Data Broker
Simulation
OpenVFOAM

! _ pen L SpaK J
“";“‘v

H,0.0i
Cognitive & — Analin Spark-Databroker Connector
PowerAl o [ ] = e jg [
SparK® v Spr K | DBRAPI
v
H jDatabroker

*ﬁi* +ableau Databroker

lll ParaView VMD,. . ...

© 2018 IBM Corporation Page 27



Ecosystem for High Performance Workloads IBM Research

Deep learning workloads : Image classification ! | Spark workload Tech Computing
&S  Comp Con_'lp Auto Climate
Image classifier ,| Image classif "< | GATK4, Sl ferospace Weather
model training ML Oil & Gas sere Financial
A
__________________ S 2
Technical Computing (TCaaS)
DL Training (DLaaS/FfDL) DL Insight Optimized Oper || R || MOAB | ocave | S
Spark IBM Data Broker

Batch sched.
Sllurm, Flux

High Performance S/W Stack

() ESSL, GPU, Al

S

S

£ [ ] { J IBM Cloud Private [ J L J
c

()

8 KVM Bare-metal node Object store Docker Registry

o

Infrastructure management : laaS

© 2018 IBM Corporation Page 28



HPC Benchmarks on a Cloud Stack IBM Research

Container vs bare metal performance comparison

woRALs Benchmarks on b e

= HACC (MPI/OpenMP/C++) E— ICp ICp Factor
= Compute intensity, random memory access, all- (meta) (containers)
to-all communication HACC 7.07 7.44 0.95
= Nekbone (MPI/Fortran/C) Nekbone 8.75E+02 7.74E+02 0.88
= Compute intensity, small messages, all-reduce e 1 16E+10 1136410 0.97
- AMG (MPI/OpenMP/C) . . Quicksilver 1.58E+06 1.59E+06 1.00
= Algebraic Multi-Grid linear system solver for :
. Jitter-Bench 4.21% 4.27% 0.99
unstructured mesh physics packages.
* Quicksilver (MPl/OpenMP/C++) _
= Monte Carlo transport benchmark N 1.00

= Demonstrated relevant HPC benchmarks in a container
environment

= Measured small performance degradation in comparison
with bare metal

o
E
<
o
w
=}
z
<
=
3
[=]
e
3
i
o
=
<
=
|}
b
=
e
}
£
<
=
z
[]
o

0.99
0.97
0.95
0.88

HACC Nekbone AMG Quicksilver Jitter-Bench

© 2018 IBM Corporation Page 29



Enabling Large-Scale
Analytics for Hybrid
Workflows

aaaaaa




Knowledge Discovery at Scale

LLNL’s SparkPlug

LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet

IBM: Carlos Costa, Claudia Misale, Guojing Cong

IBM Research

= Addressing recurrent data challenges in mission
application

= Huge data sets, sparse labels, heterogeneous,
complex structure

Density estimation toolbox for big data machine learning
at scale \

Data mining and
Cyber security Data-driven knowledge
application treatment plans discovery: topic
modeling
;fg ;ég ;fg ,

= Distributions, estimators, combinators, graphical
model templates, samplers

= Implemented as a Spark library allowing modeling
without requirement advanced software development
background

= Allows complex models able to utilize application specific
understanding

= Scalable design supports large data sizes

= Current collaboration focusing on the scaling of
SparkPlug’s LDA implementation on LLNL’s Sierra

© 2018 IBM Corporation Page 31

Spark
SQL

MLIib
(machine
learning)

Y

LLNL’s
SparkPlug
(statistical
modeling)



Knowledge Discovery at Scale

Distributions / samplers

© 2018 IBM Corporation

Beta

Binomial

Categorical
CensoredExponential
CensoredGeometric
Composite

Conditional

Either

Exponential -
Gamma

Geometric

HMM

Hierarchical mixture
Inverse gamma
Inverse Wishart
Markov chain
Multinomial
Multinomial logistic regression
Multivariate Gaussian
Negative binomial

Normal inverse gamma

Pareto

Page 32

Poisson

Product

Two-level mixture

Uniform

Univariate Gaussian

von Mises

Zero-altered negative binomial
Zero-altered Poisson

EM estimators

Binomial
Categorical
CensoredExponential
CensoredGeometric
Composite
Conditional

Either

Exponential

Gamma

Geometric

HMM

Hierarchical mixture

Linear regression

LLNL/IBM collaboration

LLNL: Barry Y. Chen, Grant M. Bouquet

IBM Research

IBM: Carlos Costa, Claudia Misale, Guojing Cong

—  Markov chain .

—  Multinomial

—  Multinomial logistic regression
—  Multivariate Gaussian

—  Negative binomial

—  Pareto

—  Poisson

—  Product

—  Two-level mixture

—  Uniform

— Univariate Gaussian

— von Mises

—  Zero-altered negative binomial

—  Zero-altered Poisson

MixtureModel .

HierarchicalMixtureModel

Clustering

— K-means

MCMC estimators

Binomial

Categorical
Composite

Dirichlet

Exponential
Geometric
Multinomial
Multinomial logistic regression
Multivariate Gaussian
Pareto

Poisson

Uniform

Univariate Gaussian

Distributed MCMC

Neiswanger nonparametric
Neiswanger semiparametric
Neiswanger parametric

Dunson median posterior



Knowledge Discovery at Scale

Topics Documents Topic proportions and
assignments
gene  6.04
e O Seeking Life’s Bare (Genetic) Necessities
CoLD SPHING HARBOR, NEW Y Call th A
he |
N
N
1%
=
From [1]

Topic Modeling

Used in text-mining and detection of hidden instructive
structures in data such as genetic information, images and
networks

= e.g. What is document A discussing? How similar are documents A and B? If | am

interested in topic X, which documents should | read first?

Latent Dirichlet Allocation (LDA)

© 2018 IBM Corporation

Generative statistical model that allows sets of observations to
be explained by unobserved groups that explain why some
parts of the data are similar

Widely used clustering/latent factors model and commonly part
of analytics pipelines

Page 33

LLNL/IBM collaboration
LLNL: Barry Y. Chen, Grant M. Bouquet

IBM Research

IBM: Carlos Costa, Claudia Misale, Guojing Cong

On O

K

(10— @

N

«: parameter of the Dirichlet prior on the per-document

topic distribution;

[: parameter of the Dirichlet prior on the per-topic

distribution;

Define ©; ~ Dir(a) : i € {1,..., M}, with Dir(a) a
Dirichlet distribution;
Define ¢, ~ Dir(3)
{1,...,N;};
For each word w; ; :i € {1,...,M},j € {1,...,N;}:
o Choose topic z; ; ~ Multinomial(©;)
o Choose word w; ; ~ Multinomial(p., ;)

k e {l,...,M},j €

O, topic distribution over the document m;
. word distribution over the topic k;
Zpm: topic for the n-th word in document m;
Wym: specific word n in document m.

[

Global Space

8% : Topic Estimate

] Spark Driver Program

Driver Communications:
collect(), reduce()

-~

FMap
ReduceByKey

Map
Map
Map

K LDAO Loop

FMap
ReduceByKey

Map
Map
Map

LDA1 Loop

Worker Space

~

FMap
ReduceByKey

Map

Map
Map

LDAN-1 Loop )

3

3

Dn

Corpus: Partitioned Space




LLNL/IBM collaboration

Kngwledge Discovery at Scale LLNL: Barry Y. Ghon, Grant M. Bouquet IBM Research

IBM: Carlos Costa, Claudia Misale, Guojing Cong

Large-scale Latent Dirichlet Allocation (LDA) R
» Demonstrated large-scale topic modeling with all-languages
Wikipedia database on LLNL'’s Sierra AN
= 300+ raw dump files from Wikimedia.org (all “
languages) 510
= ~34 million unique words (including non-Latin £ N\
alphabets) * topto
= 100 topics % oo \
= Sierra runs: up to ~20,000 cores 400 N :
= Significant acceleration with optimized stack (2x faster) a0 N\ R
* Improved scaling X S N
* Optimized all-to-one operations (treeAggregate) L Vocubulry St 108 worde)
= On-going work on further scaling improvements for collect o foap-stulievrle 0 colect-shufleread o e e x TolBecion Tine

Operat|0n Vanilla vs. Optimized stack - 32 nodes, 512GB RAM, 2x parallelism

7000

6000

5000 .

N
o
=
S

w
o
1=
S

Execution Time (s)

2000

1000

Vanilla Optimized
© 2018 IBM Corporation Page 34 m flatMap - shuffle write M collect - shuffle read ~ m aggregate reduce



Genomics Analysis Toolkit (GATK4) IBM Research

EZEBROAD
AN INSTITUTE
MIT/Harvard - world’s leading

biomedical and genomic research
center

Sequencing GATK Best Practices.

GATK: High-throughput Sequencing (HTS) data analysis

workflow

= Pipeline of a variety of tools with a primary focus on variant
discovery and genotyping

= 31,000 registered users of GATK (providers, clinicians,
research centers, focused on personalized medicine)

= Requires extensive local compute and storage infrastructure
to process vast amount of data required to conduct
personalized analysis

© 2018 IBM Corporation Page 35

Next-Gen: GATK4 - Spark-based GATK for Cloud-Based
Access

= Spark being used to facilitate parallelism and in-memory
computation to speedup methods

= Broad Institute working with collaborators to develop
scalable options to expand access and facilitate usage

= Critical to accelerate precision medicine by lowering the
cost of genome sequencing

= GATK4 will extend the range of use cases supported to
include cancer, structural variation, copy number variation,
and more

= Genome analysis can be seen as one step in potentially
larger workflows applying machine learning to personalized
treatment plans

GATKA4 Collaboration Members

(intel)‘ Google cloudera
B8 Microsoft ":.":.5'?“310“

7 webservices

https://www.broadinstitute.org/news/8065



GATK4-Spark Pipelines on POWER

BWA/C++/OpenMP

Raw sequencing ) ;
Reads — Mapping

SNP pipeline ™

Filesystem
(HDFS/GPFS)

= Heterogenous pipeline (Spark with calls to
native code OpenMP and accelerators)

= Significant speedup with
= Strong scaling for BWA (dominant stage)

= Better performance with higher memory
bandwidth and SMTs on POWER

© 2018 IBM Corporation Page 36

compute

RDD (

Time (min)

memory distributed data)

n:

120

110

100

Spark native

| Mark
: Duplicates ;

RDD (in-memory distributed data)

compute and shuffle
(all-to-all communication)
Local FS spill

Burrows-Wheeler Aligner (BWA)

Variant Discovery

BWA Scaling
~
~ 0
N
~
~
N
N
N
N
~
N
N
N
N
N
N
N
N
LN
~
~
N
N
N
N
~
N
N
N
N
~
~
~
N
N
N
N
N
N
$
4 6 8 10 12 14 16 18
Num Nodes

Input: G15512.HCC1954.bam (WGS)

IBM Research

ML Haplotype caller
PairHMM (native C++)

D ' Base Quality Variant | _ Discovered
i Recalibration Calling ! Variants

Distributed
Filesystem
(HDFS/GPFS)

Multiple compute and shuffle stages
(all-to-all communication)
Local FS spill

~3.8TB shuffle data
per whole genome

POWERS8 Minsky 8335-GTB
2-socket, 10-core SCM
512GB

2.9 TB Local NVMe
InfiniBand EDR (100Gb/s)

Spectrum LSF (Spark standalone
scheduler)
Spectrum ESS



GATK4 Genomics Workflow on the Cloud IBM Research

< 1hr whole genome pipeline

GATK4-Spark on IBM cloud platform R = "

= Scalable SNP pipeline with optimized Spark and JVM for efficient
resource utilization

= Benefits from high-bandwidth network and Spark configuration and JVM
tuning and enhancements with Eclipse Opend9 (efficient garbage
collection, optimized Just-in-time compilation, JVM lock contention
schemes, ...)

256
# CORES

ReadsPipeline-Genome - Speedup
Whole genome SNP processing in less than <1hr
= ~32hrs: GATK3-Walker mode (single node)

= Single node: 36 cores (Intel Xeon processor E5-2699 v3 @ 2.30 GHz,
256 GB RAM) 1

= ~57min: GATK4-Spark on cloud platform
= 22 VMs: 18x m1.16x128 + 4x m1.32x128 (416 cores; 3.25TB RAM)

SPEEDUP (X FACTOR)

# CORES

© 2018 IBM Corporation Page 37



TUDelft Genomics Workflow IBM Research

[ Preprocessed | | | M‘ark Variant
DNA variant discovery uses a pipeline of ] L . B F"%’\
different tools TUDelft oo (3ot i vl eno R

pu loud Mark Variant

* Phase1 R -
= Custom approach from Delft University to }"n’::!‘éﬁi;‘jﬂ—. = L =
parallelize BWA, GATK, and Piccard o T
= Leveraged native code tuned for POWER
(vectorized code for PairHMM) » 90 min runtime on 20-
= Demonstrated whole SNP pipeline at low-cost
with POWER at the Spark Summit (first
appearance of POWER)
= Phase 2 (on-going)
= Extension for population genomics analysis
(thousands of full genomes)

=  NVLink, heterogeneous CPU-GPU computin
kernels G puting to 1 hour for 35 node

node cluster Runtime (min) Stage1 + Stage3 ~ 42 min
Total runtime ~ 60 min

’ Stage 1&3are Estimated cost ~ 1 node-day
scalable

» Runtime scales down

=  RDMA-based communication cluster

# HW threads
1000 2000 3000 4000 5000 6000

+Stage 1 -*Stage 3 “*Stage 1 extrapolated “® Stage 3 extrapolated

ACM BCB'17 paper [3] By 2F:\ 21 @< 01\% 1," | i @rde) (5

https://spark-summit.org/2016/events/a-spark-framework-for-100-1-hour-accurate-personalized-dna-analysis-at-scale/

© 2018 IBM Corporation Page 38



LLNL’s Precision Medicine: SPLASH Workflow

Simulate the Bending of Lipid Cell membrane

*  Impacts how molecules (drugs) enter the cell

*  Surrounding environment impacts how membrane
bends

Coarse Grain
Begds

Continuum

Atomisti
(Phase Field) omiste

Accelerate particles with
parallel replica dynamics

© 2018 IBM Corporation

Page 39

IBM Research

| WF Man
| Flux

Multiscale code framework:

The WorkFlow (WF) Manager connects two scales: Dynamic Density
Functional Theory (DDFT) and coarse grain (CG)

Frames resulting from the DDFT simulation are decomposed into patches,
and the WF Manager feeds them to the machine learning (ML)
infrastructure, which maintains a priority queue of candidate patches.

When new resources become available, the WF Manager picks top
candidates and uses the Flux resource manager to start new CG
simulations.

Data transfer and messaging is handled through the DataBroker (DBR),
which implements a fast, system-wide key-value store. Thickness of black
arrows represents the bandwidth of data flow to and from the DBR.



Other Use Cases: Engineering

© 2018 IBM Corporation

Simulation Data:
* Inputs / Execution Snapshots
* Various Grid Mappings for

different components of workflow

Engineering Data:

* Designs

» Experimental Results
Analysis Results

* Visualizations

+ UQ and Sensitivity Data
» Engineering Analyses

Data Prep
* Mesh Generation
» Model setup, initial conditions

Modeling and Simulation
» Computational Modeling

Analysis, UQ, Engineering
Evaluation

+ Visualization

» Post Processing

» UQ, Sensitivity Analysis

+ Engineering Analyses

Page 40

IBM Research

( )
Modeling and
Simulation
( N\ 9
Analysis, UQ, o 32
( ) - g (2] E
Data Prep Engineering S §
Evaluations oo
\ \ ) |
( —_

[ Engineering Data (Active Working Sets)

)

[ Simulation Data (Active Working Sets)

[ Analyses Results (Ac

ive Working Sets)

\

Active Storage

Compute and

b
[ Engineering Data

[ Simulation Data

[ Analyses Results

E
-
€5
10N




Climate Use Case IBM Research

s N
Climate Data: i ( )
«Inputs / Execution Snapshots Climate Model Post Processing
. e Simulati d Analysi

*Physics Parameterizations and imufation SHRIATEIEES g N ©
variable forcing data Generation of 23
*VVarious Grid Mappings for different Science Ready s &
components of workflow Products Qo
*Various Scientific Outputs \ I —
*Experimental Data Sets for
Validation and Verification p |
Climate Model Simulation [ Active Model Simulation Restarts/Outputs -9

: . . . c®
+Climate Simulation over multiple : : l o9
years, compute intense Active Science Readx products *g_ Cg

E 2
. . . g

Post Processing and Analysis ! Active Science Analzskls products S
*Analysis of climate runs 4

*Visualization
*UQ, Sensitivity Analysis

-

Science Ready Products [ Sets of Model Simulation Restarts/Outputs ]

*Generation of various [ :

“downstream” products that predict Sets of Science Ready products % .

different impacts of climate [ Sets of Science Analysis products ';, g

projections in different sectors _ _ 52
Diagnostic Data -0

.

© 2018 IBM Corporation Page 41



Full organ simulation Use Case IBM Research

s A
Experimental Data ( )

«Scans of actual human hearts Heart Model Post Processing

Di o [ ti Simulations and Analysis

IRl linielnntzl el + Visualization e N
Simulation Data + Diagnostic Science Output 03
*Domain decomposed grids with Information S §
structure, circulatory system, cell oo
types for individual simulations ~ I —
*Generated Simulation Histories
U e .

Q, Se:n_S|t|V|ty Analysis - | —
Scientific Output Data —— : o
*Predicted Diagnostic Information [ Active Simulation Data 2o
(ECG’s ...) : : e

Active Science Output Data ] S0
o o
: PR S
Heart Model SImUIa'flons' Active Diagnostic / Experimental Data ] 8 <
*Generates computational N )
simulations of heart \ J

Hol iy <{mmsssssss———)
*Visualization,

*Generation of ECG, other
diagnostic data

Science Output:
*Generated “downstream” data [ Sets of Science Output Data ]
used to apply simulation in given
scenario (e.g. Drug Evaluation,
Device Evaluation, etc) \

—

Sets of Saved Simulation Data ]

E
.-
€5
1 0N

[ Corpus of Diagnostic / Experimental Data ]

© 2018 IBM Corporation Page 42



Next Steps IBM Research

= \Workflows

= Continue to explore unified data layer to accelerate data analytics across frameworks in
a heterogeneous workflow

= Demonstrate extreme-scale heterogeneous workflows on leading HPC systems

© 2018 IBM Corporation Page 43



Thank you!

© 2018 IBM Corporation

Page 44




Publications/Presentations IBM Research

= [1] Towards memory-optimized data shuffling patterns for big data analytics. B Nicolae, C
Costa, C Misale, K Katrinis, Y Park - Cluster, Cloud and Grid Computing (CCGrid), 2016

= [2] Leveraging adaptive 1/O to optimize collective data shuffling patterns for big data
analytics. B Nicolae, CHA Costa, C Misale, K Katrinis, Y Park - IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2017

= [3] SparkGA: A Spark Framework for Cost Effective, Fast and Accurate DNA Analysis at
ScaleH Mushtaq. F Liu, C Costa, G Liu, P Hofstee, Z Al-Ars - 8th ACM International
Conference on Bioinformatics, Computational Biology,and Health Informatics (ACM-BCB),
2017

= [4] A Spark Frameowkr for < $100,< 1Hour, Accurate Personalized DNA Analysis at Scale —
Spark Summit, 2016

© 2018 IBM Corporation Page 45



