Converged Ecosystem for Data Analytics and Extreme-Scale Computing

Carlos Costa Data-Centric Solutions (DCS) IBM T.J. Watson Research Center

chcost@us.ibm.com

© 2018 IBM Corporation

Era of Data-Centric and Intelligent Discovery

IBM Research

Traditional HPC

Simulation-centric

- Explosion of data generated by large-scale simulation leading to a paradigm shift: from simulation-centric to data-centric discovery
- Data analytics and machine learning used to turn reams of simulation data into actionable information that can be used for better interpretation and steering
- Applying machine learning for making existing simulation codes more intelligent, more productive, and more robust

- Increasing interest in large-scale analytics and machine learning on high-end platforms
- Emerging hybrid workflows that embody the entire inference cycle of discovery
- Co-deployment of heterogenous software stacks

Towards a Converged Ecosystem

Data Analytics	Overarching Challenges	Simulation Workflows
Unstructured or semi-structured data Collaborative Filtering, clustering, Real-time analysis, anomaly detections Sensor data filtering, classification, statistical averages/histogram, Support Vector Machine, Principle Component Analysis, Deep Learning	Heterogeneous hardware Layered storage and IO performance Data Management Energy Efficiency	Structured data Exascale data sets Primarily scientific calculations Ensemble analysis Sensitive analysis Uncertainty quantification
Hadoop/Spark ecosystem Spark API, Hadoop API, Python, Java, Scala, Python, TCP sockets,		HPC ecosystem C++/C, OpenMP, MPI, Cuda, RDMA Verbs,
High productivity, fault-tolerance	Converged Ecosystem	High performance, specialized hardware InifiniBand/RoCE, Flash, GPUs,
Cloud-based, commodity clusters	High productivity and High performance	On-premise, dedicated HPC Platform

Next-Gen Large-scale Computing Platforms

Designing Next-Generation Systems

IBM Research

Data-centric approach

Exascale

- DoE's CORAL systems, ORNL's Summit and LLNL's Sierra, first instantiation of IBM's data-centric approach for system design
- Platforms for innovative emerging workflows, laying the groundwork for efficient scientific discovery at Exascale
- Designed for data and AI from the ground up
- Summit, currently world's most powerful system
- 5 2018 Gordon Bell finalists used Summit or Sierra (including record 2.31 exaops)

© 2018 IBM Corporation

OpenPOWER CORAL Systems Design

CORAL Systems

IBM Research

- Scalable system solution scale up, scale down to address a wide range of application domains
 - Modular, flexible, cost-effective, 2U building blocks
 - Directly leverages OpenPOWER partnerships and IBM's Power system roadmap
 - Can scale to over 500 PF
 - Air and water cooling
- Heterogeneous compute elements
 - Power9 processor,
 - Nvidia Volta GPU coupled with NVLINK 2.0 (Coherent, high-bandwidth links to GPUs)
- Heterogeneous memory elements
 - DRAM for low latency
 - HMC Stacked memory for high bandwidth
 - Flash for local store
- System Resource Manager coupled with Platform Computing LSF

ORNL's Summit

- 4,608 POWER9 nodes with
- 6x Nvidia Volta GPU
- 2,282,544 cores
- ~10 PB (DDR4+HBM2+Nonvolatile) system memory
- Dual-rail InfiniBand Fat tree network
- ~200PF peak
- ~13 MW

LLNL's Sierra

- ~4,474 POWER9 nodes with 4x Nvidia Volta GPU
- · 1,572,480 cores
- ~ ~1.9 PB system memory
- Dual-rail InfiniBand Fat tree
 network
- ~125 PF peak
- ~ 11 MW

Challenges for a Converged Software Ecosystem

Converged Software Ecosystem Challenges

IBM Research

Diagram adapted from BDEC report https://www.exascale.org/bdec/report

Converged Software Ecosystem Challenges

- Need for better resource managers and schedulers
- Enabling co-existence of batch processing and interactive analysis
- Need of interoperability of data formats
- Enabling integration of on-premises and cloud HPC environments
- Enabling cloud bursting

Towards a Common Platform for Analytics

Benefits and Challenges with Spark-based Stack

IBM Research

Benefits

- Functional programming targeting data analytics that naturally apply the same operation to multiple data items
- Operators expressive enough to capture wide class of computation and cluster programming models (MapReduce, SQL, Pregel, ...) for analytics

Challenges

- JVM-based approach creates challenges with specialized hardware (GPU, FPGA, transport off-load)
- Challenges managing data across frameworks
- Efforts in the community with off-JVM heap optimizations and native code generation (Tungsten and Catalyst projects)

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
        lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane: %s" % w
```


Accelerated Middleware for High-End Analytics

Accelerated and Scalable Middleware for HDA

Big Data Analytics Workflows Spark SOFTWARE optimizations Native C/C++ (code changes, plugins, wrappers, ...) (functionality, low-level integration) **OpenJDK** OpenJ9 JVM **IBM Cloud Private** IBM Spectrum LSF Ð \mathfrak{B} **GPU/NVLink OpenCAPI RDMA GPUDirect** NVMe Flash/RDMA **FPGA** HARDWARE Data Broker transport offload storage/communication accelerator unified data layer Sopen POWER ** **IBM**Power Systems

Transparent Acceleration for HDA on Spark

IBM Research

© 2018 IBM Corporation

Transparent Transport Acceleration

IBM Research

RDMA-based shuffle

Replaces Java socket-based transfer of temporary shuffle files

Implementation (two options)

- Netty RDMA-enabled
 - Extends native socket support with Rsockets
 - Packaged as a Spark option (shuffle.io.mode)
 - Requires custom IBM-provided Netty and OFED
- IBM OpenJ9 with Java Sockets over RDMA (JSoR)
 - JVM-level support to transparent switch Java sockets over RDMA (supports NIO)
 - Enabled with Java option (-Dcom.ibm.nio.rdma)
 - Fully packaged as a featured in IBM Java SDK

Q1

Q2

Q18

350

300

250

32768 (no of key-value pairs) 32768 (key size)

Current approach

 Current implementation is unaware of load distribution and randomizes block requests

- Shuffle data is acquired much faster than it can be **consumed** with faster transport
- Large amounts of memory used for prefetching shuffle data

Adaptive approach

- Mechanism to monitor load and latency based on block request and wait time
- Algorithm to assign a score to each remote host with decentralized coordination
- Dynamically optimizes block fetch requests to minimize latency
 Benefits
- Improved network utilization with low memory utilization
- Improved load balancing
- Benefits as a function of number of cores/nodes

Status

Patch for Spark 1.5.1, 1.6; 2.0+

IBM Research

IEEE CCGrid'16 paper [1]

IBM Research

flight limit

Experimental evaluation

- ~2.240 cores POWER8 (PowerNV) S822LC (2x SCM 10-core, SMT8)
- Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
- 512 GB of RAM per machine
- 1 TB HDD

Shuffle I/O: 1TB, 1.4TB (GroupBy, SortBy)

Raw shuffle performance

- GroupByKey: raw performance of groupBy
- SortByKey: raw performance of sortBy

(c) sortByKey: Completion time for a variable reducer in-flight limit

(b) groupByKey: Peak shuffle memory utilization for a variable reducer in-

(d) sortByKey: Peak shuffle memory utilization for a variable reducer inflight limit

IBM Research

Experimental evaluation

- ~ 2.240 (PowerNV) S822LC (2x SCM 10-core, SMT8: total 160 hw threads)
- Mellanox Infiniband EDR ConnectX-4 adapters (100Gb/s)
- 512 GB of RAM per machine
- 1 TB HDD

Raw shuffle performance

•GroupByKey: raw performance of groupBy SortByKey: raw performance of sortBy

Increase in speed-up with increasing size of Spark deployment

- greater speed-up with increasing number of cores
- Alleviates memory pressure, leading to better load balance
- Even more benefits at larger scale both for performance and memory utilization

400

600

450

700

(b) Adaptive strategy using 10 MB reducer in-flight limit

Optimizing the JVM for Analytics

- OpenJ9: high-performance JVM tuned for analytics
- J9 improvements with significant impact on Spark performance
 - Java object models with smaller memory footprint
 - More efficient garbage collection technologies (*gencon* with Concurrent Scavenge)
 - More efficient JVM lock contention schemes
 - Just-in-time compilation (Testarossa JIT compiler)
 - GPU-enabled JIT
 - Shared classes technology (stores ahead of time (AOT) compiled code)

IBM Research

https://www.eclipse.org/openj9/

- IBM Java SDK enhancements
 - Transparent RDMA acceleration (Java Sockets over RDMA - JSoR)

32 cores (1 master, 4 nodes x 8 cores/node, 32GB Mem/node), IBM Java 8

Java Sockets over RDMA (JSoR)

Enabling Transparent GPU-acceleration

IBM Research

GPU/FPGA-enable Spark Apps

- Off-load compute-intensive kernels in Spark's native apps/libraries
 - GPU-enable MLLib/SparkSQL/GrapX
 - e.g., IBM SparkGPU: GPU code generation for Tungsten; CUDA code GPU accelerated MLLib algorithms)
 - GPU/FPGA acceleration of genomics kernels (FPGA-based PairHMM in GATK4-Spark)

Spark-enable GPU accelerated Apps Spark Apps

- Distributed deep learning (e.g. Spark port of existing GPUenabled frameworks like TensorFlow, Caffe, Theano, ...)
- Third-party frameworks (e.g H₂O) and home-grown apps in financial services

Optimizations

- Reduced communication overhead for Spark-native apps (data layer in the JVM path – e.g., MLLib)
- Efficient direct communication among accelerators (e.g., Spark used for job distribution with compute and communication off the JVM path)

https://github.com/IBMSparkGPU

Data Broker

IBM Research

Files IO

- Longer latency
- Less granularity

Sockets

- Longer latency
- Multiple sockets per application
- Discovery for new apps is complicated

- Distributes data in DRAM over multiple nodes
- Latency generally lower
- Data Broker can be accelerated via H/W
- Discovery of apps via data broker

https://github.com/IBM/data-broker

Data Broker

IBM Research

Data Broker Management Functions

Name	Description
dbrCreate()	Create a new Data Broker
dbrDelete()	Delete an existing Data Broker
dbrAttach()	Attach to an existing Data Broker
dbrDetach()	Detach from an existing Data Broker
dbrQuery()	Query information about an existing Data Broker
dbrTest()	Test the status of an asynchronous call
dbrCancel()	Cancel an asynchronous call

Data Broker Access Functions

Name	Description
dbrPut()	Insert a tuple in the Data Broker
dbrRead()	Read a tuple in the Data Broker
dbrGet()	Pop a tuple in the Data Broker
dbrReadA()	Read a tuple in the Data Broker, non blocking
dbrPutA()	Put a tuple in the Data Broker, non blocking
dbrGetA()	Pop a tuple in the Data Broker, non blocking
dbrMove()	Move a tuple from a source namespace to a destination namespace

Benchmarking: 1M requests, key size 1K, data size 4K, 5 nodes

Put	Get	Read
Time avg/p: 81774.3ms	Time avg/p: 61279.5ms	Time avg/p: 48877.2ms
requests: 1.6e+07	ests: 1.6e+07 requests: 1.6e+07	
IOPS: 195660	IOPS: 261099	IOPS: 327351
BW: 801.425MB/s	BW: 1069.46MB/s	BW: 1340.83MB/s
min: 427.197ms	min: 451.922ms	min: 345.789ms
max: 2206.72ms	max: 1618.8ms	max: 902.828ms

jsrun --nrs 160 --rs_per_host 32 parallel -d 4096 -k 1024 -p 1000 -t READ/PUT/GET -n 100000

Enhancing Spark with Data Broker

- Filesystem dependency and IO limitations
- Current shuffle implementation stores data in blocks on local disk I/O for data shuffling
- Major overhead on the OS
 - both the source and the destination side requires many file and network I/O operations
- Data aggregation techniques are used for filesystem and communication optimization but this adds extra computation overheads

Enhancing Spark with Data Broker

Enhancing Spark with Data Broker

IBM Research

- Implementation of Data Broker concept used to accelerate shuffle and enable efficient data management across frameworks
- Bypass of filesystem with data sharing based on tuples

Spark-Data Broker adapter

- Overwrites shuffle related classes
- Software-based Tuple Space implementation
- Customized Spark Shuffle Write/Read operations through jDatabroker
- API for reading/writing to/from the Data Broker

Ecosystem for High Performance Workloads

HPC Benchmarks on a Cloud Stack

IBM Research

CORAL2 Benchmarks on ICp (selected)

- HACC (MPI/OpenMP/C++)
 - Compute intensity, random memory access, allto-all communication
- Nekbone (MPI/Fortran/C)
 - Compute intensity, small messages, all-reduce
- AMG (MPI/OpenMP/C)
 - Algebraic Multi-Grid linear system solver for unstructured mesh physics packages.
- Quicksilver (MPI/OpenMP/C++)
 - Monte Carlo transport benchmark
- Demonstrated relevant HPC benchmarks in a container environment
- Measured small performance degradation in comparison with bare metal

Container vs bare metal performance comparison

SUMMARY (16 nodes)						
Bench	lCp (metal)	ICp (containers)	Factor			
HACC	7.07	7.44	0.95			
Nekbone	8.75E+02	7.74E+02	0.88			
AMG	1.16E+10	1.13E+10	0.97			
Quicksilver	1.58E+06	1.59E+06	1.00			
Jitter-Bench	4.21%	4.27%	0.99			

Enabling Large-Scale Analytics for Hybrid Workflows

LLNL's SparkPlug

- Addressing recurrent data challenges in mission application
 - Huge data sets, sparse labels, heterogeneous, complex structure
- Density estimation toolbox for big data machine learning at scale
 - Distributions, estimators, combinators, graphical model templates, samplers
- Implemented as a Spark library allowing modeling without requirement advanced software development background
- Allows complex models able to utilize application specific understanding
- Scalable design supports large data sizes
- Current collaboration focusing on the scaling of SparkPlug's LDA implementation on LLNL's Sierra

Page 31

LLNL/IBM collaboration LLNL: Barry Y. Chen, Grant M. Bouquet

IBM: Carlos Costa, Claudia Misale, Guojing Cong

Distributions / samplers

- Beta
- Binomial
- Categorical
- CensoredExponential
- CensoredGeometric
- Composite
- Conditional
- Either
- Exponential
- Gamma
- Geometric
- НММ
- Hierarchical mixture
- Inverse gamma
- Inverse Wishart
- Markov chain
- Multinomial
- Multinomial logistic regression
- Multivariate Gaussian
- Negative binomial
- Normal inverse gamma
- Pareto

- Poisson
- Product
- Two-level mixture
- Uniform
- Univariate Gaussian
- von Mises
- Zero-altered negative binomial
- Zero-altered Poisson
- EM estimators
 - Binomial
 - Categorical
 - CensoredExponential
 - CensoredGeometric
 - Composite
 - Conditional
 - Either
 - Exponential
 - n Gamma
 - Geometric
 - HMM
 - Hierarchical mixture
 - Linear regression

LLNL/IBM collaboration

LLNL: Barry Y. Chen, Grant M. Bouquet IBM: Carlos Costa, Claudia Misale, Guojing Cong

IBM Research

Markov chain MCMC estimators Multinomial **Binomial** Multinomial logistic regression Categorical _ Multivariate Gaussian Composite — Negative binomial Dirichlet Pareto Exponential Poisson Geometric Product Multinomial Two-level mixture Multinomial logistic regression Uniform Multivariate Gaussian Univariate Gaussian Pareto von Mises Poisson Zero-altered negative binomial _ Uniform Zero-altered Poisson Univariate Gaussian

_

Distributed MCMC

Neiswanger nonparametric

Neiswanger semiparametric

Neiswanger parametric

Dunson median posterior

MixtureModel

_

_

—

_

_

_

_

_

_

_

_

_

_

- HierarchicalMixtureModel
- Clustering
 - K-means

© 2018 IBM Corporation

From [1]

α

Topic Modeling

- Used in text-mining and detection of hidden instructive structures in data such as genetic information, images and networks
 - e.g. What is document A discussing? How similar are documents A and B? If I am interested in topic X, which documents should I read first?

Latent Dirichlet Allocation (LDA)

- Generative statistical model that allows sets of observations to be explained by unobserved groups that explain why some parts of the data are similar
- Widely used clustering/latent factors model and commonly part of analytics pipelines

LLNL/IBM collaboration

LLNL: Barry Y. Chen, Grant M. Bouquet IBM: Carlos Costa, Claudia Misale, Guojing Cong

IBM Research

 α : parameter of the Dirichlet prior on the per-document topic distribution;

 $\beta :$ parameter of the Dirichlet prior on the per-topic distribution;

 $\begin{array}{l} \Theta_m \text{: topic distribution over the document } m;\\ \varphi_k \text{: word distribution over the topic } k;\\ Z_{nm} \text{: topic for the } n\text{-th word in document } m;\\ w_{nm} \text{: specific word } n \text{ in document } m. \end{array}$

Corpus: Partitioned Space

© 2018 IBM Corporation

Large-scale Latent Dirichlet Allocation (LDA)

- Demonstrated large-scale topic modeling with all-languages Wikipedia database on LLNL's Sierra
 - 300+ raw dump files from Wikimedia.org (all languages)
 - ~34 million unique words (including non-Latin alphabets)
 - 100 topics
 - Sierra runs: up to ~20,000 cores
- Significant acceleration with optimized stack (2x faster)
- Improved scaling
- Optimized all-to-one operations (treeAggregate)
- On-going work on further scaling improvements for collect operation

LLNL/IBM collaboration

LLNL: Barry Y. Chen, Grant M. Bouquet IBM: Carlos Costa, Claudia Misale, Guojing Cong

Vanilla vs. Optimized stack - 32 nodes, 512GB RAM, 2x parallelism

Genomics Analysis Toolkit (GATK4)

IBM Research

GATK: High-throughput Sequencing (HTS) data analysis workflow

- Pipeline of a variety of tools with a primary focus on variant discovery and genotyping
- 31,000 registered users of GATK (providers, clinicians, research centers, focused on personalized medicine)
- Requires extensive local compute and storage infrastructure to process vast amount of data required to conduct personalized analysis

Next-Gen: GATK4 - Spark-based GATK for Cloud-Based Access

- Spark being used to facilitate parallelism and in-memory computation to speedup methods
- Broad Institute working with collaborators to develop scalable options to expand access and facilitate usage
- Critical to accelerate precision medicine by lowering the cost of genome sequencing
- GATK4 will extend the range of use cases supported to include cancer, structural variation, copy number variation, and more
- Genome analysis can be seen as one step in potentially larger workflows applying machine learning to personalized treatment plans

GATK4 Collaboration Members

https://www.broadinstitute.org/news/8065

GATK4-Spark Pipelines on POWER

IBM Research

- Heterogenous pipeline (Spark with calls to native code OpenMP and accelerators)
- Significant speedup with
- Strong scaling for BWA (dominant stage)
- Better performance with higher memory bandwidth and SMTs on POWER

Burrows-Wheeler Aligner (BWA)

Input: G15512.HCC1954.bam (WGS)

GATK4 Genomics Workflow on the Cloud

GATK4-Spark on IBM cloud platform

- Scalable SNP pipeline with optimized Spark and JVM for efficient resource utilization
- Benefits from high-bandwidth network and Spark configuration and JVM tuning and enhancements with Eclipse OpenJ9 (efficient garbage collection, optimized Just-in-time compilation, JVM lock contention schemes, ...)

Whole genome SNP processing in less than <1hr

~32hrs: GATK3-Walker mode (single node)
 Single node: 36 cores (Intel Xeon processor E5-2699 v3 @ 2.30 GHz, 256 GB RAM) ¹

■ ~57min: GATK4-Spark on cloud platform

22 VMs: 18x m1.16x128 + 4x m1.32x128 (416 cores; 3.25TB RAM)

IBM Research

< 1hr whole genome pipeline

TUDelft Genomics Workflow

IBM Research

DNA variant discovery uses a pipeline of different tools

- Phase 1
- Custom approach from Delft University to parallelize BWA, GATK, and Piccard
- Leveraged native code tuned for POWER (vectorized code for PairHMM)
- Demonstrated whole SNP pipeline at low-cost with POWER at the Spark Summit (first appearance of POWER)
- Phase 2 (on-going)
- Extension for population genomics analysis (thousands of full genomes)
- NVLink, heterogeneous CPU-GPU computing kernels
- RDMA-based communication

- 90 min runtime on 20node cluster
- Stage 1 & 3 are scalable
- Runtime scales down to 1 hour for 35 node cluster

ACM BCB'17 paper [3]

SPARK SUMMIT 2016

https://spark-summit.org/2016/events/a-spark-framework-for-100-1-hour-accurate-personalized-dna-analysis-at-scale/

LLNL's Precision Medicine: SPLASH Workflow

IBM Research

Simulate the Bending of Lipid Cell membrane

- Impacts how molecules (drugs) enter the cell
- Surrounding environment impacts how membrane bends

Accelerate particles with parallel replica dynamics

- When new resources become available, the WF Manager picks top candidates and uses the Flux resource manager to start new CG simulations.
- Data transfer and messaging is handled through the DataBroker (DBR), which implements a fast, system-wide key-value store. Thickness of black arrows represents the bandwidth of data flow to and from the DBR.

Multiscale code framework:

- The WorkFlow (WF) Manager connects two scales: Dynamic Density Functional Theory (DDFT) and coarse grain (CG)
- Frames resulting from the DDFT simulation are decomposed into patches, and the WF Manager feeds them to the machine learning (ML) infrastructure, which maintains a priority queue of candidate patches.

© 2018 IBM Corporation

Page 39

Other Use Cases: Engineering

IBM Research

Simulation Data:

- Inputs / Execution Snapshots
- Various Grid Mappings for different components of workflow

Engineering Data:

- Designs
- Experimental Results Analysis Results
- · Visualizations
- UQ and Sensitivity Data
- Engineering Analyses

Data Prep

- Mesh Generation
- · Model setup, initial conditions

Modeling and Simulation

Computational Modeling

Analysis, UQ, Engineering Evaluation

- Visualization
- Post Processing
- UQ, Sensitivity Analysis
- Engineering Analyses

Climate Use Case

Full organ simulation Use Case

Next Steps

IBM Research

Workflows

- Continue to explore unified data layer to accelerate data analytics across frameworks in a heterogeneous workflow
- Demonstrate extreme-scale heterogeneous workflows on leading HPC systems

Thank you!

Publications/Presentations

- [1] Towards memory-optimized data shuffling patterns for big data analytics. *B Nicolae, C Costa, C Misale, K Katrinis, Y Park* Cluster, Cloud and Grid Computing (CCGrid), 2016
- [2] Leveraging adaptive I/O to optimize collective data shuffling patterns for big data analytics. B Nicolae, CHA Costa, C Misale, K Katrinis, Y Park - IEEE Transactions on Parallel and Distributed Systems (TPDS), 2017
- [3] SparkGA: A Spark Framework for Cost Effective, Fast and Accurate DNA Analysis at ScaleH Mushtaq. F Liu, C Costa, G Liu, P Hofstee, Z Al-Ars - 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB), 2017
- [4] A Spark Frameowkr for < \$100,< 1Hour, Accurate Personalized DNA Analysis at Scale Spark Summit, 2016