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Plan

e Introduction of Kernel Ridge Regression

e How to improve efficieny of KRR?
e compressed representation of kernel matrices
e clustering points
e hyperparameter optimization
e sampling methods
[ ]
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Kernel matrices

Intuitively, kernel matrices can be viewed as similarity matrices
K(i,j) = similarity score x; <> x;,

where K is n x n positive semi-definite matrix, defined by a set of objects
X1y 9 Xn.
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Kernel example

h=0.05
Gaussian kernel
Similarity is closeness in Euclidean
distance, h is reweighting. EaEmasmans:
2
. Ixi — Xl
K(i,j) = exp | ———-2"2
(7.J) P 2h2 h=0.5
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Introduction

More kernel examples

Laplacian kernel

.y =op (157502)

Linear kernel Similarity is the length of the projection of one vector on
another.

K(i,J) = (i, %)

Degree d polynomial kernel

Sigmoid neural network kernel
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Kernel Ridge Regression

= Ridge Regression + Kernel Trick

1. Ridge regression
Want to minimize the cost function:
Cw) = (vi —w'x;)* + Alw][> = min
i

e x;'s are data points (rows of the data matrix X"*9)

e y;'s are their labels

e w is the normal vector to the target hyperplane
Differentiating

1_22 wxxj+2)\wj—0

In matrix form, the argmin is
w=XT(\+xxT) 1y,

where X - train matrix, y - a vector of train labels.
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So, we do regression with the optimal weights

w=X"(\+XxxT) 1y

Prediction step: given x’ - a vector from the test set,

[(M 4+ XXT) 1y T Xx’
= [(M+ /C(X,X))_ly]T - K(X,x") < kernel trick

y =w'x

Regularization term A helps to stabilize the numerical inverse by bounding
the smallest eigenvalues away from zero.
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INNN—,
Kernel Ridge Regression

2. Kernel trick
e map points to higher-dimensional feature space using function ¢(x)

(e.g. x = @(x)]).
o replace scalar product in the new space by kernel function K

K(xi, x7) = (0(xi), (%))

Properties of K:
e positive semi-definite
e often much faster to compute than ¢(x) themselves

e can be applied if method depends on scalar products

X.S. Li Kernel Ridge Regression September 26 8 /57



Prediction

Separation can be easier in higher dimensions

®
® [
®
= feat 3
@ eature &
map
® @
° ] rating
yperplane

complex in low dimensions simple in higher dimensions

(picture is found in Radha Chitta presentation on Kernel K-Means)
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Kernel matrix can be easy to compute

Suppose higher-dimensional features are second order terms of x's:
X1X1
X1X2
P(x) = | xx

XnXn

Then the scalar product

n

K(x,2) = o(x)To(2) = ) (xix)(ziz)) =

ij=1

E Xizj) g xjzj) = (x 2)2

Note: calculating the h|gh—d|men5|onal ©(x) requires O(n?) time, finding
K(x, z) takes only O(n) time - linear in dimension of input attributes.
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Algorithm for binary classification with the Gaussian kernel

® Compute kernel matrix K:

N b 5 )
for all x;, x; from the train set
® Compute the weights by solving linear system (y - train labels)
v: y=A+K)v
©® Compute kernel vector K’ for the test vector x':
K'(i) = exp(~Ixi — x'[[3/21?)
O Predict the sign

y' = sign{v, K’)
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Ways to improve KRR efficiency

Fast equation solve: compressed representation of kernel matrices

Clustering points

Hyperparameter optimization

Sampling methods
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Low-rank compression

Fast equation solve

Kernel matrices are good candidates for compression:
e contain many similar elements, amenable to low-rank compression

e but usually full rank - ones on diagonal, off-diagonal blocks are

low-rank
i i . I- — — I-
Hierarchical matrices are = il
compressed representation I_ _ I:I_
of dense matrices. I |

HT‘I_ REE
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Low-rank compression

Hierarchical matrix formats

o M 13
2 P 13
Py 13
13 | % 1 3
- g 13
i 13
13 [ P
13 |
H-matrix (W. Hackbusch et al.) HSS matrix (J Xia et al.)
O(r N log N) O(r N)
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Hierarchically Semi-Separable matrices (HSS)

X.S. Li

1}1}] e Diagonal blocks are full rank: D, = A(l, I;)
., ® Off-diagonal blocks as low-rank:

V2 Yy

1_4,}1‘“}1 .
I‘}lm ! AV1,V2 = A(/V17 IVz) = UV1 BVL v,

e Column bases U and row bases V* are
nested:

_ UV1 0 small _ Vl/1 0 small
U‘I‘ - |: 0 UV2:| UT 7\/7' - |: 0 VI/2 VT
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HSS matrix — ULV factorization

ULV-like factored form (U and V* unitary, L triangular)

! Q3 Q3 T !
r Q M3besase Qq A QZ r3;b<—>4;t Ql* rT
1b<>2;t | Me. . Q. QF T | 1,b<»2;t
5iber6it 5 5 . T5besit N
Qb Qs @ @
L3
0 Ly
(L4 3)e (L3,4)¢ Ly
Ls
_ 0 0 Le
(L6,5)¢ (QLs,6)¢ Ly
Ve Qe Ve Qg I
ol oL Wi, OF 5 v [V5 Qs 5 Qs:p
(Q1L4,3)p (QL3,4)p 1:6Q1¢ 1,2V [ VRS, Ve Qe Q5
Vi Qs V3 Q3 ! *
* it 3; s
B.1V; Ve Qs VZ‘QI;J [ QT} (Q22L6,5)p (Q22Ls5,6)p Wa;b Q4
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Clustering

Goal: in the context of kernel matrix, find good ordering to improve low
rankness.

@ Find groups of points with large between-group distances and small
within-group distances

® Permute matrix K so that the points of each group occupy
consecutive indices, so they will form dense diagonal blocks
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Clustering

Clustering methods

Machine Learning in Python, http://scikit-learn.org/stable/

MiniBatchKMeansAffinityPr ion  MeanShift  SpectralClusterin Ward _ AgglomerativeClustering DBSCAN i Gaussi ure
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Specific requirements on clustering

e Clusters should be small enough (otherwise dense HSS-blocks use too
much memory)

e Clusters should have similar size

e Need to construct the whole hierarchical tree of embedded clusters
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HSS tree reminder

Clustering

Every vertex of a tree corresponds to a consecutive range of indices,
representing sub-block. In every iteration this range is splitted into two

children sub-ranges.

Ii" = I {0,...,7}
o . A~
v il T4 {0,...,3} {4,..., 7}
7\ LN LN
" " o'y ™ {o,1} {2,3} {4,5} {8,7}
A M !
.-’f \! /\ :'/\ \\ / \« /‘\\ f/\
' VY ® {0} {1} {2} {3} {4} {5} {6} {7}
1 I, Ige i3 ST
I..
I.
I - — —
I..
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Clustering

Trees

1. Natural tree

O

e number of levels is chosen to get good leaf size
e does not use any information about mutual distances

e |east efficient method
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Clustering

Divisive trees

2. KD tree

e At every step, choose some dimension (feature)
ie{l,...,d}, as the splitting pivot

e Split all the points in two classes with respect
to a mean/median of the column i

e Better to choose pivot direction as the
direction of maximum spread o

e Easy to implement 4
widely used in similar tasks

e Requires small number of features
(tall-skinny data matrix)
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Clustering

Divisive trees

3. Recursive two means
a) Start with dividing all the points into two clusters

Step 1 Step 2 Step 3

Step 4 Step § Step 6

b) Divide each cluster into two using the same method
c) Continue splitting until min cluster size achieved
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Clustering

Divisive trees

3. Recursive two means - continued

Best in terms of memory achieved

Quite optimal in other measures (rank, compression quality)

Variation in rank

Optimal min cluster size is ~ 100 heuristically, regardless of data
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Datasets — UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/index.php

e SUSY, HEPMASS: high-energy Physics
e COVTYPE: forest type, cartographic variables
e PEN, LETTER, MNIST: handwritten digits and letters

e GAS: concentration levels of gases
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Clustering

Clustering effect

—+— Natural
—=-Kd
—— PCA 1

— —o— 2 Means
2 102k E
& r ]
2 L ]
5)
g L i
[} L 4
=
10' E
L1 L L L MR T
10° 10!
h
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Hyperparameter

Hyperparameter tuning (h, \)

M + K, Gaussian kernel K(i,j) = exp( %)
e When X changes, only need to update diagonal of HSS

e When h changes, need to recompress HSS <« expensive

Grid Search 1282 runs OpenTuner optimization 100 runs
opentuner.org
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Sampling methods

Low rank compression via randomized sampling (RS)

Approximate range of A:
@ Pick random matrix an(k+p), k target rank, p small, e.g. 10
® Sample matrix S = AQ, with slight oversampling p
©® Compute @ =ON-basis(S)via RRQR

Accuracy: [Halko, Martinsson, Tropp, '11]

e On average: E(||A— QQ*A|) = (1 + 4P7V5J{p\/min{m, n}) Ok+1
e Probabilistic bound: with probability > 1 —3-107P,
1A — QQ*A| < [1+9vVk + py/min{m, n}] ok+1

(in 2-norm)
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Sampling methods

Low rank compression via randomized sampling (RS)

Approximate range of A:
@ Pick random matrix an(k+p), k target rank, p small, e.g. 10
® Sample matrix S = AQ, with slight oversampling p
©® Compute @ =ON-basis(S)via RRQR

Accuracy: [Halko, Martinsson, Tropp, '11]

o On average: E(|A— QQ*A||) = (1 + “g@\/m) That
e Probabilistic bound: with probability > 1 —3-107P,
|A— QQ*Al| < [L+9yK T py/min{m, n}] o1
(in 2-norm)
Benefits:
e Matrix-free, only need matvec

e When embedded in sparse frontal solver, simplifies “extend-add”
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Sampling methods

Time bottleneck is in sampling

SUSY: n=45M,d =8, A=4, h=1
COVTYPE: n=05M,d =54, A=1 h=1

SUSY COVTYPE
Cores 32 512 32 512

‘H construction 173.7 | 183 | 36.5 | 32.2

HSS construction | 3344.4 | 726.7 | 432.3 | 239.7

— Sampling 2993.5 | 662.1 | 305.2 | 178.4
— Other 3509 | 64.6 | 127.1 | 61.3
ULV Factorization | 14.2 3.3 265 | 4.6
Solve 0.5 0.3 0.5 0.4

What exactly takes so long?
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Sampling methods

Approximate bases of submatrices

As part of HSS construction we need to approximate bases of all
rectangular (off-diagonal) parts, and later of their unions:

Figure: respective parts of B contain approx bases of parts of A

Slow way: via Gaussian projection (complexity O(n?r) with r = num rank;
H-matrix is constructed to speed up matrix-matrix multiplication)
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Sampling methods

Approximate bases of submatrices - 2

As part of HSS construction we need to approximate bases of all
rectangular (off-diagonal) parts, and later of their unions:

Figure: approx bases consist of red columns of A

New way: find column basis (r most important columns - how?)
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Sampling methods

Neighbor-based importance column sampling

Idea: Important entries in each row (for kernel matrix) =
neighbors of the respective data point

e Find r approximate neighbors of each data point in
O(dnlog? n) time (see Freund & Dasgupta about
randomized projection trees)

e Use these column indices to define important columns  (projection tree picture is
in each rectangular subblock (see Biros et al about taken from Dasgupta &
GOFMM algorithm) Sinha s paper)

e Drop some less important columns when passing to
higher levels, this keeps complexity low

X.S. Li Kernel Ridge Regression September 26 32 /57



Sampling methods

(Preliminary) experimental results

Gaussian sampling Column based sampling Accuracy
solution quality |time (s) |target rank solution quality Itime (s) |target rank
COVTYPE, 10K 0.0014 43 1300 -> 1364 0.0014 12 1300 97.10%
SUSY, 10K 0.017 107 2000 -> 2200 0.03 53 2000 80.20%

Figure: tolerance 0.01, h and X are chosen by cross-validation

Next steps:
o Make target rank adaptive
e Test on large datasets e.g. O(10°)

e Accommodate more general kernels (using neighbors in
kernel-provided metric instead of Euclidean)
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Algorithm scalability

SUSY dataset, n varies to 4.5M

e ———rr T 10% F—t T T T
F | —e— Factorization

T
L

[|—e—Solve
10° E 10 [ E
= f E E i
= [ ] = [
Z r 1 g 100k 4
3 g E 3
S 2L 4 = E E
g 10°E 3 = 3 b
= E 3 [ ]
[ ] 1071 g E
10t E E E ]
B Y B H“m‘: 10-2 ! ! ! !
10* 10° 106 0.5M 1.0M 2.5M 4.5M
N N
Memory Run time
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Sampling methods

STRUMPACK - STRUctured Matrices PACKage

http://portal.nersc.gov/project/sparse/strumpack/

e Two components:
e Dense — applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
e Sparse — aim at matrices discretized from PDEs.
e Open source on Github, BSD license.
o C++, hybrid MPI + OpenMP implementation
e Real & complex datatypes, single & double precision (via template),
and 64-bit indexing.
e Input interfaces:
e Dense matrix in standard format.
e Matrix-free, with query function to return selected entries.
e Sparse matrix in CSR format.
e Can take user input: cluster tree & block partitioning.
e Functions:
e HSS construction, HSS-vector product, ULV factorization, Solution.
e Available from PETSc, MFEM.
e Extensible to include other data-sparse formats.
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PENDIGITS example

e 7494 points in the training set
e 3498 points in the test set

e Every data point {x1,y1,x0,¥2,...,xs, yg} € R® contains 8
coordinates (x;, y;) regularly spaced in arc length along a written digit
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PENDIGITS challenge: multi-class prediction

@ We had 10 classifiers of the type "two or not two”.
e Need to assign "most likely class”. So, in step 4

sign{v, K') — argmax,_;_10{v¢, K')

gives the most confidently predicted number.
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PENDIGITS - parameters and results

Parameters:
tolerance = 1e-03

e regression parameters: A =10,h =5

number of Gaussian samples = 500
e tree type = top down recursive 2-means tree
Results:
e Memory used : 4.630 MB, 1.03% of dense
e Max rank in compression: 52
e Compression quality: 5e-06
e Accuracy = 0.9774 (79 points were misclassified out of 3498)
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

g 7 (predicted 3)

] 10 20 a0 40 50 60 70 80 90 100

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

y 9 (predicted 7)

] 10 20 a0 40 50 60 70 80 90 100

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

g 4 (predicted 5)

] 10 20 a0 40 50 60 70 80 90 100

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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PENDIGITS - guess the number:)

g 3 (predicted 9)

] 10 20 a0 40 50 60 70 80 a0 100

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

Conclusions

e Hierarchical matrices provide an optimal strategy to perform kernel
ridge regression.

e This approach proves most beneficial for datasets with low to
moderate dimension.

e Interpretable method, based on linear systems.

X.S. Li Kernel Ridge Regression September 26 55 / 57



Acknowledgement

This research was supported by the Exascale Computing Project
(http://www.exascaleproject.org), a joint project of the U.S. Department
of Energys Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nations exascale
computing imperative.

Project Number: 17-SC-20-SC

X.S. Li Kernel Ridge Regression September 26 56 / 57



Sampling methods

THANK YOU!
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