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Plan

• Introduction of Kernel Ridge Regression

• How to improve efficieny of KRR?
• compressed representation of kernel matrices
• clustering points
• hyperparameter optimization
• sampling methods
• ...
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Introduction

Kernel matrices

Intuitively, kernel matrices can be viewed as similarity matrices

K (i , j) = similarity score xi ↔ xj ,

where K is n × n positive semi-definite matrix, defined by a set of objects
x1, . . . , xn.

X.S. Li Kernel Ridge Regression September 26 3 / 57



Introduction

Kernel example

Gaussian kernel
Similarity is closeness in Euclidean
distance, h is reweighting.

K (i , j) = exp

(
−‖xi − xj‖2

2

2h2

)
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Introduction

More kernel examples

• Laplacian kernel

K (i , j) = exp

(
−‖xi − xj‖2

h

)
• Linear kernel Similarity is the length of the projection of one vector on

another.
K (i , j) = 〈xi , xj〉

• Degree d polynomial kernel

• Sigmoid neural network kernel

• . . .
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Prediction

Kernel Ridge Regression
= Ridge Regression + Kernel Trick

1. Ridge regression
Want to minimize the cost function:

C (w) =
∑
i

(yi −wTxi )
2 + λ‖w‖2 → min

• xi ’s are data points (rows of the data matrix X n×d)
• yi ’s are their labels
• w is the normal vector to the target hyperplane

Differentiating

C ′(w)j = 2
∑
i

(yi −wTxi )xj + 2λwj = 0

In matrix form, the argmin is

w = XT (λI + XXT )−1y,

where X - train matrix, y - a vector of train labels.
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Prediction

So, we do regression with the optimal weights

w = XT (λI + XXT )−1y

Prediction step: given x ′ - a vector from the test set,

y ′ := wTx’ = [(λI + XXT )−1y]TXx’

= [(λI +K(X ,X ))−1y]T · K(X , x’)← kernel trick

Regularization term λ helps to stabilize the numerical inverse by bounding
the smallest eigenvalues away from zero.
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Prediction

Kernel Ridge Regression

2. Kernel trick

• map points to higher-dimensional feature space using function ϕ(x)
(e.g. x 7→ ϕ(x)]).

• replace scalar product in the new space by kernel function K

K (xi , xj) = 〈ϕ(xi ), ϕ(xj)〉.

Properties of K :

• positive semi-definite

• often much faster to compute than ϕ(x) themselves

• can be applied if method depends on scalar products

X.S. Li Kernel Ridge Regression September 26 8 / 57



Prediction

Separation can be easier in higher dimensions

(picture is found in Radha Chitta presentation on Kernel K-Means)
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Prediction

Kernel matrix can be easy to compute

Suppose higher-dimensional features are second order terms of x ′i s:

ϕ(x) =


x1x1

x1x2

x2x1

. . . .
xnxn


Then the scalar product

K (x , z) := ϕ(x)Tϕ(z) =
n∑

i ,j=1

(xixj)(zizj) =

= (
n∑

i=1

xizi )(
n∑

j=1

xjzj) = (xT z)2.

Note: calculating the high-dimensional ϕ(x) requires O(n2) time, finding
K (x , z) takes only O(n) time - linear in dimension of input attributes.
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Prediction

Algorithm for binary classification with the Gaussian kernel

1 Compute kernel matrix K :

K (i , j) = exp

(
−‖xi − xj‖2

2

2h2

)
for all xi , xj from the train set

2 Compute the weights by solving linear system (y - train labels)

v : y = (λI + K )v

3 Compute kernel vector K ′ for the test vector x’:

K ′(i) = exp(−‖xi − x’‖2
2/2h2)

4 Predict the sign
y ′ := sign〈v,K ′〉
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Prediction

Ways to improve KRR efficiency

• Fast equation solve: compressed representation of kernel matrices

• Clustering points

• Hyperparameter optimization

• Sampling methods

• ...
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Low-rank compression

Fast equation solve

Kernel matrices are good candidates for compression:

• contain many similar elements, amenable to low-rank compression

• but usually full rank - ones on diagonal, off-diagonal blocks are
low-rank

Hierarchical matrices are
compressed representation
of dense matrices.

X.S. Li Kernel Ridge Regression September 26 13 / 57



Low-rank compression

Hierarchical matrix formats

H-matrix (W. Hackbusch et al.)
O(r N log N)

HSS matrix (J Xia et al.)
O(r N)
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Low-rank compression

Hierarchically Semi-Separable matrices (HSS)

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36
T

D1

D2

D4

D5

V2

U5
V4

U4
V5

• Diagonal blocks are full rank: Dτ = A(Iτ , Iτ )

• Off-diagonal blocks as low-rank:

Aν1,ν2 = A(Iν1 , Iν2) = Uν1Bν1,ν2V
∗
ν2

• Column bases U and row bases V ∗ are
nested:

Uτ =

[
Uν1 0
0 Uν2

]
Usmall
τ ,Vτ =

[
Vν1 0
0 Vν2

]
V small
τ
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Low-rank compression

HSS matrix – ULV factorization

ULV-like factored form (U and V ∗ unitary, L triangular)

Γ1;b↔2;t


I

Ω1
I

Ω2

[Γ3;b↔4;t
Γ5;b↔6;t

]
Ω3

Ω4
Ω5

Ω6

A

Q∗3

Q∗4
Q∗5

Q∗6


[

ΓT3;b↔4;t

ΓT5;b↔6;t

]
I
Q∗1

I
Q∗2

 ΓT1;b↔2;t

=



L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗
1;t B1,2V

∗
2

[
V∗5 Q∗5;t V∗5 Q∗5;b

V∗6 Q∗6;t V∗6 Q∗6;b

] [
I
Q∗2

]
D0

B2,1V
∗
1

[
V∗3 Q∗3;t V∗3 Q∗3;b

V∗4 Q∗4;t V∗4 Q∗4;b

] [
I
Q∗1

]
(Ω2L6,5)b (Ω2L5,6)b W2;bQ

∗
2;t


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Clustering

Clustering

Goal: in the context of kernel matrix, find good ordering to improve low
rankness.

1 Find groups of points with large between-group distances and small
within-group distances

2 Permute matrix K so that the points of each group occupy
consecutive indices, so they will form dense diagonal blocks
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Clustering

Clustering methods

Machine Learning in Python, http://scikit-learn.org/stable/
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Clustering

Specific requirements on clustering

• Clusters should be small enough (otherwise dense HSS-blocks use too
much memory)

• Clusters should have similar size

• Need to construct the whole hierarchical tree of embedded clusters
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Clustering

HSS tree reminder

Every vertex of a tree corresponds to a consecutive range of indices,
representing sub-block. In every iteration this range is splitted into two
children sub-ranges.

(picture is taken from Alexander Litvinenko presentation slides)
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Clustering

Trees

1. Natural tree

• number of levels is chosen to get good leaf size

• does not use any information about mutual distances

• least efficient method
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Clustering

Divisive trees

2. KD tree

• At every step, choose some dimension (feature)
i ∈ {1, . . . , d}, as the splitting pivot

• Split all the points in two classes with respect
to a mean/median of the column i

• Better to choose pivot direction as the
direction of maximum spread

• Easy to implement
widely used in similar tasks

• Requires small number of features
(tall-skinny data matrix)
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Clustering

Divisive trees

3. Recursive two means
a) Start with dividing all the points into two clusters

b) Divide each cluster into two using the same method
c) Continue splitting until min cluster size achieved
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Clustering

Divisive trees

3. Recursive two means - continued

• Best in terms of memory achieved

• Quite optimal in other measures (rank, compression quality)

• Variation in rank

• Optimal min cluster size is ∼ 100 heuristically, regardless of data
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Clustering

Datasets – UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/index.php

• SUSY, HEPMASS: high-energy Physics

• COVTYPE: forest type, cartographic variables

• PEN, LETTER, MNIST: handwritten digits and letters

• GAS: concentration levels of gases
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Clustering

Clustering effect
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Hyperparameter

Hyperparameter tuning (h, λ)

λI + K , Gaussian kernel K (i , j) = exp
(
−‖xi−xj‖

2
2

2h2

)
• When λ changes, only need to update diagonal of HSS

• When h changes, need to recompress HSS ← expensive
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Sampling methods

Low rank compression via randomized sampling (RS)

Approximate range of A:

1 Pick random matrix Ωn×(k+p), k target rank, p small, e.g. 10

2 Sample matrix S = AΩ , with slight oversampling p

3 Compute Q =ON-basis(S) via RRQR

Accuracy: [Halko, Martinsson, Tropp, ’11]

• On average: E (‖A− QQ∗A‖) =
(

1 + 4
√
k+p

p−1

√
min{m, n}

)
σk+1

• Probabilistic bound: with probability ≥ 1− 3 · 10−p,
‖A− QQ∗A‖ ≤ [1 + 9

√
k + p

√
min{m, n}] σk+1

(in 2-norm)

Benefits:

• Matrix-free, only need matvec

• When embedded in sparse frontal solver, simplifies “extend-add”
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Sampling methods

Time bottleneck is in sampling

SUSY: n = 4.5M, d = 8, λ = 4, h = 1
COVTYPE: n = 0.5M, d = 54, λ = 1, h = 1

SUSY COVTYPE

Cores 32 512 32 512

H construction 173.7 18.3 36.5 32.2

HSS construction 3344.4 726.7 432.3 239.7

−→ Sampling 2993.5 662.1 305.2 178.4

−→ Other 350.9 64.6 127.1 61.3

ULV Factorization 14.2 3.3 26.5 4.6

Solve 0.5 0.3 0.5 0.4

What exactly takes so long?
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Sampling methods

Approximate bases of submatrices

As part of HSS construction we need to approximate bases of all
rectangular (off-diagonal) parts, and later of their unions:

A Br

n ∗ =
N(0, 1)

Figure: respective parts of B contain approx bases of parts of A

Slow way: via Gaussian projection (complexity O(n2r) with r = num rank;
H-matrix is constructed to speed up matrix-matrix multiplication)
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Sampling methods

Approximate bases of submatrices - 2

As part of HSS construction we need to approximate bases of all
rectangular (off-diagonal) parts, and later of their unions:

A

n

Figure: approx bases consist of red columns of A

New way: find column basis (r most important columns - how?)
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Sampling methods

Neighbor-based importance column sampling

Idea: Important entries in each row (for kernel matrix) =
neighbors of the respective data point

• Find r approximate neighbors of each data point in
O(dn log2 n) time (see Freund & Dasgupta about
randomized projection trees)

• Use these column indices to define important columns
in each rectangular subblock (see Biros et al about
GOFMM algorithm)

• Drop some less important columns when passing to
higher levels, this keeps complexity low

(projection tree picture is

taken from Dasgupta &

Sinha s paper)
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Sampling methods

(Preliminary) experimental results

Figure: tolerance 0.01, h and λ are chosen by cross-validation

Next steps:

• Make target rank adaptive

• Test on large datasets e.g. O(106)

• Accommodate more general kernels (using neighbors in
kernel-provided metric instead of Euclidean)
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Sampling methods

Algorithm scalability

SUSY dataset, n varies to 4.5M
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Sampling methods

STRUMPACK – STRUctured Matrices PACKage
http://portal.nersc.gov/project/sparse/strumpack/

• Two components:
• Dense – applicable to Toeplitz, Cauchy, BEM, integral equations, etc.
• Sparse – aim at matrices discretized from PDEs.

• Open source on Github, BSD license.
• C++, hybrid MPI + OpenMP implementation
• Real & complex datatypes, single & double precision (via template),

and 64-bit indexing.
• Input interfaces:

• Dense matrix in standard format.
• Matrix-free, with query function to return selected entries.
• Sparse matrix in CSR format.

• Can take user input: cluster tree & block partitioning.
• Functions:

• HSS construction, HSS-vector product, ULV factorization, Solution.

• Available from PETSc, MFEM.
• Extensible to include other data-sparse formats.
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Sampling methods

PENDIGITS example

• 7494 points in the training set

• 3498 points in the test set

• Every data point {x1, y1, x2, y2, . . . , x8, y8} ∈ R16 contains 8
coordinates (xi , yi ) regularly spaced in arc length along a written digit
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Sampling methods

PENDIGITS challenge: multi-class prediction

1 We had 10 classifiers of the type ”two or not two”.
• Need to assign ”most likely class”. So, in step 4

sign〈v,K ′〉 7→ argmaxt=1...10〈vt ,K ′〉

gives the most confidently predicted number.
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Sampling methods

PENDIGITS - parameters and results

Parameters:

• tolerance = 1e-03

• regression parameters: λ = 10, h = 5

• number of Gaussian samples = 500

• tree type = top down recursive 2-means tree

Results:

• Memory used : 4.630 MB, 1.03% of dense

• Max rank in compression: 52

• Compression quality: 5e-06

• Accuracy = 0.9774 (79 points were misclassified out of 3498)
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

8

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors

X.S. Li Kernel Ridge Regression September 26 40 / 57



Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

0

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

4

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

9

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

7 (predicted 3)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

9 (predicted 7)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

4 (predicted 5)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

?

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

PENDIGITS - guess the number:)

3 (predicted 9)

Blue numbers - predicted correctly, magenta - correct for some experiments, red - errors
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Sampling methods

Conclusions

• Hierarchical matrices provide an optimal strategy to perform kernel
ridge regression.

• This approach proves most beneficial for datasets with low to
moderate dimension.

• Interpretable method, based on linear systems.
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Sampling methods
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Sampling methods

THANK YOU!
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