

Numerical Data Mining with Sparse Grids at Extreme Scale

IPAM, Big Data meets Large-Scale Computing

Dirk Pflüger

Institute for Parallel and Distributed Systems / SimTech Cluster of Excellence, University of Stuttgart

September 25, 2018

General Problem: High Dimensionalities

High dimensionalities

www.simtech.uni-stuttgart.de

General Problem: High Dimensionalities

General Problem: High Dimensionalities

General Problem: High Dimensionalities

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Motivation: High Dimensionalities

Representation of higher-dimensional functions

- Required in plenty of applications: Quadrature, interpolation, PDEs, ...
- Often as subtask

SimTech

• Often implicitely given: no explicit/simple function formulation

Motivation: High Dimensionalities

Representation of higher-dimensional functions

- Required in plenty of applications: Quadrature, interpolation, PDEs, ...
- Often as subtask

SimTech

• Often implicitely given: no explicit/simple function formulation

Conventional approach in low dimensions (\leq 4)

- Numerics, (spatial) discretization
- (Piecewise) polynomials, finite differences/elements/volumes, ...
- Typically functions of type

$$f \approx f_N(\vec{x}) := \sum_{i=1}^N \alpha_i \varphi_j(\vec{x})$$

Apply SciComp and HPC to DM

Curse of dimensionality

er of Excellence

- Straightforward discretizations fail
- *N* grid points in $1D \Rightarrow N^d$ grid points in dD
- Therefore: Sparse Grids

Apply SciComp and HPC to DM

Curse of dimensionality

SimTech

- Straightforward discretizations fail
- *N* grid points in $1D \Rightarrow N^d$ grid points in dD
- Therefore: Sparse Grids

Typical alternatives:

- Data dependent methods
 - Drawback: strong dependency on size/number of data points
- Stochastic methods
 - Drawback: no explicit function representation at hand

Apply SciComp and HPC to DM

Curse of dimensionality

SimTech

- Straightforward discretizations fail
- *N* grid points in $1D \Rightarrow N^d$ grid points in dD
- Therefore: Sparse Grids

Typical alternatives:

- Data dependent methods
 - Drawback: strong dependency on size/number of data points
- Stochastic methods
 - Drawback: no explicit function representation at hand

Here: numerical data mining

- Take knowledge from SciComp and HPC
- Apply to Data Mining
- How parallel can we get?

Overview

Motivation: High Dimensionalities

Adaptive Sparse Grids to Counter the Curse

Numerical Data Mining and HPC

- Regression and Classification
- Density Estimation
- Clustering based on density estimation

Summary

Basic Idea: Hierarchical Basis

Hierarchical basis in 1d (here: piecewise linear)

adaptive, incremental

Example: Interpolation 1d

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Å

Sparse Grids, Basic Idea (2)

• Extension to *d*-dimensions via tensor product: $\varphi(\vec{x}) = \prod_{k=1}^{d} \varphi_k(x_k)$

luster of Excellence

SimTech

• Sparse grid space $V_n^{(1)}$:

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

K

Sparse Grids, Examples

- Optimal selection of subspaces leads to sparse grid space $V_n^{(1)}$
- Examples for underlying sparse grids for level 6 in 2 and 3 dimensions

SimTech

Sparse Grids – Properties

- For sufficiently smooth functions, i.e. $\left|D^{\vec{2}}f\right| = \left|\frac{\partial^{2d}}{\partial x_{i}^{2}\cdots\partial x_{j}^{2}}f\right|$ bounded:
 - Order of magnitudes less costs (number of grid points)
 - Similar accuracy (interpolation, ellipt. PDEs)

	full grid	sparse grids
costs error (L^2 , L^∞)	N ^d h _n	$N \log(N)^{d-1}$ $h_a^2 \log(N)^{d-1}$

- Higher dimensionalities feasible
- Adaptive approach
- Algorithms more complicated (multi-recursive)

Combination Technique vs. Hierarchical Basis

X

Combination Technique vs. Hierarchical Basis

SimTech

http://sgpp.sparsegrids.org

- General framework for (spatially adaptive) sparse grids
- Open source
- Active development
- Extensible (write/contribute your own module)

- Motivation: High Dimensionalities
- Adaptive Sparse Grids to Counter the Curse

Numerical Data Mining and HPC

- Regression and Classification
- Density Estimation
- Clustering based on density estimation

Summary

SimTech

uster of Excellence

• Think of non-linear regression in several dimensions

www.simtec

SimTech

Data-Driven: Classification and Regression

- Think of non-linear regression in several dimensions
- Scattered data approximation problem:
 - Reconstruct unknown $f(\vec{x})$, represented by

$$S = \{ (\vec{x}_i, y_i) \in [0, 1]^d \times T \}_{i=1}^m$$

- Classification: $T = \{-1, +1\}$, regression: $T = \mathbb{R}$
- Noisy data
- Predict $f(\vec{x})$ for new datapoints \vec{x}
- Problems arise in finance, physics, ...

- Ill-posed problem + deal with noise:
 - Thikonov regularization

minimize
$$H[f] = rac{1}{m} \sum_{i=1}^m (y_i - f(ec{x}_i))^2 + \lambda \|f\|_{\mathcal{H}^{lpha}_{0,\mathrm{mix}}}^2$$

- cost/error: ensure closeness to training data
- Smoothness functional: close data \rightarrow similar function value
- trade-off via λ : regularization parameter

- Ill-posed problem + deal with noise:
 - Thikonov regularization

minimize
$$H[f] = rac{1}{m}\sum_{i=1}^m(y_i-f(ec{x}_i))^2+\lambda\|f\|^2_{H^{lpha}_{0,\mathrm{mix}}}$$

- cost/error: ensure closeness to training data
- Smoothness functional: close data \rightarrow similar function value
- trade-off via λ : regularization parameter
- Minimization leads to linear system

$$\left(\lambda C + B \cdot \frac{1}{m} B^{T}\right) \vec{\alpha} = \frac{1}{m} B \vec{y}$$

with (simplest, e.g.) $C = I$
 $B_{ii} = \phi_{i}(\vec{x}_{i})$

Introducing Numerics

- Classical approaches
 - SVM, NN, TPS, ... can be formulated with same approach
 - Are data dependent, typically $\Omega(m^2)$
- Data independent approach [Garcke, Griebel, Thess, 2001]
 - Introduce some degree of data-independence
 - Discretize space, apply ansatz functions associated to grid points
 - Well-suited for vast datasets only $\mathcal{O}(m)$
 - Obtain explicit $f(\vec{x})$ (more informational value)

Introducing Numerics

- Classical approaches
 - SVM, NN, TPS, ... can be formulated with same approach
 - Are data dependent, typically $\Omega(m^2)$
- Data independent approach [Garcke, Griebel, Thess, 2001]
 - Introduce some degree of data-independence
 - Discretize space, apply ansatz functions associated to grid points
 - Well-suited for vast datasets only $\mathcal{O}(m)$
 - Obtain explicit $f(\vec{x})$ (more informational value)
- Restrict to finite dimensional subspace V_N

basis
$$\{\varphi_i(\vec{x})\}_{i=1}^N$$
; $f_N(\vec{x}) = \sum_{i=1}^N \alpha_i \varphi_i(\vec{x})$

- Curse of dimensionality \Rightarrow sparse grids
- Solve linear system with CG, e.g.

Introducing Numerics

- Classical approaches
 - SVM, NN, TPS, ... can be formulated with same approach
 - Are data dependent, typically $\Omega(m^2)$
- Data independent approach [Garcke, Griebel, Thess, 2001]
 - Introduce some degree of data-independence
 - Discretize space, apply ansatz functions associated to grid points
 - Well-suited for vast datasets only $\mathcal{O}(m)$
 - Obtain explicit $f(\vec{x})$ (more informational value)
- Restrict to finite dimensional subspace V_N

basis
$$\{\varphi_i(\vec{x})\}_{i=1}^N$$
; $f_N(\vec{x}) = \sum_{i=1}^N \alpha_i \varphi_i(\vec{x})$

- Curse of dimensionality \Rightarrow sparse grids
- Solve linear system with CG, e.g.

X

www.simtech.uni-stuttgart.de

Large Data Sets and High Dimensions

Linear scaling in number of training data – O(m) Plus save in grid points:

Linear scaling in number of training data – O(m)Plus save in grid points:

Adaptive Refinement

SimTech

uster of Excellence

Large Data Sets and High Dimensions

Linear scaling in number of training data – O(m)Plus save in grid points:

Adaptive Refinement

SimTech

luster of Excellence

Appropriate boundary treatment + suitable basis

Classification: Recognition of Handwritten Digits

• 8x8 pattern, *d* = 64

SimTech

- 3823 training, 1797 testing
- One classifier for each class

 $\underset{j \in \{0,...,9\}}{\operatorname{arg\,max}} f_N^{(j)}(\vec{x})$

	2	

• Comparison with two benchmark studies [Devi02,Oliv.06]:

Accuracy
98.00%
97.74%
97.45%
97.27%
95.33%
89.05%

Classification: Recognition of Handwritten Digits

• 8x8 pattern, *d* = 64

of Excellence

SimTech

- 3823 training, 1797 testing
- One classifier for each class

 $\underset{j \in \{0,...,9\}}{\operatorname{arg\,max}} f_N^{(j)}(\vec{x})$

	2	

• Gridpoints per level for one of the classifiers (no boundary points)

level $(l _1 - d + 1)$	full grids	regular sg	adaptive sg
1	1	1	1
2	728	128	128
3	116,920	8,324	993
4	11,272,976	366,080	510
5	876,113,056	12,263,680	128
\sum	887,503,681	12,638,213	1,760

www.simtech.uni-stuttgart.de

Application: Cosmol. Redshift Estimation

Application: Cosmol. Redshift Estimation

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

X

Application: Cosmol. Redshift Estimation

- Spectroscopic measurements expensive but accurate, photometric ones cheap
- Photometric measurements to predict spectroscopic parameters
- Five parameters (magnitudes: brightness measure for opt. filter)
- Large dataset: 430,000 data points; 60,000 for testing

Here:

- Refinement criteria critical
- Refining single grid point too greedy

Results: Big Data

• Best results training on whole dataset (370,000/430,000)

Method	$\sigma_{ m rms}$
CWW [csabai03]	0.0666
Bruzual-Charlot [csabai03]	0.0552
Interpolated spectra [csabai03]	0.0451
1 ^{rst} -nearest neighbors [csabai03]	0.0365
ClassX [suchkov05]	0.0340
Polynomial fit [csabai03]	0.0318
SVMs [wadadekar05]	0.027
Kd-tree [csabai03]	0.0254
Adaptive sparse grids	0.0220

Note: slightly different datasets

• Training time: 300,000s

Towards Efficient Software: Algorithms

- Solving iteratively $(\lambda m I + B \cdot B^T) \vec{\alpha} = B \vec{y}$
- Core: function evaluations: $(B^T \vec{\alpha})_i = f_N(\vec{x}_i)$
- Algorithmically efficient: $\mathcal{O}(\log(N)^d)$ for $\mathcal{O}(N \log(N)^{d-1})$ basis functions

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech

uster of Excellence

Hardware

SimTech

uster of Excellence

Problem: modern hardware architectures

- Algorithm: multi-recursive, if statements, jumps in memory
- But: vector registers, pipelining, cache-hierarchy, accelerators, branch-divergence

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Universität Stuttgart

Germany

Hierarchical Basis and Data Structures

• Overlapping basis functions, tree-like data structures

$$f(\vec{x}) = \sum_{\vec{i} \in \mathcal{L}} \sum_{\vec{i} \in \mathcal{I}_{\vec{i}}} \alpha_{\vec{i},\vec{i}} \prod_{k=1}^{d} \varphi_{k_k,i_k}(x_k)$$

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech

luster of Excellence

Å

Efficient Hardware: e.g. P100

Vast vector units: uniform computations required

• Algorithmically inefficient approach: $\mathcal{O}(dN \log(N)^{d-1} \cdot m)$

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech

luster of Excellence

- Algorithmically inefficient approach: *O*(*dN* log(*N*)^{*d*−1} · *m*)
- Redshift dataset (410,000 data points, 5d)
- 6x 100 refined each, 16x more evaluations
- \approx 300,000 $s \rightsquigarrow$ 15,800 $s \rightsquigarrow$ 350s (DP \rightsquigarrow SP)

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech

SimTech

- Data Mining shared and distributed on HPC:
 - SuperMUC, 32.768 cores: 3.6 s
 - 23% theoretical peak performance

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Å

Hybrid Hardware – Auto-Tuning

Current challenges:

SimTech

- Hybrid Hardware, multiple vendors
- Inhomogeneous setting

Idea:

- Automatic tuning to hardware
- Code generation, OpenCL compute kernel

Hybrid Hardware – Auto-Tuning

Hardware platform	GFlops	Peak
Double Precisio	n	
Nvidia K20X	771	50%
AMD FirePro W8100	1200	56%
Xeon Phi 31S1P	356	36%
4xXeon E7-8880v3 (72 Cores)	1016	46%
Single Precisior	ı	
Nvidia Titan X	3480	57%
2xGTX680, Tesla K10, Xeon Phi 31S1P	4417	35%

- 4d regression, lin. basis, adaptive
- Single CG iteration as benchmark

Datasets

dataset	dim	size	grid
Chess4D DR5	4 5	500,000 371,908	178,177 187.903
Friedman1	10	500,000	397,825

Scenario: regression

- realistic, adaptively refined grids
- 3 CG iterations
 - $\approx 3.5 \cdot 10^6~(2.6 \cdot 10^6)$ function evaluations plus scalar products etc.
- average over several runs
- auto-tuned OpenCL-code

Chess4D

Hardware platform	[s]	GFlops	Peak			
Double Precision						
4xXeon E7-8880v3 (72c)	15.0	1,000	38%			
AMD FirePro W8100	10.9	1,378	63%			
Nvidia Tesla K20X	19.3	777	59%			
Xeon Phi 31S1P	34.6	433	43%			
Single Precision						
4xXeon E7-8880v3 (72c)	5.5	2,735	52%			
AMD FirePro W8100	5.9	2,558	61%			
Nvidia Tesla K20X	7.5	2,000	51%			
Xeon Phi 31S1P	17.7	844	42%			
Geforce Titan X	4.2	3,573	51%			

X

X

Results: Algorithmic Peak

Chess4D

SimTech Cluster of Excellence

Hardware platform	[s]	GFlops	Alg. Peak			
Double Precision						
4xXeon E7-8880v3 (72c)	15.0	1,000	57%			
AMD FirePro W8100	10.9	1,378	84%			
Nvidia Tesla K20X	19.3	777	89%			
Xeon Phi 31S1P	65%					
Single Precision						
4xXeon E7-8880v3 (72c)	5.5	2,735	77%			
AMD FirePro W8100	5.9	2,558	91%			
Nvidia Tesla K20X	7.5	2,000	76%			
Xeon Phi 31S1P	17.7	844	63%			
Geforce Titan X	4.2	3,573	81%			

X

Results: Algorithmic Peak

DR5

Hardware platform	[s]	GFlops	Alg. Peak			
Double Precision						
4xXeon E7-8880v3 (72c)	15.2	966	55%			
AMD FirePro W8100	10.9	1,350	82%			
Nvidia Tesla K20X	18.5	793	91%			
Xeon Phi 31S1P	418	62%				
Single Precision						
4xXeon E7-8880v3 (72c)	5.4	2,730	77%			
AMD FirePro W8100	5.9	2,469	88%			
Nvidia Tesla K20X	7.7	1,897	72%			
Xeon Phi 31S1P	17.1	858	64%			
Geforce Titan X	3.8	3,895	88%			

www.simtech.uni-stuttgart.de

Results: Algorithmic Peak

Friedman1

SimTech Cluster of Excellence

Hardware platform	[s]	GFlops	Alg. Peak		
Double Precision					
4xXeon E7-8880v3 (72c)	84.6	988	56%		
AMD FirePro W8100	61.7	1,354	82%		
Nvidia Tesla K20X	104.7	798	91%		
Xeon Phi 31S1P	207.5	403	60%		
Single Precision					
4xXeon E7-8880v3 (72c)	30.3	2,756	78%		
AMD FirePro W8100	30.8	2,710	96%		
Nvidia Tesla K20X	43.2	1,932	74%		
Xeon Phi 31S1P	96.3	868	65%		
Geforce Titan X	21.7	3,848	87%		

Motivation: High Dimensionalities

Adaptive Sparse Grids to Counter the Curse

Numerical Data Mining and HPC

- Regression and Classification
- Density Estimation
- Clustering based on density estimation

Summary

Density Estimation

- Works quite well can we do better, esp. for multi-class problems?
- And density estimation for data-driven UQ, etc.

Density Estimation

SimTech

- Works quite well can we do better, esp. for multi-class problems?
- And density estimation for data-driven UQ, etc.

New approach with density estimation

- Split data *S* into subsets *S^k* (one for each class)
- Estimate density functions f^k representing data S^k
- Get class prediction via

$$y = \arg\max_{k} f^{k}(\vec{x})$$

luster of Excellence

SimTech

• Training set S^k for data in class k

$$S^k = \{\vec{x}_1, \ldots, \vec{x}_m\} \subset \mathbb{R}^d$$

Note: data unlabeled!

ster of Excellence

SimTech

• Training set S^k for data in class k

$$\boldsymbol{S}^{k} = \{ ec{x}_{1}, \ldots, ec{x}_{m} \} \subset \mathbb{R}^{d}$$

- Note: data unlabeled!
- Initial guess f_{ϵ} for density function f [Hegland et.al. 2000]:

$$f_{\epsilon} := \frac{1}{m} \sum_{i=1}^{m} \delta_{\vec{x}_i}$$

Density Estimation (2)

SimTech

• Training set S^k for data in class k

$$\boldsymbol{S}^{k} = \{ \vec{x}_{1}, \ldots, \vec{x}_{m} \} \subset \mathbb{R}^{d}$$

- Note: data unlabeled!
- Initial guess f_{ϵ} for density function f [Hegland et.al. 2000]:

$$f_{\epsilon} := \frac{1}{m} \sum_{i=1}^{m} \delta_{\vec{x}_i}$$

• Find estimated density function f as

$$f = \underset{u \in V}{\operatorname{arg\,min}} \int_{\Omega} (u(\vec{x}) - f_{\epsilon}(\vec{x}))^{2} \mathrm{d}\vec{x} + \lambda \|f\|_{H_{0,\min}^{\beta}}^{2}$$

 Note: regularizer does not preserve moments, but is sufficient and efficient!

Variational Formulation

SimTech

uster of Excellence

- Again, sparse grids come into play
- With Ritz-Galerkin, we obtain

$$\langle f(\vec{x}), \varphi_j(\vec{x}) \rangle_{L^2} + \lambda \langle f(\vec{x}), \varphi_j(\vec{x}) \rangle_{H^{\beta}_{0,\min}} = \frac{1}{m} \sum_{i=1}^m \varphi_j(\vec{x}_i), \quad \forall \varphi_j$$

Solve linear system

$$(P + \lambda I)\vec{\alpha} = \vec{b}$$
with
$$p_{ij} = \langle \varphi_i(\vec{x}), \varphi_j(\vec{x}) \rangle_{L^2}$$

$$b_j = \frac{1}{m} \sum_{i=1}^m \varphi_j(\vec{x}_i)$$

Universität Stuttgart Germany

Again: Hierarchical Basis and Data Structures

- $P\vec{\alpha}$ problematic in hierarchical basis
- P dense!

1/8

1/6

0

1/16

1/16

0

0

1/3 1/8

1/8

1/32

3/32

3/32

1/32

1/8

0

1/6

0

0

1/16

1/16

SimTech

uster of Excellence

• Consider 1D Gram matrix for $\langle \varphi_j(x), \varphi_k(x) \rangle_{L^2}$

3/32

1/16

0

0

1/12

0

0

3/32

0

1/16

1/12

0

1/24 1/48 0 0 1/48 1/12 1/48٥ 0 0 0 1/48 1/12 1/480 0 0 0 0 1/48 1/12 1/480 0 0 0 1/48 1/12 1/48 0 0 0 0 1/48 1/12 1/48 0 0 0 0 0 0 1/481/24

1/32

1/16

0

1/12

0

0

0

 There are optimal complexity algorithms for mat-vec in O(N), but computationally inefficient...

1/32

0

1/16

0

0

0

1/12

Side-Note: Offline/Online Splitting

$$(P + \lambda I)\vec{\alpha} = \vec{b}$$

- Note: $(P + \lambda I)$ now independent of data!
- For repeated tasks: Offline/Online splitting possible!

SimTech

Side-Note: Offline/Online Splitting

$$(P + \lambda I)\vec{\alpha} = \vec{b}$$

- Note: $(P + \lambda I)$ now independent of data!
- For repeated tasks: Offline/Online splitting possible!
- Idea: LU decomposition of $(P + \lambda I)$
 - Problem: one has to fix λ

SimTech

Side-Note: Offline/Online Splitting

$$(P + \lambda I)\vec{\alpha} = \vec{b}$$

- Note: $(P + \lambda I)$ now independent of data!
- For repeated tasks: Offline/Online splitting possible!
- Idea: LU decomposition of $(P + \lambda I)$
 - Problem: one has to fix λ
- Better alternative: eigendecomposition of P
 - Offline phase: eigendecomposition P = USU^T (U orthonormal, S diagonal)
 - Online phase: compute in $\mathcal{O}(N^2)$

$$\vec{\alpha} = (\boldsymbol{P} + \lambda \boldsymbol{I})^{-1} \vec{\boldsymbol{b}} = (\boldsymbol{U} \boldsymbol{S} \boldsymbol{U}^{T} + \lambda \boldsymbol{U} \boldsymbol{U}^{T})^{-1} \vec{\boldsymbol{b}} = \boldsymbol{U} (\boldsymbol{S} + \lambda \boldsymbol{I})^{-1} \boldsymbol{U}^{T} \vec{\boldsymbol{b}}$$

• However: less suited for streaming approach and adaptivity

Results

SimTech

ster of Excellence

Scenario

10d, 77,505 grid points (level 6), 10⁸ data points

GFLOPS and achieved fraction of peak performance

	Tesla	a P100	FirePro W8100		2xXeon Gold 5120	
	float	double	float	double	float	double
right-hand side	3323	1827	1581	839	992	538
	36%	39%	38%	40%	50%	55%
matrix-vector	2450	1503	969	364	337	369
	26%	32%	23%	17%	17%	37%

- Motivation: High Dimensionalities
- Adaptive Sparse Grids to Counter the Curse

Numerical Data Mining and HPC

- Regression and Classification
- Density Estimation
- Clustering based on density estimation

4 Summary

Clustering based on Density Estimation

- Ingredients: Density estimation, kNN, graph algorithms
- Based on [Peherstorfer, Pflüger, Bungartz 2012]

SimTech

er of Excellence

Clustering with Sparse Grids - Step I

• Create density estimation of the grid points

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

X

Clustering with Sparse Grids - Step II

• Create k-nearest-neighbor graph for dataset

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Å

Clustering with Sparse Grids - Step III/IV

• Remove edges that intersect low-density region

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

Å

SimTech

luster of Excellence

Clustering with Sparse Grids - Step III/IV

- Remove edges that intersect low-density region
- Finally, find and return connected components as clusters

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech

uster of Excellence

kNN Graph Creation and Pruning

kNN graph creation:

SimTech

ister of Excellence

- Classical $\mathcal{O}(m^2)$ kNN algorithm
- Large datasets enabled by fast implementation
- Parameter-free

kNN Graph Creation and Pruning

kNN graph creation:

SimTech

- Classical O(m²) kNN algorithm
- Large datasets enabled by fast implementation
- Parameter-free

Prune graph:

- Evaluate at data points
- Evaluate at midpoint of edges
- Prune if below threshold parameter

Compute Kernels

Algorithm 1: Right-hand side kernel

for
$$i = 0$$
; $i < N$; $i \leftarrow i + 1$ do
for $j = 0$; $j < m$; $j \leftarrow j + 1$ do
for $d = 0$; $d < ds$; $d \leftarrow d + 1$
do
 \lfloor // 6 floating point ops

Algorithm 2: Create graph kernelfor $i = 0; i < m; i \leftarrow i + 1$ dofor $j = 0; j < m; j \leftarrow j + 1$ dofor $d = 0; d < ds; d \leftarrow d + 1$ do \lfloor // 4 floating point ops

Algorithm 3: Density MV kernel

for
$$i = 0$$
; $i < N$; $i \leftarrow i + 1$ do
for $j = 0$; $j < N$; $j \leftarrow j + 1$ do
for $d = 0$; $d < ds$; $d \leftarrow d + 1$
do
 $\lfloor //$ 14 floating point ops

Algorithm 4: Prune graph kernel

for
$$i = 0$$
; $i < m$; $i \leftarrow i + 1$ do
for $j = 0$; $j < N$; $j \leftarrow j + 1$ do
for $d = 0$; $d < ds$; $d \leftarrow d + 1$
do
 $\lfloor // 6 \cdot (k + 1)$ fl. pt ops

Streaming algorithms, fits to adaptively-refined sparse grids
Parallelization of outermost loop

Kernel	FP ops.	Arith.Int. (loc=1)	Arith.Int. (loc=128)	
d. right-hand side	$N \cdot m \cdot d \cdot 6$	$1.5 \mathrm{F}\mathrm{B}^{-1}$	$192 \mathrm{F} \mathrm{B}^{-1}$	
d. matrix-vector	$N^2 \cdot d \cdot 14$	$1.2 \mathrm{F}\mathrm{B}^{-1}$	$149 \mathrm{F}\mathrm{B}^{-1}$	
create kNN graph	$m^2 \cdot d \cdot 4$	$1.0 \mathrm{F}\mathrm{B}^{-1}$	$129 \mathrm{F}\mathrm{B}^{-1}$	
prune kNN graph	$mN(k+1) \cdot d \cdot 6$	$4.5 \mathrm{F}\mathrm{B}^{-1}$	$576 \mathrm{F}\mathrm{B}^{-1}$	

- Proper use of local memory necessary
- Modern hardware has machine balance of $\approx 10\,F\,B^{-1}$

Cluster of Excellence

Node-Level Implementation

- OpenCL for (performance-)portability and vectorization
- Parameterized code generators for kernels:

Code generator

Generated code

Å

Distributed Approach

 Classical manager-worker scheme

- Classical manager-worker scheme
- Work packages input start/stop indices, 1d result data

- Classical manager-worker scheme
- Work packages input start/stop indices, 1d result data
- Next work package transmitted during computation

- Classical manager-worker scheme
- Work packages input start/stop indices, 1d result data
- Next work package transmitted during computation
- Network created according to configuration file

- Classical manager-worker scheme
- Work packages input start/stop indices, 1d result data
- Next work package transmitted during computation
- Network created according to configuration file
- Multi-GPU support on single node through MPI

Performance and Performance Portability

Scenario

10d, 77,505 grid points (level 6), 10⁸ data points

GFLOPS and achieved fraction of peak performance

	Tesla P100		FirePro W8100		2xXeon Gold 5120	
	float	double	float	double	float	double
dens. right-hand side	3323	1827	1581	839	992	538
	36%	39%	38%	40%	50%	55%
dens. matrix-vector	2450	1503	969	364	337	369
	26%	32%	23%	17%	17%	37%
create graph	4987	3410	1866	832	1124	743
	54%	73%	44%	40%	57%	75%
prune graph	4626	1859	1616	759	940	588
	50%	40%	38%	36%	48%	60%

Dirk Pflüger: Numerical Data Mining with Sparse Grids at Extreme Scale

IPAM, Big Data meets Large-Scale Computing, September 25, 2018

SimTech Cluster of Excellence

Strong Scaling on Piz Daint

- Strong scaling results, Cray XC50 Piz Daint, 1xTesla P100 per node
- 10D, level 8
- 10⁸ data points, 5-NN
- > 30% peak performance on 128 nodes!

Strong Scaling on Piz Daint

- Strong scaling results, Cray XC50 Piz Daint, 1xTesla P100 per node
- 10D, level 8

SimTech

- 10⁸ data points, 5-NN
- > 30% peak performance on 128 nodes!

Ongoing and Future Work

Larger datasets

uster of Excellence

SimTech

- Approximate kNN
- Better data locality
- New hardware :-)
- Compression (mixed-precision arithmetics)
- ...

- Motivation: High Dimensionalities
- Adaptive Sparse Grids to Counter the Curse
- Numerical Data Mining and HPC
 - Regression and Classification
 - Density Estimation
 - Clustering based on density estimation

SimTech

SciComp for Data Mining

ster of Excellence

- high-dimensional approximation
- for moderately dimensional, numerical data
- Inear scaling in data size: big data!

SimTech

SciComp for Data Mining

- high-dimensional approximation
- for moderately dimensional, numerical data
- Inear scaling in data size: big data!

Hierarchical and nested algorithms

- challenge for software and parallelization
- trading dofs against coupling
- sophisticated algorithms
- see also: sgpp.sparsegrids.org

SimTech

SciComp for Data Mining

- high-dimensional approximation
- for moderately dimensional, numerical data
- Inear scaling in data size: big data!

Hierarchical and nested algorithms

- challenge for software and parallelization
- trading dofs against coupling
- sophisticated algorithms
- see also: sgpp.sparsegrids.org

High-performance computing

- trade complexity against speed
- auto-tuning to optimize for hardware
- data mining at extreme scale

Thanks to:

... and all others!

Thank you for your interest!

Universität Stuttgart Germany

D. Pfander, M. Brunn, and D. Pflüger.

D. Pf

AutoTuneTMP: Auto-Tuning in C++ With Runtime Template Metaprogramming. In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1123–1132, 2018.

Limiting ranges of function values of sparse grid surrogates.

In *Sparse Grids and Applications - Miami 2016*, pages 69–91, Cham, 2018. Springer International Publishing.

David Pfander, Alexander Heinecke, and Dirk Pflüger.

A new subspace-based algorithm for efficient spatially adaptive sparse grid regression, classification and multi-evaluation.

In *Sparse Grids and Applications - Stuttgart 2014*, pages 221–246. Springer International Publishing, 2016.

Alexander Heinecke, Roman Karlstetter, Dirk Pflüger, and Hans-Joachim Bungartz.

Data mining on vast data sets as a cluster system benchmark. Concurrency and Computation: Practice and Experience, 2015.

Benjamin Peherstorfer, Dirk Pflüger, and Hans-Joachim Bungartz.

Clustering based on density estimation with sparse grids.

In KI 2012: Advances in Artificial Intelligence, volume 7526 of Lecture Notes in Computer Science. Springer, October 2012.

Dirk Pflüger.

Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München, February 2010.

