Detecting psychiatric disorders
with statistical learning tailored to brain activity
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Psychiatric diseases are a major health challenge

m /5 American

m2% are on the autistic spectrum
m 1% schizophrenia

m 7% severe depression

m Suicide is the leading causing of death in young people
(15 to 29 years)
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Psychiatric diseases are a major health challenge

m /5 American

m2% are on the autistic spectrum
m1%
7%
m Sui

Psychiatry biomarker extraction
From brain imaging
With supervised machine learning

Behavior, not biology, guides clinical practice
eg for diagnosis and prognosis
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1 Detecting psychiatric disorders
2 From activity at rest to biomarkers

3 Factorizing huge matricesg %
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1 Detecting psychiatric
disorders
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1 An open challenge on Autism prediction

AL

Autism )
m A disease "of the mind”

m An imperfect diagnostic

The challenge

m Incentives: winner = 3000€

m Web-based: Participant submit code
m Hidden test set

! [

Multimodal brain data:
Cortical thickness & brain activity at rest




1 An open challenge on Autism prediction
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1 More data is the way forward
-

Predictixbn for different Samples sizes
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1 Brain activity at rest is a marker
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1 Shortcomings psychiatry is hard

. 20 S

m Autism is a “spectrum disorder”
different causes under the same symptoms

m Diagnostic is imperfect
Some labels are wrong

mWe are probably only seeing the easy cases

R A




1 Noisy labels are still useful

Predicting brain aging # chronological age
m Predicts age with a mean absolute error of 4.3 years

[Liem... 2016]
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1 Noisy labels are still useful

Predicting brain aging # chronological age
Predicts age with a mean absolute error of 4.3 years

Discrepancy with chronological age
correlates with cognitive impairment

Objective Cognitive
Impairment group

Normal 0. [Liem... 2016]
Mild .
! , Biomarker
Major
0 2 W surrogate,
Brain aging discrepancy but useful

(years)
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1 Capturing subjects psychological traits

An individual should not be reduced to
a single diagnostic or behavioral quantity

[Rahim... 2017]
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1 Capturing subjects psychological traits
Multi-output prediction
Predict jointly multiple individual phenotypes
m behavioral scores m diagnostic status
They improve eachother’s prediction

MMSE: mini mental-state examination
A diagnostic exam for Alzheimer's Disease

Adding MMSE as a target improves AD prediction
e . 1 Single-output
Classification: AD vs. MCI =1 Multi-output

Functional mono- ,_%‘
connectivity (fMRI) modal

[Rahim... 2017]
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Detecting psychiatric disorders
m Supervised learning on rest fMRI

m Across thousands of subjects

m Labels are wrong but useful
to define surrogate biomarkers

m Predicting multiple dimensions of individual psychology

Define traits based on “biology”

G Varoquaux 11



2 From activity at rest to
biomarkers
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From rest-fMRI to biomarkers

No salient features in rest fMRI
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From rest-fMRI to biomarkers

m Define functional regions
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From rest-fMRI to biomarkers

m Define functional regions

m Learn interactions
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From rest-fMRI to biomarkers

m Define functional regions
m Learn interactions
m Detect differences
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From rest-fMRI to biomarkers

— £ e sarss

RS- fMR Region Functional

connectivity
matrix

Supervised learning
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Defining functional regions

Dividing the brain in regions
anatomical atlases, functional atlases, region extraction methods

Some examples

G Varoquaux 15



2 Defining regions from rest-fMRI

Clustering
m k-means
m ward
[Thirion... 2014]
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2 Defining regions from rest-fMRI
Clustering
m k-means
= ward
[Thirion... 2014]

Decomposition models

voxels

time
I
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2 Defining regions from rest-fMRI

Clustering
m k-means
m ward
[Thirion... 2014]

Decomposition models

m CA: seek independence of maps

m Sparse dictionary learning:
seek sparse maps

G Varoquaux 16



2 Region definition: resulting parcellations

Ward clustering K-Means clustering
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2 Region definition: resulting parcellations

Ward clustering K-Means clustering



2 In connectome prediction settings
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2 In connectome prediction settings
Time series Functional

( connectivity %

RS-fMRI

Best choice of regions for prediction
m Defining regions functionally is important
m Decomposition methods work best
[Reddy in rev, ArXiv]
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2 Connectome: building a connectivity matrix

How to capture and represent interactions?

NS

G Varoquaux
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2 Connectome: differences across subjects

3 controls, 1 severe stroke patient
Which is which?

G Varoquaux
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2 Connectome: differences across subjects

m Spread-out variability in correlation matrices

m Noise in partial-correlations

Strong dependence between coefficients

[Varoquaux... 2010]
G Varoquaux 20



2 Information geometry: uniform-error parametrization

m Estimation errors given by Fisher Information matrix
m Covariance matrices form a manifold
= project to tangent space

R _1/2 _1/2
[Varoquaux... dX = Xy 2 patient X ceri
G Varoquaux 21



2 Connectome: which parametrization maps differences?

L]

| Correlation matrices

' Partial correlation matrices

‘Control ‘Control ‘Control

' Tangent-space embedding
! [varoquaux 2010]

‘Control ‘Control ‘Control
Varoquaux




2 In connectome prediction settings
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2 In connectome prediction settings

Time series Functional

connectivity %

Diagnosis

’Q‘J\e‘

Connectivity matrix

m Correlation
m Partial correlations
m Tangent space

G Varoquaux 23



2 In connectome prediction settings

In controled study

| - 'ﬁE *° | Partial
A e correlation
® COBRE

EADNI Correlation
» ADNIDOD
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v ABIDE » Tangent

+0.05  +0.1
[Reddy in rev, ArXiv]|

Connectivity matrix

Correlation
Partial correlations
Tangent space
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2 Machine learning for connectome prediction
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2 Machine learning for connectome prediction

) ‘Q*J

Time series Functional

connectivity
| |

Diagnosis
Supervised learning

m Linear models
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Predicting from brain activity at rest
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Time series Functional

connectivity |
: %w

RS-fMRI

1. Functional regions via linear decompositions
[Abraham... 2013]

2. Tangent-space reparametrization
[Varoquaux... 2010]

3. Supervised linear models (logistic regression)
G Varoquaux 25



3 Factorizing huge matrices

with A. Mensch, J. Mairal, B. Thirion
[Mensch... 2016, 2017]

features
S +

Challenge: scalability

features

1 Intuitions

2 Experiments
3 Algorithms
4 Proof

G Varoquaux
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3 Huge matrices: recommender systems -

Product ratings
m Millions of entries
m Hundreds of thousands of
products and users
Large sparse matrix

users

4
]
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o
o
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3 Huge matrices: brain imaging

Brain activity at rest

m 1000 subjects with ~ 100-10000
samples

| mImages of dimensionality

> 100000

Dense matrix, large both ways

voxels
° O ES
HE | - [T
5 .

G Varoquaux
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3 Stochastic optimization
min le I(x; w)

Many samples Stochastic gradient descent
min E[/(y, xw)]
Gradient descent: W <— w+ aV,/

Stochastic gradient descent w < w + oE[V,,/]
Use a cheap estimate of E[V,,/] (e.g. subsampling)

G Varoquaux 29



3 Scalable solvers for matrix factorizations

Large matrices
= terabytes of data

argmin [Y—ES" |2+ A\Q(S)
E.S

G Varoquaux
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3 Scalable solvers for matrix factorizations

Data Alternating .
matrix minimization Large matrices
1 = terabytes of data

- Data

access argmin |[Y—E ST|||2:ro—}—)\Q(5)

E,S

- Code com-

putation - l
- Dictionary

update

B Seenatt [ ] Seenatt+I [ | Unseen att
G Varoquaux
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3 Scalable solvers for matrix factorizations

Large matrices
= terabytes of data

argmin |[Y—ES' |2, + \Q(S)
E.S

Rewrite as an expectation: [Mairal... 2010]
argmin (msin 1Y, —Es" |2, + )\Q(S))
E i

argmin E[f(E)]
3
= Optimize on approximations (sub-samples)

G Varoquaux
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3 Scalable solvers for matrix factorizations

Data Alternating Online matrix
matrix minimization factorization

- COde com- - ----------- >
putation Stream I
columns

- Dictionary
update

B Seenatt [ ] Seenatt+I [ | Unseen att
G Varoquaux 30

- Data
access




3 Scalable solvers for matrix factorizations

Data Alternating Online matrix
matrix minimization factorization

- Data

00 gigabytes
of data

terabytes
of data

N

L
f‘f — |
159 h run time 12 h run time

Online matrix factorization



3 Scalable solvers for matrix factorizations — SOMF

Data Alternating Online matrix New subsampling
matrix minimization factorization algorithm
- Data
access
- Code com- l """""" > o e >
putation - Stream I Subsample I
columns rows
- Dictionary
update

Subsampled Online Matrix Factorization

B Seenatt [] Seen at t+1 _ SOI\/IF30

G Varoquaux



3 Scalable solvers for matrix factorizations — SOMF

Data Alternating Online matrix New subsampling
matrix minimization factorization algorithm

- Data
access

\2 terabytes 100 gigabytes

159h run tlme 12h I:un time 13h run tlme.
—_—

Online matrix factorization

x 10 speed up




3 Experimental results: resting-state fMRI

12 h run tlrh

SGD (best step-size)
Online matrix factorization
—— Proposed SOMF (r=12)

HCP (3.5TB)
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3 Experimental results: large images

ADHD
Sparse dictionary
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SOMF = Subsampled Online Matrix Factorization




3 Experimental results: recommender system

MovieLens 1M MovielLens 10M

RMSE on test set

CPU
1ls 10s 10s 100 s time

Netflix (140M)
Coordinate descent

m—— Proposed SOMF

RMSE on test set

CPU time

SOMF = Subsampled Online Matrix Factorization
G Varoquaux 33




3 Algorithm: Online matrix factorization prior art
Stream samples x;: [Mairal... 2010]

1. Compute code

Q o = argmin ||x; — D_1a)5 + AQ(av)

a€Rk

2. Update the surrogate function

1 1
g:(D) = : > |Ix; — Dayi[3 = trace (2DTDAt — DTBt)
i=1
1 1 1 1
At = (1 - ;)Atfl + EOétOé;r BZ‘ = (]. - E)Btil + Ext@tT

3. Minimize surrogate
Dt = argmin gt(D) Vgt DAt Bj_-
DeC
G Varoquaux © 34



3 Algorithm: Online matrix factorization prior art
Stream samples x;: [Mairal... 2010]

1. Compute code

Q o = argmin ||x; — D_1a)5 + AQ(av)

a€Rk

2. Update the surrogate function

1 1
g:(D) = . > |Ix; — Day||3 = trace (2DTDAt DTBt>
i=1
1 1 1 1
At = (1 - E)Atil + EOétOé;r Bt = (1 - E)Btil + Xty

su rrogate

g:(D)

ZI( D) «;is used, and not «

= Stochastic Majorization-Minimization
No nasty hyper-parameters
G Varoquaux 34



3 Algorithm: Online matrix factorization prior art

Stream samples x;: [Mairal... 2010]
1. Compute code complexity depends on p
o = argmin ||x; — D13 + AQ(a)
Q a€RK
2. Update the surrogate function O(p)

13 1
g:(D) = : > |Ix; — Dayi[3 = trace (2DTDAt — DTBt)
i=1
1 1 1 1
At = (1 - ;)Atfl + ?Oéta;r BZ‘ = (]. - E)Btil + gxt@tT

3. Minimize surrogate O(p)
D; = argmin g;(D) Vg: = DA, — B;
G Varoquaux bec 34



3 Sub-sample features

= Data stream: (x;); — masked
(Mtxt)t
m Dimension: p — s

m Use only M;x; in computation
— complexity in O(s)

Modify all steps to work on s features

Code Surrogate Surrogate
computation update minimization

G Varoquaux 35



3 Sub-sample features

Original online MF Our algorithm
1. Code computation 1. Approximate code computation: masked
ay = argmkin [[xe — De10v]3 BE") — (1- ﬂ/)GEQl + fyD:;lMtx(")

a€eR

GV« (1-7)6, ++D] ;M,D,_

J’_AQ(at) t ( /)1t 1 t—1 tYUt—1

Q¢ <+ argmin =a ' Gyar — o' By + AQ(a).
acRkK

2. Surrogate aggregation, averaging

2. Surrogate aggregation
1 3
A =— Z oz,-oz,T 1 1
3 i=1 At = i()éta;r + (1 — i)Atfl
Wt Wt

1 _ _
B;=B: 1+ ;(Xtaj - Bt—l) P:B; + (1 - Wt)PrBt—l + WtPtXtOJ

S . Surrogate minimization
3. Surrogate minimization 3. Surrog

. 1 T - T -
i i P.D; < argmin =tr(D" D"A;) — tr(D"  P;I
(DAL-B) Do agemin gt(B7 DA (DR

PtJ_Bt — (1 — Wt)PtLBtfl —+ WtPtLXtOZI.

D e my,
)
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3 Sub-sample features —
Origa e
1. 100000

variance reduction

(relative to lowest value)
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3 Why does it work?

Objective:

D = argmin)_/(x,D) where/(x,D) = minf(x,D,a)
DeC X “

Algorithm (online matrix factorization)

g:(D) majorant > I(x,D) «;is used, and not o

= Stochastic Majorization-Minimization  [Mairal 2013]

G Varoquaux 37



3 Why does it work?

Surrogate computation SMM Full minimization
9t (9,,1) = ft(gffl) g
9. (0) > fi(0) : ge(0) > fe(0) Vi—1L

=> Stochastic Majorization-Minimization

G Varoquaux

[Mairal 2013]
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3 Stochastic Approximate Majorization-Minimization

Surrogate computation
G (0—1) = fe(0i-1)
n (‘9) > ff(e)

Surrogate approximation

ng - gt“oo < e
gr(0) > fu(0)

0r—1

G Varoquaux

Full minimization

0r—1

SAMM Partial minimization
. ge(0)

- Ju(0)

- € )




Massive matrix factorization via subsampling
m Subsampling features =- doubly stochastic
m 10x speed ups on a fast algorithm

m Analysis via stochastic approximate
majorization-minization

m Conclusive on various high-dimensional problems

features
s +
38

features

]
samiles

G Varoquaux



Detecting psychiatric disorders
with statistical learning tailored to brain activity
Improving psychiatry
Not a formal problem
Learning to map brain to behavior
More data is better

’@GaelVaroquaux



Detecting psychiatric disorders
with statistical learning tailored to brain activity

Improving psychiatry epistomology & sociology

Huge data stochastic computation
Factorization: costly in large-p, large-n

Sub-sampling p gives huge speed ups
Stochastic Approximate Majorization-Minimization
https://github.com/arthurmensch/modl

’@GaelVaroquaux


https://github.com/arthurmensch/modl

Detecting psychiatric disorders
with statistical learning tailored to brain activity

Improving psychiatry epistomology & sociology
Huge data stochastic computation
Software
Sind ,ﬁ‘
=2 Uea
a‘t\-%.v
Scikit-learn nilearn

Putting new methods in the hands of everybody

’@GaelVaroquaux
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