Detecting psychiatric disorders with statistical learning tailored to brain activity

Gaël Varoquaux PARIETAL

Psychiatric diseases are a major health challenge

\blacksquare ¹/₅ American

- ■2% are on the autistic spectrum
- 1% schizophrenia
- ■7% severe depression
- Suicide is the leading causing of death in young people (15 to 29 years)

Psychiatric diseases are a major health challenge

¹/₅ American 2% are on the autistic spectrum 1% schizophrenia 7% severe depression Suicide is the leading causing of death in young people (15 to 29 years)

Behavior, not biology, guides clinical practice eg for diagnosis and prognosis DSM-IV-TR-No progress — We need measurements

Psychiatric diseases are a major health challenge

Behavior, not biology, guides clinical practice

DSM-IV-TR

1 Detecting psychiatric disorders

- **2** From activity at rest to biomarkers
- 3 Factorizing huge matrices 🔊 🍯

1 Detecting psychiatric disorders

1 An open challenge on Autism prediction

AutismA disease "of the mind"An imperfect diagnostic

The challenge Incentives: winner = 3000€ Web-based: Participant submit code Hidden test set

Multimodal brain data: Cortical thickness & brain activity at rest

1 An open challenge on Autism prediction

More data is the way forward

1 Brain activity at rest is a marker

Autism is a "spectrum disorder" different causes under the same symptoms

Diagnostic is imperfect

Some labels are wrong

We are probably only seeing the easy cases

1 Noisy labels are still useful

Predicting brain aging ≠ chronological age Predicts age with a mean absolute error of 4.3 years

[Liem... 2016]

1 Noisy labels are still useful

Predicting brain aging ≠ chronological age
Predicts age with a mean absolute error of 4.3 years

Discrepancy with chronological age correlates with cognitive impairment

[Liem... 2016]

An individual should not be reduced to a single diagnostic or behavioral quantity

[Rahim... 2017]

1 Capturing subjects psychological traits Multi-output prediction Predict jointly multiple individual phenotypes

behavioral scores
 diagnostic status
 They improve eachother's prediction

MMSE: mini mental-state examination A diagnostic exam for Alzheimer's Disease

Adding MMSE as a target improves AD prediction

[Rahim... 2017]

Detecting psychiatric disorders

Supervised learning on rest fMRI

Across thousands of subjects

 Labels are wrong but useful to define *surrogate biomarkers* Predicting multiple dimensions of individual psychology Define traits based on "biology"

2 From activity at rest to biomarkers

No salient features in rest fMRI

Define functional regions

Define functional regionsLearn interactions

Define functional regionsLearn interactionsDetect differences

Defining functional regions

Dividing the brain in regions

anatomical atlases, functional atlases, region extraction methods

Some examples

2 Defining regions from rest-fMRI

Clustering k-means ward

[Thirion... 2014]

...

2 Defining regions from rest-fMRI

Clustering k-means ward

[Thirion... 2014]

Decomposition models

2 Defining regions from rest-fMRI

Clustering k-means ward [Thirion... 2014]

Decomposition models ICA: seek independent

 seek independence of maps
 Sparse dictionary learning: seek sparse maps

2 Region definition: resulting parcellations

Dictionary learning

Group ICA

K-Means clustering

2 Region definition: resulting parcellations

Dictionary learning

Group ICA

Ward clustering

K-Means clustering

2 Region definition: resulting parcellations

Dictionary learning

Group ICA

Ward clustering

K-Means clustering

Best choice of regions for prediction Defining regions functionally is important Decomposition methods work best

[Reddy in rev, ArXiv]

2 Connectome: building a connectivity matrix

How to capture and represent interactions?

2 Connectome: differences across subjects

3 controls, 1 severe stroke patient Which is which?

2 Connectome: differences across subjects

Spread-out variability in correlation matrices

■ Noise in partial-correlations

Strong dependence between coefficients

[Varoquaux... 2010]

2 Information geometry: uniform-error parametrization

Estimation errors given by Fisher Information matrixCovariance matrices form a manifold

 \Rightarrow project to tangent space

2 Connectome: which parametrization maps differences?

Connectivity matrix

CorrelationPartial correlationsTangent space

Connectivity matrix

- CorrelationPartial correlationsTangent space
- G Varoquaux

2 Machine learning for connectome prediction

2 Machine learning for connectome prediction

Supervised learning Linear models

Predicting from brain activity at rest

1. Functional regions via linear decompositions [Abraham... 2013]

2. Tangent-space reparametrization

[Varoquaux... 2010]

(logistic regression)

3. Supervised linear models G Varoquaux

3 Factorizing huge matrices

with A. Mensch, J. Mairal, B. Thirion [Mensch... 2016, 2017]

Challenge: scalability

- 1 Intuitions
- 2 Experiments
- 3 Algorithms
- 4 Proof

3 Huge matrices: recommender systems

Product ratings
 Millions of entries
 Hundreds of thousands of products and users
 Large sparse matrix

3 Huge matrices: brain imaging

voxels

Brain activity at rest \blacksquare 1000 subjects with \sim 100–10000 samples Images of dimensionality $> 100\,000$ Dense matrix, large both ways voxels voxels

3 Stochastic optimization

$$\min_i \sum_i I(\mathbf{x}_i \mathbf{w})$$

Many samples

Gradient descent: $\mathbf{w} \leftarrow \mathbf{w} + \alpha \nabla_{\mathbf{w}} I$ Stochastic gradient descent $\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbb{E}[\nabla_{\mathbf{w}} I]$

Use a cheap estimate of $\mathbb{E}[\nabla_w I]$ (*e.g.* subsampling)

Large matrices = terabytes of data

$$\underset{\mathbf{E},\mathbf{S}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{E} \, \mathbf{S}^{\mathsf{T}} \|_{\operatorname{Fro}}^{2} + \lambda \Omega(\mathbf{S})$$

Large matrices = terabytes of data

$$\underset{\mathbf{E},\mathbf{S}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{E} \mathbf{S}^{\mathsf{T}}\|_{\operatorname{Fro}}^{2} + \lambda \Omega(S)$$

Large matrices = terabytes of data

$$\underset{\mathbf{E},\mathbf{S}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{E} \, \mathbf{S}^{\mathcal{T}}\|_{\operatorname{Fro}}^{2} + \lambda \Omega(\mathbf{S})$$

Rewrite as an expectation:[Mairal... 2010] $\underset{\mathbf{E}}{\operatorname{argmin}} \sum_{i} \left(\underset{\mathbf{s}}{\min} \| \mathbf{Y}_{i} - \mathbf{E} \mathbf{s}^{T} \|_{\operatorname{Fro}}^{2} + \lambda \Omega(\mathbf{s}) \right)$ $\underset{\mathbf{E}}{\operatorname{argmin}} \mathbb{E}[f(\mathbf{E})]$

 \Rightarrow Optimize on approximations (sub-samples)

Online matrix factorization [Mairal... 2010]

Online matrix factorization [Mairal... 2010]

3 Experimental results: resting-state fMRI

3 Experimental results: large images

SOMF = Subsampled Online Matrix Factorization

3 Experimental results: recommender system

3 Algorithm: Online matrix factorization prior art

Stream samples \mathbf{x}_t :

[Mairal... 2010]

1. Compute code

$$\alpha_t = \operatorname*{argmin}_{\alpha \in \mathbb{R}^k} \|\mathbf{x}_t - \mathbf{D}_{t-1}\alpha\|_2^2 + \lambda \Omega(\alpha_t)$$

2. Update the surrogate function

$$g_t(\mathbf{D}) = \frac{1}{t} \sum_{i=1}^t \|\mathbf{x}_i - \mathbf{D}\alpha_i\|_2^2 = \operatorname{trace}\left(\frac{1}{2}\mathbf{D}^\top \mathbf{D}\mathbf{A}_t - \mathbf{D}^\top \mathbf{B}_t\right)$$
$$\mathbf{A}_t = (1 - \frac{1}{t})\mathbf{A}_{t-1} + \frac{1}{t}\alpha_t\alpha_t^\top \qquad \mathbf{B}_t = (1 - \frac{1}{t})\mathbf{B}_{t-1} + \frac{1}{t}\mathbf{x}_t\alpha_t^\top$$

3. Minimize surrogate $D_t = \underset{D \in C}{\operatorname{argmin}} g_t(D)$

$$\nabla g_t = \mathbf{D}\mathbf{A}_t - \mathbf{B}_t$$

34

3 Algorithm: Online matrix factorization prior art

Stream samples \mathbf{x}_t :

[Mairal... 2010]

1. Compute code

$$\alpha_t = \operatorname*{argmin}_{\alpha \in \mathbb{R}^k} \|\mathbf{x}_t - \mathbf{D}_{t-1}\alpha\|_2^2 + \lambda \Omega(\alpha_t)$$

2. Update the surrogate function

$$g_t(\mathbf{D}) = \frac{1}{t} \sum_{i=1}^t \|\mathbf{x}_i - \mathbf{D}\alpha_i\|_2^2 = \operatorname{trace}\left(\frac{1}{2}\mathbf{D}^\top \mathbf{D}\mathbf{A}_t - \mathbf{D}^\top \mathbf{B}_t\right)$$
$$\mathbf{A}_t = (1 - \frac{1}{t})\mathbf{A}_{t-1} + \frac{1}{t}\alpha_t\alpha_t^\top \qquad \mathbf{B}_t = (1 - \frac{1}{t})\mathbf{B}_{t-1} + \frac{1}{t}\mathbf{x}_t\alpha_t^\top$$

$$g_t(\mathbf{D}) \stackrel{\text{surrogate}}{=} \sum_{\mathbf{x}} l(\mathbf{x}, \mathbf{D}) \quad \alpha_i \text{ is used, and not } \alpha$$

 \Rightarrow Stochastic Majorization-Minimization

No nasty hyper-parameters

3 Algorithm: Online matrix factorization prior art Stream samples \mathbf{x}_t : [Mairal... 2010] **1.** Compute code complexity depends on p $\alpha_t = \operatorname{argmin} \|\mathbf{x}_t - \mathbf{D}_{t-1}\alpha\|_2^2 + \lambda \Omega(\alpha_t)$ $\alpha \in \mathbb{R}^k$ 2. Update the surrogate function $\mathcal{O}(p)$ $g_t(\mathbf{D}) = \frac{1}{t} \sum_{i=1}^t \|\mathbf{x}_i - \mathbf{D}\alpha_i\|_2^2 = \operatorname{trace}\left(\frac{1}{2}\mathbf{D}^\top \mathbf{D}\mathbf{A}_t - \mathbf{D}^\top \mathbf{B}_t\right)$ $\mathbf{A}_t = (1 - \frac{1}{t})\mathbf{A}_{t-1} + \frac{1}{t}\alpha_t \alpha_t^\top \qquad \mathbf{B}_t = (1 - \frac{1}{t})\mathbf{B}_{t-1} + \frac{1}{t}\mathbf{x}_t \alpha_t^\top$ 3. Minimize surrogate $\mathcal{O}(p)$ $\mathbf{D}_t = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} g_t(\mathbf{D})$ $\nabla g_t = \mathbf{D}\mathbf{A}_t - \mathbf{B}_t$

3 Sub-sample features

- **Data stream**: $(\mathbf{x}_t)_t \rightarrow \text{masked}$ $(\mathbf{M}_t \mathbf{x}_t)_t$
- **Dimension**: $p \rightarrow s$
- Use only $\mathbf{M}_t \mathbf{x}_t$ in computation \rightarrow complexity in $\mathcal{O}(s)$

Modify all steps to work on <i>s</i> features		
Code	Surrogate	Surrogate
computation	update	minimization

3 Sub-sample features

Original online MF 1. Code computation

$$\alpha_{t} = \underset{\alpha \in \mathbb{R}^{k}}{\operatorname{argmin}} \|\mathbf{x}_{t} - \mathbf{D}_{t-1}\alpha\|_{2}^{2}$$
$$+ \lambda \mathbf{O}(\alpha_{t})$$

2. Surrogate aggregation

$$\begin{split} \mathbf{A}_t &= \frac{1}{t} \sum_{i=1}^t \alpha_i \alpha_i^\top \\ \mathbf{B}_t &= \mathbf{B}_{t-1} + \frac{1}{t} (\mathbf{x}_t \alpha_t^\top - \mathbf{B}_{t-1}) \end{split}$$

3. Surrogate minimization

$$\mathbf{D}^{j} \leftarrow
ho_{\mathcal{C}_{j}^{\prime}}^{\perp}(\mathbf{D}^{j} \!-\! rac{1}{(\mathbf{A}_{t})_{j,j}}(\mathbf{D}\mathbf{A}_{t}^{j} \!-\! \mathbf{B}_{t}^{j}))$$

Our algorithm

1. Approximate code computation: masked

$$\begin{split} \boldsymbol{\beta}_{t}^{(i)} &\leftarrow (1-\gamma) \mathbf{G}_{t-1}^{(i)} + \gamma \mathbf{D}_{t-1}^{\top} \mathbf{M}_{t} \mathbf{x}^{(i)} \\ \mathbf{G}_{t}^{(i)} &\leftarrow (1-\gamma) \mathbf{G}_{t-1}^{(i)} + \gamma \mathbf{D}_{t-1}^{\top} \mathbf{M}_{t} \mathbf{D}_{t-1} \\ \boldsymbol{\alpha}_{t} &\leftarrow \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{k}} \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{G}_{t} \boldsymbol{\alpha} - \boldsymbol{\alpha}^{\top} \boldsymbol{\beta}_{t} + \lambda \, \Omega(\boldsymbol{\alpha}). \end{split}$$

2. Surrogate aggregation, averaging

$$\mathbf{A}_{t} = \frac{1}{w_{t}} \alpha_{t} \alpha_{t}^{\top} + (1 - \frac{1}{w_{t}}) \mathbf{A}_{t-1}$$
$$\mathbf{P}_{t} \mathbf{\bar{B}}_{t} \leftarrow (1 - w_{t}) \mathbf{P}_{t} \mathbf{\bar{B}}_{t-1} + w_{t} \mathbf{P}_{t} \mathbf{x}_{t} \alpha_{t}^{\top}$$

3. Surrogate minimization

 $\mathbf{P}_{t}\mathbf{D}_{t} \leftarrow \operatorname*{argmin}_{\mathbf{D}^{r}\in\mathcal{C}^{r}} \frac{1}{2} \operatorname{tr}(\mathbf{D}^{r^{\top}}\mathbf{D}^{r}\bar{\mathbf{A}}_{t}) - \operatorname{tr}(\mathbf{D}^{r^{\top}}\mathbf{P}_{t}\dot{\mathbf{B}}_{t})$ $\mathbf{P}_{t}^{\perp}\bar{\mathbf{B}}_{t} \leftarrow (1 - w_{t})\mathbf{P}_{t}^{\perp}\bar{\mathbf{B}}_{t-1} + w_{t}\mathbf{P}_{t}^{\perp}\mathbf{x}_{t}\alpha_{t}^{\top}.$

3 Sub-sample features – variance reduction

<u>G</u> Varoquaux

36

t I

3 Why does it work?

Objective:

 $\mathbf{D} = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{C}} \sum_{\mathbf{x}} I(\mathbf{x}, \mathbf{D}) \quad \text{where } I(\mathbf{x}, \mathbf{D}) = \min_{\alpha} f(\mathbf{x}, \mathbf{D}, \alpha)$

Algorithm (online matrix factorization)

 $g_t(\mathbf{D}) \stackrel{\text{majorant}}{=} \sum_{\mathbf{x}} l(\mathbf{x}, \mathbf{D}) \quad \alpha_i \text{ is used, and not } \alpha^*$ \Rightarrow Stochastic Majorization-Minimization [Mairal 2013]

3 Why does it work?

3 Stochastic Approximate Majorization-Minimization

Massive matrix factorization via subsampling

•Subsampling features \Rightarrow doubly stochastic

■10x speed ups on a fast algorithm

 Analysis via stochastic approximate majorization-minization

Conclusive on various high-dimensional problems

Detecting psychiatric disorders with statistical learning tailored to brain activity Improving psychiatry

Not a formal problem Learning to map brain to behavior More data is better

Detecting psychiatric disorders with statistical learning tailored to brain activity epistomology & sociology Improving psychiatry Huge data stochastic computation Factorization: costly in large-p, large-n Sub-sampling p gives huge speed ups Stochastic Approximate Majorization-Minimization https://github.com/arthurmensch/modl

Detecting psychiatric disorders
with statistical learning tailored to brain activityImproving psychiatryepistomology & sociology

Huge data

Software

Scikit-learn

stochastic computation

nilearn

Putting new methods in the hands of everybody

References I

- A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and G. Varoquaux. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning. In *MICCAI*, page 607. 2013.
- F. Liem, G. Varoquaux, J. Kynast, F. Beyer, S. K. Masouleh, J. M. Huntenburg, L. Lampe, M. Rahim, A. Abraham, R. C. Craddock, ... Predicting brain-age from multimodal imaging data captures cognitive impairment. *NeuroImage*, 2016.
- J. Mairal. Stochastic majorization-minimization algorithms for large-scale optimization. In *Advances in Neural Information Processing Systems*, 2013.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 11:19, 2010.
- A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Dictionary learning for massive matrix factorization. In *ICML*, 2016.

References II

- A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Stochastic subsampling for factorizing huge matrices. *IEEE Transactions on Signal Processing*, 66(1):113–128, 2017.
- M. Rahim, B. Thirion, D. Bzdok, I. Buvat, and G. Varoquaux. Joint prediction of multiple scores captures better individual traits from brain images. *Neuroimage*, in rev, 2017.
- B. Thirion, G. Varoquaux, E. Dohmatob, and J. Poline. Which fMRI clustering gives good brain parcellations? *Name: Frontiers in Neuroscience*, 8:167, 2014.
- G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In *MICCAI*. 2010.