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32k supercomputer nodes (IBM BG/P, 128k processors)
lines of code, ~20 PhD theses (1990-2010)O(106)

<latexit sha1_base64="aWD19d2etcI9wT8a+lF0v7FOQf0=">AAACCXicdVDLSgMxFM3UV62vqS7dBItQN8NMtdqCi4Ibd1awrdCOJZNm2tBkZkgyShn6BX6DW127E7d+hUv/xEwfYEUPBA7n3Ms9OV7EqFS2/WlklpZXVtey67mNza3tHTO/25RhLDBp4JCF4tZDkjAakIaiipHbSBDEPUZa3vAi9Vv3REgaBjdqFBGXo35AfYqR0lLXzHc4UgOMWHI1Ljr23elR1yzYVrVatssOnJLSnBxXoGPZExTADPWu+dXphTjmJFCYISnbjh0pN0FCUczIONeJJYkQHqI+aWsaIE6km0yij+GhVnrQD4V+gYIT9edGgriUI+7pyTSo/O2l4l9eO1Z+xU1oEMWKBHh6yI8ZVCFMe4A9KghWbKQJwoLqrBAPkEBY6bYWrnh8rDuZfxz+T5oly7Et5/qkUDuftZMF++AAFIEDzkANXII6aAAMHsATeAYvxqPxarwZ79PRjDHb2QMLMD6+AWNRmgE=</latexit><latexit sha1_base64="aWD19d2etcI9wT8a+lF0v7FOQf0=">AAACCXicdVDLSgMxFM3UV62vqS7dBItQN8NMtdqCi4Ibd1awrdCOJZNm2tBkZkgyShn6BX6DW127E7d+hUv/xEwfYEUPBA7n3Ms9OV7EqFS2/WlklpZXVtey67mNza3tHTO/25RhLDBp4JCF4tZDkjAakIaiipHbSBDEPUZa3vAi9Vv3REgaBjdqFBGXo35AfYqR0lLXzHc4UgOMWHI1Ljr23elR1yzYVrVatssOnJLSnBxXoGPZExTADPWu+dXphTjmJFCYISnbjh0pN0FCUczIONeJJYkQHqI+aWsaIE6km0yij+GhVnrQD4V+gYIT9edGgriUI+7pyTSo/O2l4l9eO1Z+xU1oEMWKBHh6yI8ZVCFMe4A9KghWbKQJwoLqrBAPkEBY6bYWrnh8rDuZfxz+T5oly7Et5/qkUDuftZMF++AAFIEDzkANXII6aAAMHsATeAYvxqPxarwZ79PRjDHb2QMLMD6+AWNRmgE=</latexit><latexit sha1_base64="aWD19d2etcI9wT8a+lF0v7FOQf0=">AAACCXicdVDLSgMxFM3UV62vqS7dBItQN8NMtdqCi4Ibd1awrdCOJZNm2tBkZkgyShn6BX6DW127E7d+hUv/xEwfYEUPBA7n3Ms9OV7EqFS2/WlklpZXVtey67mNza3tHTO/25RhLDBp4JCF4tZDkjAakIaiipHbSBDEPUZa3vAi9Vv3REgaBjdqFBGXo35AfYqR0lLXzHc4UgOMWHI1Ljr23elR1yzYVrVatssOnJLSnBxXoGPZExTADPWu+dXphTjmJFCYISnbjh0pN0FCUczIONeJJYkQHqI+aWsaIE6km0yij+GhVnrQD4V+gYIT9edGgriUI+7pyTSo/O2l4l9eO1Z+xU1oEMWKBHh6yI8ZVCFMe4A9KghWbKQJwoLqrBAPkEBY6bYWrnh8rDuZfxz+T5oly7Et5/qkUDuftZMF++AAFIEDzkANXII6aAAMHsATeAYvxqPxarwZ79PRjDHb2QMLMD6+AWNRmgE=</latexit><latexit sha1_base64="aWD19d2etcI9wT8a+lF0v7FOQf0=">AAACCXicdVDLSgMxFM3UV62vqS7dBItQN8NMtdqCi4Ibd1awrdCOJZNm2tBkZkgyShn6BX6DW127E7d+hUv/xEwfYEUPBA7n3Ms9OV7EqFS2/WlklpZXVtey67mNza3tHTO/25RhLDBp4JCF4tZDkjAakIaiipHbSBDEPUZa3vAi9Vv3REgaBjdqFBGXo35AfYqR0lLXzHc4UgOMWHI1Ljr23elR1yzYVrVatssOnJLSnBxXoGPZExTADPWu+dXphTjmJFCYISnbjh0pN0FCUczIONeJJYkQHqI+aWsaIE6km0yij+GhVnrQD4V+gYIT9edGgriUI+7pyTSo/O2l4l9eO1Z+xU1oEMWKBHh6yI8ZVCFMe4A9KghWbKQJwoLqrBAPkEBY6bYWrnh8rDuZfxz+T5oly7Et5/qkUDuftZMF++AAFIEDzkANXII6aAAMHsATeAYvxqPxarwZ79PRjDHb2QMLMD6+AWNRmgE=</latexit>

Finalist for the Gordon-Bell prize in supercomputing (2011, only US entry)

4 MW at $0.10/kWh is $400 an hour or about $3.5 million per year.
Simulation of one cardiac cycle took ~24hr

*Simulation credit: Leopold Grinberg (IBM)



Impressive computation, but still an approximation to the true underlying physics

Validity of results relies on accurate model calibration

Many sources of uncertainty: geometry, IC/BCs, rheology, material properties, etc.

parameters to be calibrated using clinical dataO(10� 102)
<latexit sha1_base64="jA8euuXZ8LO5FBtVh1sQfCwI8II=">AAACDHicdVDLSgMxFM3UV62v8bFzEyxCXThkqsUWXBTcuLOCrYV2LJk0bUMzD5KMUIf5Bb/Bra7diVv/waV/YqYPsKIHAodz7uWeHDfkTCqEPo3MwuLS8kp2Nbe2vrG5ZW7vNGQQCULrJOCBaLpYUs58WldMcdoMBcWey+mtO7xI/dt7KiQL/Bs1Cqnj4b7PeoxgpaWOudf2sBoQzOOrpGCjYxvdFY86Zh5ZlUoJlWw4IcUZOSlD20Jj5MEUtY751e4GJPKorwjHUrZsFConxkIxwmmSa0eShpgMcZ+2NPWxR6UTj9Mn8FArXdgLhH6+gmP150aMPSlHnqsn06zyt5eKf3mtSPXKTsz8MFLUJ5NDvYhDFcC0CthlghLFR5pgIpjOCskAC0yULmzuiuslupPZx+H/pFG0bGTZ16f56vm0nSzYBwegAGxwBqrgEtRAHRDwAJ7AM3gxHo1X4814n4xmjOnOLpiD8fENvX2aqQ==</latexit><latexit sha1_base64="jA8euuXZ8LO5FBtVh1sQfCwI8II=">AAACDHicdVDLSgMxFM3UV62v8bFzEyxCXThkqsUWXBTcuLOCrYV2LJk0bUMzD5KMUIf5Bb/Bra7diVv/waV/YqYPsKIHAodz7uWeHDfkTCqEPo3MwuLS8kp2Nbe2vrG5ZW7vNGQQCULrJOCBaLpYUs58WldMcdoMBcWey+mtO7xI/dt7KiQL/Bs1Cqnj4b7PeoxgpaWOudf2sBoQzOOrpGCjYxvdFY86Zh5ZlUoJlWw4IcUZOSlD20Jj5MEUtY751e4GJPKorwjHUrZsFConxkIxwmmSa0eShpgMcZ+2NPWxR6UTj9Mn8FArXdgLhH6+gmP150aMPSlHnqsn06zyt5eKf3mtSPXKTsz8MFLUJ5NDvYhDFcC0CthlghLFR5pgIpjOCskAC0yULmzuiuslupPZx+H/pFG0bGTZ16f56vm0nSzYBwegAGxwBqrgEtRAHRDwAJ7AM3gxHo1X4814n4xmjOnOLpiD8fENvX2aqQ==</latexit><latexit sha1_base64="jA8euuXZ8LO5FBtVh1sQfCwI8II=">AAACDHicdVDLSgMxFM3UV62v8bFzEyxCXThkqsUWXBTcuLOCrYV2LJk0bUMzD5KMUIf5Bb/Bra7diVv/waV/YqYPsKIHAodz7uWeHDfkTCqEPo3MwuLS8kp2Nbe2vrG5ZW7vNGQQCULrJOCBaLpYUs58WldMcdoMBcWey+mtO7xI/dt7KiQL/Bs1Cqnj4b7PeoxgpaWOudf2sBoQzOOrpGCjYxvdFY86Zh5ZlUoJlWw4IcUZOSlD20Jj5MEUtY751e4GJPKorwjHUrZsFConxkIxwmmSa0eShpgMcZ+2NPWxR6UTj9Mn8FArXdgLhH6+gmP150aMPSlHnqsn06zyt5eKf3mtSPXKTsz8MFLUJ5NDvYhDFcC0CthlghLFR5pgIpjOCskAC0yULmzuiuslupPZx+H/pFG0bGTZ16f56vm0nSzYBwegAGxwBqrgEtRAHRDwAJ7AM3gxHo1X4814n4xmjOnOLpiD8fENvX2aqQ==</latexit><latexit sha1_base64="jA8euuXZ8LO5FBtVh1sQfCwI8II=">AAACDHicdVDLSgMxFM3UV62v8bFzEyxCXThkqsUWXBTcuLOCrYV2LJk0bUMzD5KMUIf5Bb/Bra7diVv/waV/YqYPsKIHAodz7uWeHDfkTCqEPo3MwuLS8kp2Nbe2vrG5ZW7vNGQQCULrJOCBaLpYUs58WldMcdoMBcWey+mtO7xI/dt7KiQL/Bs1Cqnj4b7PeoxgpaWOudf2sBoQzOOrpGCjYxvdFY86Zh5ZlUoJlWw4IcUZOSlD20Jj5MEUtY751e4GJPKorwjHUrZsFConxkIxwmmSa0eShpgMcZ+2NPWxR6UTj9Mn8FArXdgLhH6+gmP150aMPSlHnqsn06zyt5eKf3mtSPXKTsz8MFLUJ5NDvYhDFcC0CthlghLFR5pgIpjOCskAC0yULmzuiuslupPZx+H/pFG0bGTZ16f56vm0nSzYBwegAGxwBqrgEtRAHRDwAJ7AM3gxHo1X4814n4xmjOnOLpiD8fENvX2aqQ==</latexit>

*Simulation credit: Leopold Grinberg (IBM)



✓ :
<latexit sha1_base64="BPIWXyKtrjM+oofb5wAzCfcRVpc=">AAAB/XicdVDLSgNBEJz1GeMr6tHLYBA8LbvRYCIeAl48RjAPSJYwO5kkQ2Zml5leISzBb/CqZ2/i1W/x6J84eYERLWgoqrrp7gpjwQ143qezsrq2vrGZ2cpu7+zu7ecODusmSjRlNRqJSDdDYpjgitWAg2DNWDMiQ8Ea4fBm4jcemDY8UvcwilkgSV/xHqcErNRow4ABuerk8p5bLhe9oo9npLAg5yXsu94UeTRHtZP7ancjmkimgApiTMv3YghSooFTwcbZdmJYTOiQ9FnLUkUkM0E6PXeMT63Sxb1I21KAp+rPiZRIY0YytJ2SwMD89ibiX14rgV4pSLmKE2CKzhb1EoEhwpPfcZdrRkGMLCFUc3srpgOiCQWb0NKWUI5tJovH8f+kXnB9z/XvLvKV63k6GXSMTtAZ8tElqqBbVEU1RNEQPaFn9OI8Oq/Om/M+a11x5jNHaAnOxzduGpZV</latexit><latexit sha1_base64="BPIWXyKtrjM+oofb5wAzCfcRVpc=">AAAB/XicdVDLSgNBEJz1GeMr6tHLYBA8LbvRYCIeAl48RjAPSJYwO5kkQ2Zml5leISzBb/CqZ2/i1W/x6J84eYERLWgoqrrp7gpjwQ143qezsrq2vrGZ2cpu7+zu7ecODusmSjRlNRqJSDdDYpjgitWAg2DNWDMiQ8Ea4fBm4jcemDY8UvcwilkgSV/xHqcErNRow4ABuerk8p5bLhe9oo9npLAg5yXsu94UeTRHtZP7ancjmkimgApiTMv3YghSooFTwcbZdmJYTOiQ9FnLUkUkM0E6PXeMT63Sxb1I21KAp+rPiZRIY0YytJ2SwMD89ibiX14rgV4pSLmKE2CKzhb1EoEhwpPfcZdrRkGMLCFUc3srpgOiCQWb0NKWUI5tJovH8f+kXnB9z/XvLvKV63k6GXSMTtAZ8tElqqBbVEU1RNEQPaFn9OI8Oq/Om/M+a11x5jNHaAnOxzduGpZV</latexit><latexit sha1_base64="BPIWXyKtrjM+oofb5wAzCfcRVpc=">AAAB/XicdVDLSgNBEJz1GeMr6tHLYBA8LbvRYCIeAl48RjAPSJYwO5kkQ2Zml5leISzBb/CqZ2/i1W/x6J84eYERLWgoqrrp7gpjwQ143qezsrq2vrGZ2cpu7+zu7ecODusmSjRlNRqJSDdDYpjgitWAg2DNWDMiQ8Ea4fBm4jcemDY8UvcwilkgSV/xHqcErNRow4ABuerk8p5bLhe9oo9npLAg5yXsu94UeTRHtZP7ancjmkimgApiTMv3YghSooFTwcbZdmJYTOiQ9FnLUkUkM0E6PXeMT63Sxb1I21KAp+rPiZRIY0YytJ2SwMD89ibiX14rgV4pSLmKE2CKzhb1EoEhwpPfcZdrRkGMLCFUc3srpgOiCQWb0NKWUI5tJovH8f+kXnB9z/XvLvKV63k6GXSMTtAZ8tElqqBbVEU1RNEQPaFn9OI8Oq/Om/M+a11x5jNHaAnOxzduGpZV</latexit><latexit sha1_base64="BPIWXyKtrjM+oofb5wAzCfcRVpc=">AAAB/XicdVDLSgNBEJz1GeMr6tHLYBA8LbvRYCIeAl48RjAPSJYwO5kkQ2Zml5leISzBb/CqZ2/i1W/x6J84eYERLWgoqrrp7gpjwQ143qezsrq2vrGZ2cpu7+zu7ecODusmSjRlNRqJSDdDYpjgitWAg2DNWDMiQ8Ea4fBm4jcemDY8UvcwilkgSV/xHqcErNRow4ABuerk8p5bLhe9oo9npLAg5yXsu94UeTRHtZP7ancjmkimgApiTMv3YghSooFTwcbZdmJYTOiQ9FnLUkUkM0E6PXeMT63Sxb1I21KAp+rPiZRIY0YytJ2SwMD89ibiX14rgV4pSLmKE2CKzhb1EoEhwpPfcZdrRkGMLCFUc3srpgOiCQWb0NKWUI5tJovH8f+kXnB9z/XvLvKV63k6GXSMTtAZ8tElqqBbVEU1RNEQPaFn9OI8Oq/Om/M+a11x5jNHaAnOxzduGpZV</latexit>

x :
<latexit sha1_base64="2QhUEt5Uz9AyScala0sksbVV2cM=">AAAB/XicdVDLSgNBEOyNrxhfUY9eBoPgadmNBhPxEPDiMYJ5QLKE2clsMmRmd5mZFcMS/AavevYmXv0Wj/6JkxcY0YKGoqqb7i4/5kxpx/m0Miura+sb2c3c1vbO7l5+/6ChokQSWicRj2TLx4pyFtK6ZprTViwpFj6nTX94PfGb91QqFoV3ehRTT+B+yAJGsDZSs+OL9GF82c0XHLtSKTklF81IcUHOysi1nSkKMEetm//q9CKSCBpqwrFSbdeJtZdiqRnhdJzrJIrGmAxxn7YNDbGgykun547RiVF6KIikqVCjqfpzIsVCqZHwTafAeqB+exPxL6+d6KDspSyME01DMlsUJBzpCE1+Rz0mKdF8ZAgmkplbERlgiYk2CS1t8cXYZLJ4HP1PGkXbdWz39rxQvZqnk4UjOIZTcOECqnADNagDgSE8wTO8WI/Wq/Vmvc9aM9Z85hCWYH18A67Fln4=</latexit><latexit sha1_base64="2QhUEt5Uz9AyScala0sksbVV2cM=">AAAB/XicdVDLSgNBEOyNrxhfUY9eBoPgadmNBhPxEPDiMYJ5QLKE2clsMmRmd5mZFcMS/AavevYmXv0Wj/6JkxcY0YKGoqqb7i4/5kxpx/m0Miura+sb2c3c1vbO7l5+/6ChokQSWicRj2TLx4pyFtK6ZprTViwpFj6nTX94PfGb91QqFoV3ehRTT+B+yAJGsDZSs+OL9GF82c0XHLtSKTklF81IcUHOysi1nSkKMEetm//q9CKSCBpqwrFSbdeJtZdiqRnhdJzrJIrGmAxxn7YNDbGgykun547RiVF6KIikqVCjqfpzIsVCqZHwTafAeqB+exPxL6+d6KDspSyME01DMlsUJBzpCE1+Rz0mKdF8ZAgmkplbERlgiYk2CS1t8cXYZLJ4HP1PGkXbdWz39rxQvZqnk4UjOIZTcOECqnADNagDgSE8wTO8WI/Wq/Vmvc9aM9Z85hCWYH18A67Fln4=</latexit><latexit sha1_base64="2QhUEt5Uz9AyScala0sksbVV2cM=">AAAB/XicdVDLSgNBEOyNrxhfUY9eBoPgadmNBhPxEPDiMYJ5QLKE2clsMmRmd5mZFcMS/AavevYmXv0Wj/6JkxcY0YKGoqqb7i4/5kxpx/m0Miura+sb2c3c1vbO7l5+/6ChokQSWicRj2TLx4pyFtK6ZprTViwpFj6nTX94PfGb91QqFoV3ehRTT+B+yAJGsDZSs+OL9GF82c0XHLtSKTklF81IcUHOysi1nSkKMEetm//q9CKSCBpqwrFSbdeJtZdiqRnhdJzrJIrGmAxxn7YNDbGgykun547RiVF6KIikqVCjqfpzIsVCqZHwTafAeqB+exPxL6+d6KDspSyME01DMlsUJBzpCE1+Rz0mKdF8ZAgmkplbERlgiYk2CS1t8cXYZLJ4HP1PGkXbdWz39rxQvZqnk4UjOIZTcOECqnADNagDgSE8wTO8WI/Wq/Vmvc9aM9Z85hCWYH18A67Fln4=</latexit><latexit sha1_base64="2QhUEt5Uz9AyScala0sksbVV2cM=">AAAB/XicdVDLSgNBEOyNrxhfUY9eBoPgadmNBhPxEPDiMYJ5QLKE2clsMmRmd5mZFcMS/AavevYmXv0Wj/6JkxcY0YKGoqqb7i4/5kxpx/m0Miura+sb2c3c1vbO7l5+/6ChokQSWicRj2TLx4pyFtK6ZprTViwpFj6nTX94PfGb91QqFoV3ehRTT+B+yAJGsDZSs+OL9GF82c0XHLtSKTklF81IcUHOysi1nSkKMEetm//q9CKSCBpqwrFSbdeJtZdiqRnhdJzrJIrGmAxxn7YNDbGgykun547RiVF6KIikqVCjqfpzIsVCqZHwTafAeqB+exPxL6+d6KDspSyME01DMlsUJBzpCE1+Rz0mKdF8ZAgmkplbERlgiYk2CS1t8cXYZLJ4HP1PGkXbdWz39rxQvZqnk4UjOIZTcOECqnADNagDgSE8wTO8WI/Wq/Vmvc9aM9Z85hCWYH18A67Fln4=</latexit>

t :
<latexit sha1_base64="b22imFUGlXc+S9gzb08KHnbQhhE=">AAAB/XicdVDLSsNAFJ34rPVVdelmsAiuQlIttuKi4MZlBfuANpTJdNIOnUnCzI1QQvAb3Oranbj1W1z6J05fYEUPXDiccy/33uPHgmtwnE9rZXVtfWMzt5Xf3tnd2y8cHDZ1lCjKGjQSkWr7RDPBQ9YADoK1Y8WI9AVr+aObid96YErzKLyHccw8SQYhDzglYKRW15cpZFe9QtGxq9WyU3bxjJQW5LyCXduZoojmqPcKX91+RBPJQqCCaN1xnRi8lCjgVLAs3000iwkdkQHrGBoSybSXTs/N8KlR+jiIlKkQ8FT9OZESqfVY+qZTEhjq395E/MvrJBBUvJSHcQIspLNFQSIwRHjyO+5zxSiIsSGEKm5uxXRIFKFgElra4svMZLJ4HP9PmiXbdWz37qJYu56nk0PH6ASdIRddohq6RXXUQBSN0BN6Ri/Wo/VqvVnvs9YVaz5zhJZgfXwDqHGWeg==</latexit><latexit sha1_base64="b22imFUGlXc+S9gzb08KHnbQhhE=">AAAB/XicdVDLSsNAFJ34rPVVdelmsAiuQlIttuKi4MZlBfuANpTJdNIOnUnCzI1QQvAb3Oranbj1W1z6J05fYEUPXDiccy/33uPHgmtwnE9rZXVtfWMzt5Xf3tnd2y8cHDZ1lCjKGjQSkWr7RDPBQ9YADoK1Y8WI9AVr+aObid96YErzKLyHccw8SQYhDzglYKRW15cpZFe9QtGxq9WyU3bxjJQW5LyCXduZoojmqPcKX91+RBPJQqCCaN1xnRi8lCjgVLAs3000iwkdkQHrGBoSybSXTs/N8KlR+jiIlKkQ8FT9OZESqfVY+qZTEhjq395E/MvrJBBUvJSHcQIspLNFQSIwRHjyO+5zxSiIsSGEKm5uxXRIFKFgElra4svMZLJ4HP9PmiXbdWz37qJYu56nk0PH6ASdIRddohq6RXXUQBSN0BN6Ri/Wo/VqvVnvs9YVaz5zhJZgfXwDqHGWeg==</latexit><latexit sha1_base64="b22imFUGlXc+S9gzb08KHnbQhhE=">AAAB/XicdVDLSsNAFJ34rPVVdelmsAiuQlIttuKi4MZlBfuANpTJdNIOnUnCzI1QQvAb3Oranbj1W1z6J05fYEUPXDiccy/33uPHgmtwnE9rZXVtfWMzt5Xf3tnd2y8cHDZ1lCjKGjQSkWr7RDPBQ9YADoK1Y8WI9AVr+aObid96YErzKLyHccw8SQYhDzglYKRW15cpZFe9QtGxq9WyU3bxjJQW5LyCXduZoojmqPcKX91+RBPJQqCCaN1xnRi8lCjgVLAs3000iwkdkQHrGBoSybSXTs/N8KlR+jiIlKkQ8FT9OZESqfVY+qZTEhjq395E/MvrJBBUvJSHcQIspLNFQSIwRHjyO+5zxSiIsSGEKm5uxXRIFKFgElra4svMZLJ4HP9PmiXbdWz37qJYu56nk0PH6ASdIRddohq6RXXUQBSN0BN6Ri/Wo/VqvVnvs9YVaz5zhJZgfXwDqHGWeg==</latexit><latexit sha1_base64="b22imFUGlXc+S9gzb08KHnbQhhE=">AAAB/XicdVDLSsNAFJ34rPVVdelmsAiuQlIttuKi4MZlBfuANpTJdNIOnUnCzI1QQvAb3Oranbj1W1z6J05fYEUPXDiccy/33uPHgmtwnE9rZXVtfWMzt5Xf3tnd2y8cHDZ1lCjKGjQSkWr7RDPBQ9YADoK1Y8WI9AVr+aObid96YErzKLyHccw8SQYhDzglYKRW15cpZFe9QtGxq9WyU3bxjJQW5LyCXduZoojmqPcKX91+RBPJQqCCaN1xnRi8lCjgVLAs3000iwkdkQHrGBoSybSXTs/N8KlR+jiIlKkQ8FT9OZESqfVY+qZTEhjq395E/MvrJBBUvJSHcQIspLNFQSIwRHjyO+5zxSiIsSGEKm5uxXRIFKFgElra4svMZLJ4HP9PmiXbdWz37qJYu56nk0PH6ASdIRddohq6RXXUQBSN0BN6Ri/Wo/VqvVnvs9YVaz5zhJZgfXwDqHGWeg==</latexit>

Model parameters
Model inputs
Target quantities of interest

• High dimensional optimization
• Expensive, black-box loss function
• No gradients available

✓⇤ = argmin
✓

L(✓),
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*Simulation credit: Leopold Grinberg (IBM)
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*Simulation credit: Leopold Grinberg (IBM)

Big data vs small data Dimensionality vs # of observations
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Can we solve this problem using surrogate models that are cheaper to compute?

*Simulation credit: Leopold Grinberg (IBM)



Situation
We have a few function evaluations

Where is the minimum of f?
Where should the take the next evaluation?

Optimization of expensive black-box functions

Where is the minimum of L(✓)?
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Where should we take our next evaluation?

How can we distill useful information from simplified models to accelerate this process?



Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs| {z }
fA

, fs+1, fs+2, · · · , fN| {z }
fB

) ⇠ N (µ,K).

with:

µ =


µA

µB

�
and K =


KAA KAB

KBA KBB

�

Marginalisation property:

p(fA, fB) ⇠ N (µ,K). Then:

p(fA) =

Z

fB

p(fA, fB)dfB = N (µA,KAA)

Marginalization:

Samples from a GP prior

Priors over functions:

468th APS-DFD Meeting — Calibration of Blood Flow Simulations

Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances

are written either as a function of x and x0
, or as a function of r = |x � x0|. Two

columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary

and nondegenerate respectively. Degenerate covariance functions have finite rank, see

section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from

Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of

⌫, with ` = 1. The sample functions on the right were obtained using a discretization

of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r

2
/2`

2
, see eq. (A.25). Stein [1999] named this the

Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)

fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary

and nondegenerate respectively. Degenerate covariance functions have finite rank, see

section 4.3 for more discussion of this issue.
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RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that
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is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from

Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of

⌫, with ` = 1. The sample functions on the right were obtained using a discretization

of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r

2
/2`

2
, see eq. (A.25). Stein [1999] named this the

Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:
— Assign a Gaussian prior over functions
— Given a training set of data calibrate model parameters
— Use the posterior to make predictions 
with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Rasmussen, C.E. and Williams C. Gaussian processes for machine learning (2006) 

Posterior is also Gaussian!

p(fA, fB) ⇠ N (µ,K). Then:

p(fA|fB) = N (µA +KABK
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BB(fB � µB),KAA �KABK
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BBKBA)

In the GP context this can be used for inter/extrapolation:

p(f⇤|f1, · · · , fN ) = p(f(x⇤)|f(x1), · · · , f(xN )) ⇠ N
p(f⇤|f1, · · · , fN) = p(f(x⇤)|f(x1), · · · , f(xN ))
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p(f(x⇤)|f(x1), · · · , f(xN )) is a posterior process!

Posterior is also Gaussian: 

Neural 
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Gaussian 
processes

Kernel 
machines

Infinite 
limit

Bayesian 
inference

Dual 
functions

Data-driven modeling with Gaussian processes



Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)

fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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Table 4.1: Summary of several commonly-used covariance functions. The covariances

are written either as a function of x and x0
, or as a function of r = |x � x0|. Two

columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary

and nondegenerate respectively. Degenerate covariance functions have finite rank, see

section 4.3 for more discussion of this issue.
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Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:
— Assign a Gaussian prior over functions
— Given a training set of data calibrate model parameters
— Use the posterior to make predictions 
with quantified uncertainty

Training & prediction

Prediction:

the second kind, respectively. In what follows, we formulate the inference problem for the
case of homoscedastic noise, while we refer the reader to [] for a detailed outline of the
heteroscedastic case. To this end, we introduce ✓ = [�2, ⌫,,�2

✏ ]
T as a vector of hyper-

parameters which characterize the GP model, which are typically computed from the data
through maximum likelihood estimation.

If we consider a Gaussian likelihood p(y|f) = N (y|f ,�2
✏ I) then the posterior distri-

bution p(f |y,X) is tractable and can be used to perform predictive inference for a new
output f⇤, given a new input x⇤ as

p(f⇤|y,X,x⇤) = N (f⇤|µ⇤,�
2
⇤), (5)

µ⇤(x⇤) = k⇤N (K + �2
✏ I)

�1y, (6)

�2
⇤(x⇤) = k⇤⇤ � k⇤N (K + �2

✏ I)
�1kN⇤, (7)

where k⇤N = [k(x⇤,x1), . . . , k(x⇤,xN )], kN⇤ = kT
⇤N , and k⇤⇤ = k(x⇤,x⇤). Predictions are

computed using the posterior mean µ⇤, while prediction uncertainty is quantified through
the posterior variance �2

⇤.
The vector of hyper-parameters ✓ is determined by maximizing the marginal log-

likelihood of the observed data (the so called model evidence), i.e.,

log p(y|X,✓) = �1

2
log |K + �2

✏ I|�
1

2
yT (K + �2

✏ I)
�1y � N

2
log 2⇡ (8)

2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R↵((Y (x⇤; ⇠)) = v⇤  R↵((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R↵. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3

Hyper-parameter estimation: 
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Bayesian approach

fequentist approach

Rasmussen, C. E. Gaussian processes for machine learning (2006) 
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insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3

Assign priors over the hyper parameters and marginalize them out using MCMC.
Bayesian approach

fequentist approach

Rasmussen, C. E. Gaussian processes for machine learning (2006) 

Training via maximizing the marginal likelihood

Prediction via conditioning on available data

y = f(x) + ✏ f ⇠ GP(0, k(x,x0;✓))

Demo code: https://github.com/PredictiveIntelligenceLab/GPTutorial

Data-driven modeling with Gaussian processes

https://github.com/PredictiveIntelligenceLab/GPTutorial
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Samples from GPs with di↵erent K(x, x0)
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Prediction using GPs with di↵erent K(x, x0)

A sample from the prior for each covariance function:
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yH = fH(xH) + ✏H

yL = fL(xL) + ✏L

fH(x) = ⇢fL(x) + �(x)

fL(x) ⇠ GP(0, kL(x,x
0; ✓L))

�(x) ⇠ GP(0, kH(x,x0; ✓H))

✏L ⇠ N (0,�2
✏LI)

✏H ⇠ N (0,�2
✏H

I)

M.C Kennedy, and A. O'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.

X =


xL

xH

�

Multi-fidelity observations:

Probabilistic model:

Training:

Prediction: p(f(x⇤)|y,X,x⇤) ⇠ N (f(x⇤)|µ(x⇤),�2(x⇤))

µ(x⇤) = k(x⇤,X)K�1y

�(x⇤) = k(x⇤,x⇤)� k(x⇤,X)K�1k(X,x⇤)

� log p(y|X, ✓L, ✓H , ⇢,�2
✏L
,�2

✏H
) =

1

2
log |K|+ 1

2
yTK�1y � NL +NH

2
log 2⇡

y =


yL

yH

�
⇠ N

✓
0
0

�
,


kL(xL,x0

L
; ✓L) + �2

✏L
I ⇢kL(xL,x0

H
; ✓L)

⇢kL(xH ,x0
L
; ✓L) ⇢2kL(xH ,x0

H
; ✓L) + kH(xH ,x0

H
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Demo code: https://github.com/PredictiveIntelligenceLab/GPTutorial

Multi-fidelity modeling

https://github.com/PredictiveIntelligenceLab/GPTutorial


Multi-fidelity Bayesian optimization

Sample at the locations that minimize the lower super-quintile risk confidence bound of the posterior:

xn+1 = arg min
x2Rd

µ(x)� �(��1(↵))
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�(x)
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Goal: Calibrate the outflow boundary condition parameters to match a target inlet systolic pressure.

P. Perdikaris, and G.E Karniadakis. "Model inversion via multi-fidelity Bayesian optimization." J. R. Soc. Interface (2016)

Multi-fidelity approach:
1.) 3D Navier-Stokes (spectral/hp elements, rigid artery) - high fidelity O(hrs)
2.) Non-linear 1D-FSI (DG, compliant artery) - intermediate fidelity O(mins)
3.) Linearized 1D-FSI solver around an inaccurate reference state - low fidelity O(s)

Example application: Calibration of blood flow simulations
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021304-8 Perdikaris, Grinberg, and Karniadakis Phys. Fluids 28, 021304 (2016)

FIG. 5. MaN-MeN coupling: (a) Flow dynamics in the meso-vascular regime are modeled using nonlinear 1D blood flow
models in fractal arterial trees attached to each of the terminal vessels of the parent, patient-specific 3D domain.36 (b) Total
number of arteries in the resulting MaN-MeN topology as a function of the cut-o↵ radius rcut of the fractal trees.36 (c)
Exchanged quantities at the MaN-MeN interface and asynchronous time-stepping communication (�t3D: time step size
of the 3D-FSI solver, �t1D: time step size of the 1D-FSI solver, Qn

3D: flow-rate at the 3D outlet at time step n, Q̃n+1
3D :

extrapolated flow-rate at the 3D outlet, p: total pressure at the 1D inlet at time step n+1, du
dx : velocity gradient at the 1D

inlet at time step n+1). Reprinted with permission from P. Perdikaris, L. Grinberg, and G. E. Karniadakis, “An e↵ective
fractal-tree closure model for simulating blood flow in large arterial networks,” Ann. Biomed. Eng. 43, 1432–1442 (2014).
Copyright 2014 Springer.

Since 1D dynamics are governed by a hyperbolic system of PDEs, the 1D-FSI solver of each
fractal tree can only admit a single boundary constraint, which is typically the averaged mass
flow computed at the outlet of the parent 3D domain (see Fig. 5(c)). In return, each 1D-FSI
solver provides the pressure, velocity flux, and cross area displacement at the inlet of its fractal
tree, to be inscribed as outflow boundary conditions at the corresponding outlet of the parent
3D domain. The wave propagation nature of the 1D solver typically leads to a more pronounced
Courant-Friedrichs-Lewy stability restriction22 in time-stepping size compared to the one corre-
sponding to the 3D solver. Since this mandates each solver to march in time with a di↵erent time
step, we need to devise an asynchronous communication pattern that synchronizes the solution
between the two solvers accordingly (see Fig. 5(c)). Finally, we note that strong coupling between
the 3D and 1D domains may result either from an implicit monolithic solving approach55 or by
explicitly coupling di↵erent modular solvers by means of sub-iterations.53

2. MaN-MiN

Coupling of atomistic and continuum solvers requires the calculation and communication of
averaged properties, such as fluid velocity and density, across heterogeneous solver interfaces. First,
one needs to perform a proper non-dimensionalization of the corresponding time and length scales
of each solver to ensure consistency in the non-dimensional numbers that characterize the flow
(e.g., the Reynolds number). Then, interface conditions should be derived to respect the require-
ments of each solver. For example, atomistic solvers require a local velocity flux to be imposed at
each cell of the atomistic domain. This is achieved though constructing appropriate interpolation
and projection operators that are capable of mapping the continuum velocity field onto the atomistic
domain (see continuum to atomistic, C2A, operators in Figure 7). Specifically, to enforce mass
conservation, the continuum solver computes the fluxes through the surface interfaces with the DPD
domains, and particles as inserted in the DPD domain in such a way that these fluxes are preserved,
and the velocity vector of the DPD particles corresponds to the velocity sampled in the continuum
solver.

Similarly, the continuum solver requires the geometrical representation of moving boundaries
and flow “obstacles” arising due to aggregation of atomistic particles (e.g., thrombus formation)11

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:
128.148.231.12 On: Fri, 22 Apr 2016 23:11:21

Elastic 
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Outflow boundary 
conditions?

Geometry?

Models (e.g. 3D vs 1D, 
continuum vs atomistic, etc.)

Rheology/
constitutive laws?

Decreased the relative error to 1e-3 after 3 
iterations of BO, mainly sampling the lowest 
fidelity (cheapest) solver. 



35 design variables
B-MF: 735 LF + 120 HF runs
GA-LF: ~50,000 LF runs

Taking the human out of the loop: 
Multi-fidelity Bayesian optimization 
of super-cavitating hydrofoils

min
x2X

R0.9

✓
CD

CL
(x; ⇠)

◆

0.23  R0.5(CL(x; ⇠))  0.26

R0.5(Ix(x; ⇠)) � 8.1 · 10�6

R0.5(Tp(x; ⇠)) � 0.00132

s.t

Bonfiglio, L., Perdikaris, P., Brizzolara, S., & Karniadakis, G. E. (2018). Multi-fidelity optimization of super-cavitating hydrofoils. Computer Methods 
in Applied Mechanics and Engineering.



Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Inferring solutions of differential equations using noisy multi-fidelity data. Journal of Computational 
Physics, 335, 736-746.
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2.1.1. Kernels [52]
Without loss of generality, all Gaussian process priors used in this work are assumed to have a squared exponential 

covariance function, i.e.,

kuu(x, x′; θ) = σ 2
u exp

(

− 1
2

D∑

d= 1

wd(xd − x′
d)

2

)

,

where σ 2
u is a variance parameter, x is a D-dimensional vector that includes spatial or temporal coordinates, and 

θ =
(
σ 2

u , (wd)
D
d= 1

)
. Moreover, anisotropy across input dimensions is handled by Automatic Relevance Determination (ARD) 

weights wd . From a theoretical point of view, each kernel gives rise to a Reproducing Kernel Hilbert Space [4,42,5] that 
defines a class of functions that can be represented by this kernel. In particular, the squared exponential covariance func-
tion chosen above implies smooth approximations. More complex function classes can be accommodated by appropriately 
choosing kernels. For example, non-stationary kernels employing nonlinear warpings of the input space can be constructed 
to capture discontinuous response [8]. In general, the choice of kernels is crucial and in many cases still remains an art 
that relies on one’s ability to encode any prior information (such as known symmetries, invariances, etc.) into the regres-
sion scheme. In this work, this prior information is the knowledge of the parametric linear operator Lφ

x itself. Starting, for 
example, from a base square exponential kernel and applying Lφ

x as described above, one obtains a prior that is adapted to 
the linear operator and inherits its underlying structure. Our empirical findings so far indicate that this procedure is quite 
robust and insensitive to the choice of the base kernel, although this observation should be interpreted as a conjecture 
rather as a firm result.

2.2. Training

The hyper-parameters θ and more importantly the parameters φ of the linear operator Lφ
x can be trained by employing 

a Quasi-Newton optimizer L-BFGS [27] to minimize the negative log marginal likelihood [52]

− log p(y|φ, θ,σ 2
nu

,σ 2
n f

) = 1
2

log |K | + 1
2

yT K − 1 y + N
2

log 2π , (3)

where y =
[

yu
y f

]
, p(y|φ, θ, σ 2

nu
, σ 2

n f
) = N (0, K ), and K is given by

K =
[

kuu(Xu, Xu; θ) + σ 2
nu

Inu ku f (Xu, X f ; θ,φ)

k f u(X f , Xu; θ,φ) k f f (X f , X f ; θ,φ) + σ 2
n f

In f

]

. (4)

Here, σ 2
nu

and σ 2
n f

are included to capture noise in the data and are also inferred from the data. The implicit underlying 
assumption is that yu = u(Xu) + ϵu , y f = f (X f ) + ϵ f with ϵu ∼ N (0, σ 2

nu
Inu ), ϵ f ∼ N (0, σ 2

n f
In f ). Moreover, ϵu and ϵ f

are assumed to be independent. It is worth mentioning that the marginal likelihood does not simply favor the models that 
fit the training data best. In fact, it induces an automatic trade-off between data-fit and model complexity. This effect is 
called Occam’s razor [40] after William of Occam (1285–1349), who encouraged simplicity in explanations by the prin-
ciple: “plurality should not be assumed without necessity”. Specifically, minimizing the yT K − 1 y term in Eq. (3) targets 
fitting the training data, while the log-determinant term log |K | penalizes model complexity. This mechanism automatically 
meets the Occam’s razor principle, albeit at the computational cost of obtaining the Cholesky factors of K that are used 
to compute both the inverse and the determinant. This natural regularization mechanism is a key property of Gaussian 
process regression and it enables inferring the unknown model parameters from very few data while effectively guarding 
against overfitting. However, regularization still remains an important factor even in cases where data is abundant as seen in 
the recently growing literature on discovering ordinary and partial differential equations from data using sparse regression 
techniques [7,41].

Model training practically consists of minimizing Eq. (3) with respect to the model parameters and hyper-parameters, 
namely {φ, θ, σ 2

nu
, σ 2

n f
}. This defines a non-convex optimization problem, and the common practice of employing classical 

gradient descent algorithms may lead to a local minimum. Therefore, the proposed method is also susceptible to converging 
to a set of hyper-parameters that corresponds to a local minimum of the negative marginal log likelihood. This behavior 
is standard for many machine learning algorithms (e.g., Gaussian processes, neural networks) [52], and the efficient global
optimization still remains an open problem. In practice, this issue is addressed by solving the optimization problem from 
different hyper-parameter initializations, and returning the solution that yields the smallest negative marginal log likeli-
hood. Although this still does not guarantee convergence to a global optimum, it is usually sufficient for obtaining a good 
solution.

The most computationally intensive part of training is associated with inverting dense covariance matrices K . This scales 
cubically with the number of training data in y. Although this scaling is a well-known limitation of Gaussian process 
regression, it must be emphasized that it has been effectively addressed by the recent works of [45,19]. Furthermore, 
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discretization uncertainty using Gaussian process priors. These developments are defining a new area of scientific research 
in which probabilistic machine learning and classical scientific computing coexist in unison, providing a flexible and general 
platform for Bayesian reasoning and computation. In this work, we exploit this interface by developing a novel Bayesian 
inference framework that enables learning from (noisy) data and equations in a synergistic fashion.

2. Problem setup

We consider general linear integro-differential equations of the form

Lxu(x) = f (x), (1)

where x is a D-dimensional vector that includes spatial or temporal coordinates, Lx is a linear operator, u(x) denotes an 
unknown solution to the equation, and f (x) represents the external force that drives the system. We assume that f L := f is 
a complex, expensive to evaluate, “black-box” function. For instance, f L could represent force acting upon a physical system, 
the outcome of a costly experiment, the output of an expensive computer code, or any other unknown function. We assume 
limited availability of high-fidelity data for f L , denoted by {xL, yL}, that could be corrupted by noise ϵL , i.e., yL = f L(xL) +ϵL . 
In many cases, we may also have access to supplementary sets of less accurate models fℓ, ℓ = 1, . . . , L − 1, sorted by 
increasing level of fidelity, and generating data {xℓ, yℓ} that could also be contaminated by noise ϵℓ , i.e., yℓ = fℓ(xℓ) + ϵℓ . 
Such data may come from simplified computer models, inexpensive sensors, or uncalibrated measurements. In addition, 
we also have a small set of data on the solution u, denoted by {x0, y0}, perturbed by noise ϵ0, i.e., y0 = u(x0) + ϵ0, 
sampled at scattered spatio-temporal locations, which we call anchor points to distinguish them from boundary or initial 
values. Although they could be located on the domain boundaries as in the classical setting, this is not a requirement in 
the current framework as solution data could be partially available on the boundary or in the interior of either spatial or 
temporal domains. Here, we are not primarily interested in estimating f . We are interested in estimating the unknown 
solution u that is related to f through the linear operator Lx . For example, consider a bridge subject to environmental 
loading. In a two-level of fidelity setting (i.e., L = 2), suppose that one could only afford to collect scarce but accurate 
(high-fidelity) measurements of the wind force f2(x) acting upon the bridge at some locations. In addition, one could also 
gather samples by probing a cheaper but inaccurate (low-fidelity) wind prediction model f1(x) at some other locations. How 
could this noisy data be combined to accurately estimate the bridge displacements u(x) under the laws of linear elasticity? 
What is the uncertainty/error associated with this estimation? How can we best improve that estimation if we can afford 
another observation of the wind force? Quoting Diaconis [4], “once we allow that we don’t know f , but do know some 
things, it becomes natural to take a Bayesian approach”.

3. Solution methodology

The basic building blocks of the Bayesian approach adopted here are Gaussian process (GP) regression [17,18] and auto-
regressive stochastic schemes [19,21]. This choice is motivated by the Bayesian non-parametric nature of GPs, their analytical 
tractability properties, and their natural extension to the multi-fidelity settings that are fundamental to this work. In par-
ticular, GPs provide a flexible prior distribution over functions, and, more importantly, a fully probabilistic workflow that 
returns robust posterior variance estimates which enable adaptive refinement and active learning [22–24]. The framework 
we propose is summarized in Fig. 1 and is outlined in the following.

Inspired by [19,21], we will present the framework considering two-levels of fidelity (i.e. L = 2), although generalization 
to multiple levels is straightforward. Let us start with the auto-regressive model u(x) = ρu1(x) + δ2(x), where δ2(x) and 
u1(x) are two independent Gaussian processes [17–19,21] with δ2(x) ∼ GP(0, g2(x, x′; θ2)) and u1(x) ∼ GP(0, g1(x, x′; θ1)). 
Here, g1(x, x′; θ1), g2(x, x′; θ2) are covariance functions, θ1, θ2 denote their hyper-parameters, and ρ is a cross-correlation 
parameter to be learned from the data (see Sec. 3.1). Then, one can trivially obtain

u(x) ∼ GP(0, g(x, x′; θ)), (2)

with g(x, x′; θ) = ρ2 g1(x, x′; θ1) + g2(x, x′; θ2), and θ = (θ1, θ2, ρ). The key observation here is that the derivatives and 
integrals of a Gaussian process are still Gaussian processes. Therefore, given that the operator Lx is linear, we obtain

f (x) ∼ GP(0,k(x, x′; θ)), (3)

with

k(x, x′; θ) = LxLx′ g(x, x′; θ). (4)

Similarly, we arrive at the auto-regressive structure f (x) = ρ f1(x) +γ2(x) on the forcing, where γ2(x) = Lxδ2(x), and f1(x) =
Lxu1(x) are consequently two independent Gaussian processes with γ2(x) ∼ GP(0, k2(x, x′; θ2)), f1(x) ∼ GP(0, k1(x, x′; θ1)). 
Furthermore, for ℓ = 1, 2, kℓ(x, x′; θℓ) = LxLx′ gℓ(x, x′; θℓ).
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can generate discontinuous solutions!
• This is a general approach applicable to any 

nonlinear equation and any time-stepping 
scheme.

• We only need to derive the kernel 
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d2un+1(x)

dx2
= un(x).

Let us start by making the assumption that85

un+1,n+1(x) ⇠ GP(0, kn+1,n+1(x, x0; ✓)).

Consequently,86
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We can now train the hyper-parameters ✓ using the data {xn,un}, {xn+1
b ,un+1

b } and by88

minimizing the negative log marginal likelihood obtained from89


un+1
b
un

�
⇠ N

✓
0,


kn+1,n+1(xn+1

b ,xn+1
b ) kn+1,n(xn+1

b ,xn)
kn,n+1(xn,xn+1

b ) kn,n(xn,xn)

�◆
.

Here, {xn,un} are artificially generated data and {xn+1
b ,un+1

b } are data on the boundary.90

For predicting un+1
⇤ at new test points x⇤, one can use91
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However, since {xn,un} are artificially generated data and un has a distribution, one95

should not stop here. In fact, to properly propagate uncertainty, we need to marginalize96

out un. Let us assume that97

un ⇠ N (mn,Sn),
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Furthermore, one can use the resulting predictive distribution to obtain the artificially101

generate data {xn+1,un+1} with un+1 ⇠ N (mn+1,Sn+1).102

4

• Under this setup, fully implicit time-stepping
schemes have the same complexity as their 
explicit counterparts. Hence, one can obtain highly 
accurate and stable schemes at no extra cost.

⌫ = ⇡/100

Extension to non-linear equations
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these data-limited domains. Less well understood is how to leverage the underlying physical laws and/or governing equa-
tions to extract patterns from small data generated from highly complex systems. In this work, we propose a modeling 
framework that enables blending conservation laws, physical principles, and/or phenomenological behaviors expressed by 
partial differential equations with the datasets available in many fields of engineering, science, and technology. This paper 
should be considered a direct continuation of a preceding one [1] in which we addressed the problem of inferring solutions 
of time dependent and nonlinear partial differential equations using noisy observations. Here, a similar methodology is em-
ployed to deal with the problem of learning, system identification, or data-driven discovery of partial differential equations 
[2]. The literature on data-driven discovery of dynamical systems [3] is vast and encompasses equation-free modeling [4], 
artificial neural networks [5], nonlinear regression [6], empirical dynamic modeling [7,8], modeling emergent behavior [9], 
automated inference of dynamics [10–12], normal form identification in climate [13], nonlinear Laplacian spectral analysis 
[14], modeling emergent behavior [9], Koopman analysis [15–18], automated inference of dynamics [10–12], and symbolic 
regression [19,20]. More recently, sparsity [21] has been used to determine the governing dynamical system [22–31]. In 
general, we envision that the proposed method of the current work could be most useful in cases where one would like to 
learn from noisy experimental data and a governing equation is known. Take for example the case of reconstructing a flow 
field from scattered measurements (e.g., Particle Image Velocimetry data), and using the governing Navier–Stokes equations 
to extract patterns from such measurements.

2. Problem setup

Let us consider parametrized and nonlinear partial differential equations of the general form

ht + N λ
x h = 0, x ∈ ", t ∈ [0, T ], (1)

where h(t, x) denotes the latent (hidden) solution, N λ
x is a nonlinear operator parametrized by λ, and " is a subset of RD . 

As an example, the one dimensional Burgers’ equation corresponds to the case where N λ
x h = λ1hhx − λ2hxx and λ = (λ1, λ2). 

Here, the subscripts denote partial differentiation in either time or space. Given noisy measurements of the system, one is 
typically interested in the solution of two distinct problems. The first problem is that of inference or filtering and smoothing, 
which states: given fixed model parameters λ what can be said about the unknown hidden state h(t, x) of the system? This 
question is the topic of a preceding paper [1] of the authors in which we introduce the concept of numerical Gaussian 
processes and address the problem of inferring solutions of time dependent and nonlinear partial differential equations 
using noisy observations. The second problem is that of learning, system identification, or data driven discovery of partial 
differential equations [2] stating: what are the parameters λ that best describe the observed data? Here we assume that 
all we observe are two snapshots {xn− 1, hn− 1} and {xn, hn} of the system at times tn− 1 and tn , respectively, which are 
#t = tn − tn− 1 apart. The main assumption is that #t is small enough so that we can apply the backward Euler time 
stepping scheme1 to equation (1) and obtain the discretized equation

hn + #tN λ
x hn = hn− 1. (2)

Here, hn(x) = h(tn, x) is the hidden state of the system at time tn . Approximating the nonlinear operator on the left-hand-
side of equation (2) by a linear one we obtain

Lλ
x hn = hn− 1. (3)

For instance, the nonlinear operator

hn + #tN λ
x hn = hn + #t(λ1hnhn

x − λ2hn
xx),

involved in the Burgers’ equation can be approximated by the linear operator

Lλ
x hn = hn + #t(λ1hn− 1hn

x − λ2hn
xx),

where hn− 1(x) is the state of the system at the previous time tn− 1.

3. The basic model

Similar to Raissi et al. [32,33], we build upon the analytical property of Gaussian processes that the output of a linear 
system whose input is Gaussian distributed is again Gaussian. Specifically, we proceed by placing a Gaussian process2 prior 
over the latent function hn(x); i.e.,

1 For a general treatment of arbitrary linear multi-step methods as well as Runge–Kutta time stepping schemes we would like to refer the readers to [1].
2 Gaussian processes (see [34,35]) provide a flexible prior distribution over functions and enjoy analytical tractability. They can be viewed as a prior on 

one-layer feed-forward Bayesian neural networks with an infinite number of hidden units [36]. Gaussian processes are among a class of methods known as 
kernel machines (see [37–39]) and are analogous to regularization approaches (see [40–42]).
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hn(x) ∼ GP(0,k(x, x′, θ)). (4)

Here, θ denotes the hyper-parameters of the covariance function k. Without loss of generality, all Gaussian process priors 
used in this work are assumed to have a squared exponential3 covariance function, i.e.,

k(x, x′; θ) = γ 2 exp

(

− 1
2

D∑

d= 1

w2
d(xd − x′

d)
2

)

,

where θ = (γ , w1, · · · , w D) are the hyper-parameters and x is a D-dimensional vector. The Gaussian process prior assump-
tion (4) along with equation (3) enable us to capture the entire structure of the operator Lλ

x in the resulting multi-output 
Gaussian process

[
hn

hn− 1

]
∼ GP

(
0,

[
kn,n kn,n− 1

kn− 1,n kn− 1,n− 1

])
. (5)

It is worth highlighting that the parameters λ of the operators Lλ
x and N λ

x turn into hyper-parameters of the resulting 
covariance functions. The specific forms of the kernels4

kn,n(x, x′; θ), kn,n− 1(x, x′; θ,λ),

kn− 1,n(x, x′; θ,λ), kn− 1,n− 1(x, x′; θ,λ),

are direct functions of equation (3) as well as the prior assumption (4); i.e.,

kn,n = k, kn,n− 1 = Lλ
x′k,

kn− 1,n = Lλ
xk, kn− 1,n− 1 = Lλ

xLλ
x′k.

We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance functions explicitly 
encodes the underlying laws of physics expressed by equations (1) and (3).

4. Learning

Given the noisy data {xn− 1, hn− 1} and {xn, hn} on the latent solution at times tn− 1 and tn , respectively, the hyper-
parameters θ of the covariance functions and more importantly the parameters λ of the operators Lλ

x and N λ
x can be 

learned by employing a Quasi-Newton optimizer L-BFGS [51] to minimize the negative log marginal likelihood [34]

− log p(h|θ,λ,σ 2) = 1
2

hT K − 1h + 1
2

log |K | + N
2

log(2π), (6)

where h =
[

hn

hn− 1

]
, p(h|θ, λ, σ 2) = N (0 , K ), and K is given by

K =
[

kn,n(xn, xn) kn,n− 1(xn, xn− 1)

kn− 1,n(xn− 1, xn) kn− 1,n− 1(xn− 1, xn− 1)

]
+ σ 2 I .

Here, N is the total number of data points in h. Moreover, σ 2 is included to capture the noise in the data and is also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn = hn(xn) +ϵn and 
hn− 1 = hn− 1(xn− 1) + ϵn− 1 with ϵn ∼ N (0, σ 2 I) and ϵn− 1 ∼ N (0, σ 2 I) being independent. The negative log marginal likeli-
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 
data-fit and model complexity. Specifically, minimizing the term hT K − 1h in equation (6) targets fitting the training data, 
while the log-determinant term log |K | penalizes model complexity. This regularization mechanism automatically meets the 
Occam’s razor principle [52] which encourages simplicity in explanations. The aforementioned regularization mechanism 
of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 
parameters from very few5 noisy observations. However, there is no theoretical guarantee that the negative log marginal 

3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 
class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 
more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 
be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50].

4 It should be noted that for all examples studied in this work the kernels are generated at the push of a button using Wolfram Mathematica, a 
mathematical symbolic computation program.

5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ-
ential equations from data using sparse regression techniques [22,2].
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these data-limited domains. Less well understood is how to leverage the underlying physical laws and/or governing equa-
tions to extract patterns from small data generated from highly complex systems. In this work, we propose a modeling 
framework that enables blending conservation laws, physical principles, and/or phenomenological behaviors expressed by 
partial differential equations with the datasets available in many fields of engineering, science, and technology. This paper 
should be considered a direct continuation of a preceding one [1] in which we addressed the problem of inferring solutions 
of time dependent and nonlinear partial differential equations using noisy observations. Here, a similar methodology is em-
ployed to deal with the problem of learning, system identification, or data-driven discovery of partial differential equations 
[2]. The literature on data-driven discovery of dynamical systems [3] is vast and encompasses equation-free modeling [4], 
artificial neural networks [5], nonlinear regression [6], empirical dynamic modeling [7,8], modeling emergent behavior [9], 
automated inference of dynamics [10–12], normal form identification in climate [13], nonlinear Laplacian spectral analysis 
[14], modeling emergent behavior [9], Koopman analysis [15–18], automated inference of dynamics [10–12], and symbolic 
regression [19,20]. More recently, sparsity [21] has been used to determine the governing dynamical system [22–31]. In 
general, we envision that the proposed method of the current work could be most useful in cases where one would like to 
learn from noisy experimental data and a governing equation is known. Take for example the case of reconstructing a flow 
field from scattered measurements (e.g., Particle Image Velocimetry data), and using the governing Navier–Stokes equations 
to extract patterns from such measurements.

2. Problem setup

Let us consider parametrized and nonlinear partial differential equations of the general form

ht + N λ
x h = 0, x ∈ ", t ∈ [0, T ], (1)

where h(t, x) denotes the latent (hidden) solution, N λ
x is a nonlinear operator parametrized by λ, and " is a subset of RD . 

As an example, the one dimensional Burgers’ equation corresponds to the case where N λ
x h = λ1hhx − λ2hxx and λ = (λ1, λ2). 

Here, the subscripts denote partial differentiation in either time or space. Given noisy measurements of the system, one is 
typically interested in the solution of two distinct problems. The first problem is that of inference or filtering and smoothing, 
which states: given fixed model parameters λ what can be said about the unknown hidden state h(t, x) of the system? This 
question is the topic of a preceding paper [1] of the authors in which we introduce the concept of numerical Gaussian 
processes and address the problem of inferring solutions of time dependent and nonlinear partial differential equations 
using noisy observations. The second problem is that of learning, system identification, or data driven discovery of partial 
differential equations [2] stating: what are the parameters λ that best describe the observed data? Here we assume that 
all we observe are two snapshots {xn− 1, hn− 1} and {xn, hn} of the system at times tn− 1 and tn , respectively, which are 
#t = tn − tn− 1 apart. The main assumption is that #t is small enough so that we can apply the backward Euler time 
stepping scheme1 to equation (1) and obtain the discretized equation

hn + #tN λ
x hn = hn− 1. (2)

Here, hn(x) = h(tn, x) is the hidden state of the system at time tn . Approximating the nonlinear operator on the left-hand-
side of equation (2) by a linear one we obtain

Lλ
x hn = hn− 1. (3)

For instance, the nonlinear operator

hn + #tN λ
x hn = hn + #t(λ1hnhn

x − λ2hn
xx),

involved in the Burgers’ equation can be approximated by the linear operator

Lλ
x hn = hn + #t(λ1hn− 1hn

x − λ2hn
xx),

where hn− 1(x) is the state of the system at the previous time tn− 1.

3. The basic model

Similar to Raissi et al. [32,33], we build upon the analytical property of Gaussian processes that the output of a linear 
system whose input is Gaussian distributed is again Gaussian. Specifically, we proceed by placing a Gaussian process2 prior 
over the latent function hn(x); i.e.,

1 For a general treatment of arbitrary linear multi-step methods as well as Runge–Kutta time stepping schemes we would like to refer the readers to [1].
2 Gaussian processes (see [34,35]) provide a flexible prior distribution over functions and enjoy analytical tractability. They can be viewed as a prior on 

one-layer feed-forward Bayesian neural networks with an infinite number of hidden units [36]. Gaussian processes are among a class of methods known as 
kernel machines (see [37–39]) and are analogous to regularization approaches (see [40–42]).
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hn(x) ∼ GP(0,k(x, x′, θ)). (4)

Here, θ denotes the hyper-parameters of the covariance function k. Without loss of generality, all Gaussian process priors 
used in this work are assumed to have a squared exponential3 covariance function, i.e.,

k(x, x′; θ) = γ 2 exp

(

− 1
2

D∑

d= 1

w2
d(xd − x′

d)
2

)

,

where θ = (γ , w1, · · · , w D) are the hyper-parameters and x is a D-dimensional vector. The Gaussian process prior assump-
tion (4) along with equation (3) enable us to capture the entire structure of the operator Lλ

x in the resulting multi-output 
Gaussian process

[
hn

hn− 1

]
∼ GP

(
0,

[
kn,n kn,n− 1

kn− 1,n kn− 1,n− 1

])
. (5)

It is worth highlighting that the parameters λ of the operators Lλ
x and N λ

x turn into hyper-parameters of the resulting 
covariance functions. The specific forms of the kernels4

kn,n(x, x′; θ), kn,n− 1(x, x′; θ,λ),

kn− 1,n(x, x′; θ,λ), kn− 1,n− 1(x, x′; θ,λ),

are direct functions of equation (3) as well as the prior assumption (4); i.e.,

kn,n = k, kn,n− 1 = Lλ
x′k,

kn− 1,n = Lλ
xk, kn− 1,n− 1 = Lλ

xLλ
x′k.

We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance functions explicitly 
encodes the underlying laws of physics expressed by equations (1) and (3).

4. Learning

Given the noisy data {xn− 1, hn− 1} and {xn, hn} on the latent solution at times tn− 1 and tn , respectively, the hyper-
parameters θ of the covariance functions and more importantly the parameters λ of the operators Lλ

x and N λ
x can be 

learned by employing a Quasi-Newton optimizer L-BFGS [51] to minimize the negative log marginal likelihood [34]

− log p(h|θ,λ,σ 2) = 1
2

hT K − 1h + 1
2

log |K | + N
2

log(2π), (6)

where h =
[

hn

hn− 1

]
, p(h|θ, λ, σ 2) = N (0 , K ), and K is given by

K =
[

kn,n(xn, xn) kn,n− 1(xn, xn− 1)

kn− 1,n(xn− 1, xn) kn− 1,n− 1(xn− 1, xn− 1)

]
+ σ 2 I .

Here, N is the total number of data points in h. Moreover, σ 2 is included to capture the noise in the data and is also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn = hn(xn) +ϵn and 
hn− 1 = hn− 1(xn− 1) + ϵn− 1 with ϵn ∼ N (0, σ 2 I) and ϵn− 1 ∼ N (0, σ 2 I) being independent. The negative log marginal likeli-
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 
data-fit and model complexity. Specifically, minimizing the term hT K − 1h in equation (6) targets fitting the training data, 
while the log-determinant term log |K | penalizes model complexity. This regularization mechanism automatically meets the 
Occam’s razor principle [52] which encourages simplicity in explanations. The aforementioned regularization mechanism 
of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 
parameters from very few5 noisy observations. However, there is no theoretical guarantee that the negative log marginal 

3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 
class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 
more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 
be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50].

4 It should be noted that for all examples studied in this work the kernels are generated at the push of a button using Wolfram Mathematica, a 
mathematical symbolic computation program.

5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ-
ential equations from data using sparse regression techniques [22,2].
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hn(x) ∼ GP(0,k(x, x′, θ)). (4)

Here, θ denotes the hyper-parameters of the covariance function k. Without loss of generality, all Gaussian process priors 
used in this work are assumed to have a squared exponential3 covariance function, i.e.,
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where θ = (γ , w1, · · · , w D) are the hyper-parameters and x is a D-dimensional vector. The Gaussian process prior assump-
tion (4) along with equation (3) enable us to capture the entire structure of the operator Lλ
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It is worth highlighting that the parameters λ of the operators Lλ
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x turn into hyper-parameters of the resulting 
covariance functions. The specific forms of the kernels4
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are direct functions of equation (3) as well as the prior assumption (4); i.e.,

kn,n = k, kn,n− 1 = Lλ
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We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance functions explicitly 
encodes the underlying laws of physics expressed by equations (1) and (3).
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Given the noisy data {xn− 1, hn− 1} and {xn, hn} on the latent solution at times tn− 1 and tn , respectively, the hyper-
parameters θ of the covariance functions and more importantly the parameters λ of the operators Lλ
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x can be 

learned by employing a Quasi-Newton optimizer L-BFGS [51] to minimize the negative log marginal likelihood [34]
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where h =
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, p(h|θ, λ, σ 2) = N (0 , K ), and K is given by

K =
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kn,n(xn, xn) kn,n− 1(xn, xn− 1)

kn− 1,n(xn− 1, xn) kn− 1,n− 1(xn− 1, xn− 1)
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+ σ 2 I .

Here, N is the total number of data points in h. Moreover, σ 2 is included to capture the noise in the data and is also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn = hn(xn) +ϵn and 
hn− 1 = hn− 1(xn− 1) + ϵn− 1 with ϵn ∼ N (0, σ 2 I) and ϵn− 1 ∼ N (0, σ 2 I) being independent. The negative log marginal likeli-
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 
data-fit and model complexity. Specifically, minimizing the term hT K − 1h in equation (6) targets fitting the training data, 
while the log-determinant term log |K | penalizes model complexity. This regularization mechanism automatically meets the 
Occam’s razor principle [52] which encourages simplicity in explanations. The aforementioned regularization mechanism 
of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 
parameters from very few5 noisy observations. However, there is no theoretical guarantee that the negative log marginal 

3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 
class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 
more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 
be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50].

4 It should be noted that for all examples studied in this work the kernels are generated at the push of a button using Wolfram Mathematica, a 
mathematical symbolic computation program.

5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ-
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xLλ
x′k.

We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance functions explicitly 
encodes the underlying laws of physics expressed by equations (1) and (3).
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x can be 

learned by employing a Quasi-Newton optimizer L-BFGS [51] to minimize the negative log marginal likelihood [34]

− log p(h|θ,λ,σ 2) = 1
2

hT K − 1h + 1
2

log |K | + N
2

log(2π), (6)

where h =
[

hn

hn− 1

]
, p(h|θ, λ, σ 2) = N (0 , K ), and K is given by

K =
[

kn,n(xn, xn) kn,n− 1(xn, xn− 1)

kn− 1,n(xn− 1, xn) kn− 1,n− 1(xn− 1, xn− 1)

]
+ σ 2 I .

Here, N is the total number of data points in h. Moreover, σ 2 is included to capture the noise in the data and is also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn = hn(xn) +ϵn and 
hn− 1 = hn− 1(xn− 1) + ϵn− 1 with ϵn ∼ N (0, σ 2 I) and ϵn− 1 ∼ N (0, σ 2 I) being independent. The negative log marginal likeli-
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 
data-fit and model complexity. Specifically, minimizing the term hT K − 1h in equation (6) targets fitting the training data, 
while the log-determinant term log |K | penalizes model complexity. This regularization mechanism automatically meets the 
Occam’s razor principle [52] which encourages simplicity in explanations. The aforementioned regularization mechanism 
of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 
parameters from very few5 noisy observations. However, there is no theoretical guarantee that the negative log marginal 

3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 
class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 
more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 
be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50].

4 It should be noted that for all examples studied in this work the kernels are generated at the push of a button using Wolfram Mathematica, a 
mathematical symbolic computation program.

5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ-
ential equations from data using sparse regression techniques [22,2].
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(

− 1
2

D∑

d= 1

w2
d(xd − x′

d)
2

)

,

where θ = (γ , w1, · · · , w D) are the hyper-parameters and x is a D-dimensional vector. The Gaussian process prior assump-
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x in the resulting multi-output 
Gaussian process
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hn− 1

]
∼ GP

(
0,

[
kn,n kn,n− 1

kn− 1,n kn− 1,n− 1

])
. (5)

It is worth highlighting that the parameters λ of the operators Lλ
x and N λ

x turn into hyper-parameters of the resulting 
covariance functions. The specific forms of the kernels4

kn,n(x, x′; θ), kn,n− 1(x, x′; θ,λ),

kn− 1,n(x, x′; θ,λ), kn− 1,n− 1(x, x′; θ,λ),

are direct functions of equation (3) as well as the prior assumption (4); i.e.,

kn,n = k, kn,n− 1 = Lλ
x′k,

kn− 1,n = Lλ
xk, kn− 1,n− 1 = Lλ

xLλ
x′k.

We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance functions explicitly 
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Here, N is the total number of data points in h. Moreover, σ 2 is included to capture the noise in the data and is also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn = hn(xn) +ϵn and 
hn− 1 = hn− 1(xn− 1) + ϵn− 1 with ϵn ∼ N (0, σ 2 I) and ϵn− 1 ∼ N (0, σ 2 I) being independent. The negative log marginal likeli-
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 
data-fit and model complexity. Specifically, minimizing the term hT K − 1h in equation (6) targets fitting the training data, 
while the log-determinant term log |K | penalizes model complexity. This regularization mechanism automatically meets the 
Occam’s razor principle [52] which encourages simplicity in explanations. The aforementioned regularization mechanism 
of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 
parameters from very few5 noisy observations. However, there is no theoretical guarantee that the negative log marginal 

3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 
class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 
more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 
be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50].

4 It should be noted that for all examples studied in this work the kernels are generated at the push of a button using Wolfram Mathematica, a 
mathematical symbolic computation program.

5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ-
ential equations from data using sparse regression techniques [22,2].
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Fig. 2. The KdV equation: A solution to the KdV equation is depicted in the top panel. The two white vertical lines in this panel specify the locations of the 
two randomly selected snapshots. These two snapshots are !t = 0.1 apart and are plotted in the middle panel. The red crosses denote the locations of 
the training data points. The correct partial differential equation along with the identified ones are reported in the lower panel. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this article.)

Table 3
The KdV equation: Resulting statistics for the learned parameter values.

Clean data 1% noise 5% noise

λ1 λ2 λ1 λ2 λ1 λ2

First quartile 5.7783 0.9299 5.3358 0.7885 3.7435 0.2280
Median 5.8920 0.9656 5.5757 0.8777 4.5911 0.6060
Third quartile 6.0358 1.0083 5.7840 0.9491 5.5106 0.8407

Table 4
The KdV equation: Effect of increasing the gap !t between the pair of snapshots.

!t = 0.1 !t = 0.2 !t = 0.3 !t = 0.4 !t = 0.5

Clean data λ1 6.1145 5.8948 5.4014 4.1779 3.5058
λ2 1.0470 0.9943 0.8535 0.4475 0.1816

1% noise λ1 5.7224 5.8288 5.4054 4.1479 3.4747
λ2 0.9578 0.9801 0.8563 0.4351 0.1622

5.3. Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky equation [59–61] has similarities with Burgers’ equation. However, because of the presence 
of both second and fourth order spatial derivatives, its behavior is far more complicated and interesting. The Kuramoto–
Sivashinsky is a canonical model of a pattern forming system with spatio-temporal chaotic behavior. The sign of the second 
derivative term is such that it acts as an energy source and thus has a destabilizing effect. The nonlinear term, however, 
transfers energy from low to high wave numbers where the stabilizing fourth derivative term dominates. The first derivation 
of this equation was by Kuramoto in the study of reaction–diffusion equations modeling the Belousov–Zabotinskii reaction. 
The equation was also developed by Sivashinsky in higher space dimensions in modeling small thermal diffusive instabilities 
in laminar flame fronts and in small perturbations from a reference Poiseuille flow of a film layer on an inclined plane. In 
one space dimension it has also been used as a model for the problem of Bénard convection in an elongated box, and it 
may be used to describe long waves on the interface between two viscous fluids and unstable drift waves in plasmas. In 
one space dimension the Kuramoto–Sivashinsky equation reads as

ut + λ1uux + λ2uxx + λ3uxxxx = 0, (9)Example: Kuramoto-Sivashinsky equation:
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Fig. 3. Kuramoto–Sivashinsky equation: A solution to the Kuramoto–Sivashinsky equation is depicted in the top panel. The two white vertical lines in this 
panel specify the locations of the two randomly selected snapshots. These two snapshots are !t = 0.4 apart and are plotted in the middle panel. The red 
crosses denote the locations of the training data points. The correct partial differential equation along with the identified ones are reported in the lower 
panel. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 5
Kuramoto–Sivashinsky equation: Resulting statistics for the learned parameter values.

Clean data 1% noise 5% noise

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

First quartile 0.9603 0.9829 0.9711 0.7871 0.8095 0.5891 −0.0768 0.0834 −0.0887
Median 0.9885 1.0157 0.9970 0.8746 0.9124 0.8798 0.4758 0.5539 0.4086
Third quartile 1.0187 1.0550 1.0314 0.9565 0.9948 0.9553 0.6991 0.7644 0.7009

where (λ1, λ2, λ3) are the unknown parameters. The original dataset proposed in [2] contains a direct numerical solution 
of the Kuramoto–Sivashinsky equation with 1024 spatial points and 251 time-steps. The snapshots are !t = 0.4 apart. 
As depicted in Fig. 3 using only two of these snapshots (randomly selected) with 301 and 299 data points, respectively, 
the algorithm is capable of identifying the correct parameter values up to a relatively good accuracy. In particular, we 
are using 600 = 301 + 299 out of a total of 257024 = 251 × 1024 data points in the original data set. This is possible 
because of equation (5) where the covariance functions explicitly encode the underlying physical laws expressed by the 
Kuramoto–Sivashinsky equation. For a sensitivity analysis of the reported results, let us perform the same experiment as the 
one illustrated in Fig. 3 for every pair of consecutive snapshots in the original dataset. We are still using the same number 
of data points (i.e., 301 and 299) for each pair of snapshots, albeit in different locations. The resulting statistics for the 
learned parameter values are reported in Table 5. As shown in this table, more noise in the data leads to less confidence 
in the estimated parameter values. Moreover, to test the sensitivity of the results with respect to the gap between the two 
time snapshots, let us use the exact same setup as the one explained in Fig. 3, but increase !t . The results are reported 
in Table 6. These results indicate that more data, less noise, and a smaller gap !t between the two snapshots enhance the 
performance of the algorithm.

5.4. Nonlinear Schrödinger equation

The one-dimensional nonlinear Schrödinger equation is a classical field equation that is used to study nonlinear wave 
propagation in optical fibers and/or waveguides, Bose–Einstein condensates, and plasma waves. In optics, the nonlinear term 
arises from the intensity dependent index of refraction of a given material. Similarly, the nonlinear term for Bose–Einstein 
condensates is a result of the mean-field interactions of an interacting, N-body system. The nonlinear Schrödinger equation 
is given by

iht + λ1hxx + λ2|h|2h = 0, (10)
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Fig. 3. Kuramoto–Sivashinsky equation: A solution to the Kuramoto–Sivashinsky equation is depicted in the top panel. The two white vertical lines in this 
panel specify the locations of the two randomly selected snapshots. These two snapshots are !t = 0.4 apart and are plotted in the middle panel. The red 
crosses denote the locations of the training data points. The correct partial differential equation along with the identified ones are reported in the lower 
panel. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Kuramoto–Sivashinsky equation: Resulting statistics for the learned parameter values.

Clean data 1% noise 5% noise

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

First quartile 0.9603 0.9829 0.9711 0.7871 0.8095 0.5891 −0.0768 0.0834 −0.0887
Median 0.9885 1.0157 0.9970 0.8746 0.9124 0.8798 0.4758 0.5539 0.4086
Third quartile 1.0187 1.0550 1.0314 0.9565 0.9948 0.9553 0.6991 0.7644 0.7009

where (λ1, λ2, λ3) are the unknown parameters. The original dataset proposed in [2] contains a direct numerical solution 
of the Kuramoto–Sivashinsky equation with 1024 spatial points and 251 time-steps. The snapshots are !t = 0.4 apart. 
As depicted in Fig. 3 using only two of these snapshots (randomly selected) with 301 and 299 data points, respectively, 
the algorithm is capable of identifying the correct parameter values up to a relatively good accuracy. In particular, we 
are using 600 = 301 + 299 out of a total of 257024 = 251 × 1024 data points in the original data set. This is possible 
because of equation (5) where the covariance functions explicitly encode the underlying physical laws expressed by the 
Kuramoto–Sivashinsky equation. For a sensitivity analysis of the reported results, let us perform the same experiment as the 
one illustrated in Fig. 3 for every pair of consecutive snapshots in the original dataset. We are still using the same number 
of data points (i.e., 301 and 299) for each pair of snapshots, albeit in different locations. The resulting statistics for the 
learned parameter values are reported in Table 5. As shown in this table, more noise in the data leads to less confidence 
in the estimated parameter values. Moreover, to test the sensitivity of the results with respect to the gap between the two 
time snapshots, let us use the exact same setup as the one explained in Fig. 3, but increase !t . The results are reported 
in Table 6. These results indicate that more data, less noise, and a smaller gap !t between the two snapshots enhance the 
performance of the algorithm.

5.4. Nonlinear Schrödinger equation

The one-dimensional nonlinear Schrödinger equation is a classical field equation that is used to study nonlinear wave 
propagation in optical fibers and/or waveguides, Bose–Einstein condensates, and plasma waves. In optics, the nonlinear term 
arises from the intensity dependent index of refraction of a given material. Similarly, the nonlinear term for Bose–Einstein 
condensates is a result of the mean-field interactions of an interacting, N-body system. The nonlinear Schrödinger equation 
is given by

iht + λ1hxx + λ2|h|2h = 0, (10)
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Data-driven solution of PDEs

that the current state-of-the-art machine learning tools (e.g., deep/convolu-
tional/recurrent neural networks) are lacking robustness and fail to provide
any guarantees of convergence when operating in the small data regime, i.e.,
the regime where very few training examples are available.

In the first part of this study, we introduced physics informed neural net-
works as a viable solution for training deep neural networks with few training
examples, for cases where the available data is known to respect a given phys-
ical law described by a system of partial di↵erential equations. Such cases are
abundant in the study of physical, biological, and engineering systems, where
longstanding developments of mathematical physics have shed tremendous
insight on how such systems are structured, interact, and dynamically evolve
in time. We saw how the knowledge of an underlying physical law can in-
troduce structure that e↵ectively regularizes the training of neural networks,
and enables them to generalize well even when only a few training examples
are available. Through the lens of di↵erent benchmark problems, we high-
lighted the key features of physics informed neural networks in the context
of data-driven solutions of partial di↵erential equations [5, 6].

In this second part of our study, we shift our attention to the problem of
data-driven discovery of partial di↵erential equations [7, 8, 9]. To this end,
let us consider parametrized and nonlinear partial di↵erential equations of
the general form

ut + N [u;�] = 0, x 2 ⌦, t 2 [0, T ], (1)

where u(t, x) denotes the latent (hidden) solution, N [·;�] is a nonlinear op-
erator parametrized by �, and ⌦ is a subset of RD. This setup encapsulates a
wide range of problems in mathematical physics including conservation laws,
di↵usion processes, advection-di↵usion-reaction systems, and kinetic equa-
tions. As a motivating example, the one dimensional Burgers’ equation [10]
corresponds to the case where N [u;�] = �1uux � �2uxx and � = (�1,�2).
Here, the subscripts denote partial di↵erentiation in either time or space.
Now, the problem of data-driven discovery of partial di↵erential equations
poses the following question: given a small set of scattered and potentially
noisy observations of the hidden state u(t, x) of a system, what are the pa-
rameters � that best describe the observed data?

2

In what follows, we will provide an overview of our two main approaches
to tackle this problem, namely continuous time and discrete time models, as
well as a series of results and systematic studies for a diverse collection of
benchmarks. In the first approach, we will assume availability of scattered
and potential noisy measurements across the entire spatio-temporal domain.
In the latter, we will try to infer the unknown parameters � from only two
data snapshots taken at distinct time instants. All data and codes used in
this manuscript are publicly available on GitHub at https://github.com/
maziarraissi/PINNs.

2. Continuous Time Models

We define f(t, x) to be given by the left-hand-side of equation (1); i.e.,

f := ut + N [u;�], (2)

and proceed by approximating u(t, x) by a deep neural network. This as-
sumption along with equation (2) result in a physics informed neural network
f(t, x). This network can be derived by applying the chain rule for di↵er-
entiating compositions of functions using automatic di↵erentiation [11]. It
is worth highlighting that the parameters of the di↵erential operator � turn
into parameters of the physics informed neural network f(t, x).

2.1. Example (Burgers’ Equation)

As a first example, let us consider the Burgers’ equation. This equation
arises in various areas of applied mathematics, including fluid mechanics,
nonlinear acoustics, gas dynamics, and tra�c flow [10]. It is a fundamen-
tal partial di↵erential equation and can be derived from the Navier-Stokes
equations for the velocity field by dropping the pressure gradient term. For
small values of the viscosity parameters, Burgers’ equation can lead to shock
formation that is notoriously hard to resolve by classical numerical methods.
In one space dimension the equation reads as

ut + �1uux � �2uxx = 0. (3)

Let us define f(t, x) to be given by

f := ut + �1uux � �2uxx, (4)

3

and proceed by approximating u(t, x) by a deep neural network. This will
result in the physics informed neural network f(t, x). The shared parameters
of the neural networks u(t, x) and f(t, x) along with the parameters � =
(�1,�2) of the di↵erential operator can be learned by minimizing the mean
squared error loss

MSE = MSEu +MSEf , (5)

where

MSEu =
1

N

NX

i=1

|u(tiu, x
i
u) � ui

|
2,

and

MSEf =
1

N

NX

i=1

|f(tiu, x
i
u)|

2.

Here, {tiu, x
i
u, u

i
}

N
i=1 denote the training data on u(t, x). The loss MSEu cor-

responds to the training data on u(t, x) while MSEf enforces the structure
imposed by equation (3) at a finite set of collocation points, whose number
and location is taken to be the same as the training data.

To illustrate the e↵ectiveness of our approach, we have created a train-
ing data-set by randomly generating N = 2, 000 points across the entire
spatio-temporal domain from the exact solution corresponding to �1 = 1.0
and �2 = 0.01/⇡. The locations of the training points are illustrated in the
top panel of figure 1. This data-set is then used to train a 9-layer deep
neural network with 20 neurons per hidden layer by minimizing the mean
square error loss of (5) using the L-BFGS optimizer [12]. Upon training,
the network is calibrated to predict the entire solution u(t, x), as well as the
unknown parameters � = (�1,�2) that define the underlying dynamics. A
visual assessment of the predictive accuracy of the physics informed neural
network is given in the middle and bottom panels of figure 1. The network is
able to identify the underlying partial di↵erential equation with remarkable
accuracy, even in the case where the scattered training data is corrupted with
1% uncorrelated noise.

To further scrutinize the performance of our algorithm, we have performed
a systematic study with respect to the total number of training data, the
noise corruption levels, and the neural network architecture. The results are
summarized in tables 1 and 2. The key observation here is that the proposed
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the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)

5

Example: Burgers’ equation in 1D

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)
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Figure 1: Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and

boundary training data. In addition we are using 10,000 collocation points generated using

a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact

solutions corresponding to the three temporal snapshots depicted by the white vertical

lines in the top panel. The relative L2 error for this case is 6.7 ·10
�4

. Model training took

approximately 60 seconds on a single NVIDIA Titan X GPU card.

ical law through the collocation points Nf , one can obtain a more accurate
and data-e�cient learning algorithm.1 Finally, table 2 shows the resulting
relative L2 for di↵erent number of hidden layers, and di↵erent number of
neurons per layer, while the total number of training and collocation points
is kept fixed to Nu = 100 and Nf = 10, 000, respectively. As expected, we
observe that as the number of layers and neurons is increased (hence the
capacity of the neural network to approximate more complex functions), the

1
Note that the case Nf = 0 corresponds to a standard neural network model, i.e., a

neural network that does not take into account the underlying governing equation.
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Equations. arXiv preprint
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Learning constitutive relationships

Tartakovsky, A. M., Marrero, C. O., Perdikaris, P., Tartakovsky, G., & Barajas-Solano, D. (2018). Learning Parameters and Constitutive Relationships with 
Physics Informed Deep Neural Networks. arXiv preprint arXiv:1808.03398

via automatic di↵erentiation, and the methodology does not require solving
the PDE problem or formulating an adjoint problem.

Finally, significant gains can be achieved in the physics informed DNN
method performance by employing GPU accelerators.

4. Nonlinear di↵usion equation

In this section, we consider a nonlinear di↵usion equation with unknown
state-dependent di↵usion coe�cient K(u),

r · [K(u)ru(x)] = 0, (x1, x2) 2 (0, L1)⇥ (0, L2) (13)

subject to the boundary conditions

u(x) = u0, x1 = L1, (14)

�K(u)
@u(x)

@x1
= q, x1 = 0 (15)

@u(x)

@x2
= 0, x2 = {0, L2}. (16)

This equation describes a two-dimensional horizontal unsaturated flow
(flow of water and air) in a homogeneous porous medium, where u(x) is the
water pressure and K(u) is the pressure-dependent partial conductivity of
the porous medium [3]. In practice, K(u) is di�cult to measure directly.
Therefore, this work assumes that no measurements of K(u) are available,
and only Nu measurements of u are given.

We define two DNNs for unknown K(u) and u(x),

û(x; ✓) = NN u(x; ✓), K̂(u; �) = NNK(u;�) (17)

and two auxiliary DNNs obtained by substituting the DNNs for K and u
into (13), (15), and (16),

f(x; ✓, �) = r · [NNK (NN u(x; ✓); �)rNN u(x; ✓)] = NN f (x; ✓, �),

fN(x;�, �) = �NNK (NN u(x; ✓); �)rNN u(x; ✓) = NNN(x; ✓, �),

where fN is a vector DNN with two DNN components f (x1)
N and f (x2)

N . Then,

15

Non-linear diffusion:

Figure 9: (Left) Referenced u(x) field generated using STOMP with the van Genuchten

model for K(u) and the locations of u observations. (Right) Absolute error in the u(x)
field estimated with the physics informed DNN.

Figure 10: Comparison of the estimated K̂(u) and the reference K(u) given by the van

Genuchten model.
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Figure 10: Comparison of the estimated K̂(u) and the reference K(u) given by the van

Genuchten model.
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Goal: Infer k(u) from 
scattered noisy 
measurements of u(x).



Probabilistic representations
Gaussian processes Capabilties:

• Elegant mathematical formulation and exact inference
• Flexible encoding of (linear) constraints
• Robust in small data regimes
• Built-in uncertainty quantification that enables effective 

policies for data acquisition/experimental design

Limitations:
• Limited expressivity
• Scalability to large data-sets
• Scalability to high-dimensions
• Robustness with respect to prior assumptions

Bayesian neural networks
Capabilties:
• Highly flexible representations
• Scalable to high-dimensional data
• Scalable to large data sets
• Flexible encoding of (algebraic & differential) constraints

Limitations:
• Complex high-dimensional posteriors and 

intractable inference
• Robustness of uncertainty estimates
• Robustness in small data regimes
• Interpretability



Probabilistic latent variable models

z1

z2

x

y

y = fθ(x, z)

z ⇠ p(z)

y = f✓(x, z), z ⇠ p(z) , y ⇠ p✓(y|x, z)
Latent space Physical space

x, y ⇠ q(x, y) = q(y|x)q(x)

y = f✓(x) + ✏, ✏ ⇠ N (0,�2I)
<latexit sha1_base64="ETYIrW786CczNUn967iq0C0a3Z0="></latexit><latexit sha1_base64="ETYIrW786CczNUn967iq0C0a3Z0="></latexit><latexit sha1_base64="ETYIrW786CczNUn967iq0C0a3Z0="></latexit><latexit sha1_base64="ETYIrW786CczNUn967iq0C0a3Z0="></latexit>

vs



Density ratio estimation by probabilistic classification

r(x) =
⇢(x)

q(x)

Estimating density ratios is a challenging task: 
• Each part of the ratio may itself involve intractable integrals
• We often deal with high-dimensional quantities.
• We may only have samples drawn from the two distributions, not their analytical forms.

KL[p(x)||q(x)] :=
Z

log
p(x)

q(x)
p(x)dx = Ep(x)


log

p(x)

q(x)

�

The density ratio gives the correction factor 
needed to make two distributions equal.

r(x) =
⇢(x)

q(x)
=

p(x|y = +1)

p(x|y = �1)

=
p(y = +1|x)p(x)

p(y = +1)

�
p(y = �1|x)p(x)

p(y = �1)

=
p(y = +1|x)
p(y = �1|x) =

p(y = +1|x)
1� p(y = +1|x) =

S(x)
1� S(x)

This is where the density ratio trick enters: 
it allows us to construct a binary classifier
that distinguishes between samples from the 
two distributions.



Reverse KL:

q(x,y)

p✓(x,y)

Sp✓ \ So
q = ;Sp✓ ✓ Sq

KL [p✓(x,y)||q(x,y)] =�H [p✓(x,y)]� Ep✓(x,y) [log q(x,y)]

=�H [p✓(x,y)]

�
Z

Sp✓
\Sq

log q(x,y)p✓(x,y)dxdy

�
Z

Sp✓
\So

q

log q(x,y)p✓(x,y)dxdy

Adversarial objective

discriminatorT (x,y)

encoderq�(z|x,y)

generatorf✓(x, z)

min
 

�Ep(z)[log(T (x, f✓(x, z)))]� Eq(x,y)[log(1� T (x,y)]

min
✓,�

Ep(z)[T (x, f✓(x, z))] + (1� �)Ep(z)[log q�(z|x, f✓(x, z))]

Joint distribution matching

p✓(x,y) :

q(x,y) : Observed data distribution

Generated data distribution

Li, C., Li, J., Wang, G., & Carin, L. (2018). Learning to Sample with Adversarially Learned Likelihood-Ratio.



Uncertainty propagation in physical systems

Outputs

z ⇠ p(z)
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L(✓) = 1

Nu

NuX

i=1
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2 +

1
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[r✓(xi, ti)� ri]
2, (2)

where the required gradients @L
@✓ can be readily obtained using automatic92

di↵erentiation [12]. Finally, as the resulting predictions are encouraged to93

inherit any physical properties imposed by the PDE constraint (e.g., conser-94

vation, invariance, symmetries, etc.), this approach showcases how one can95

approximately encode physical and domain-specific constraints in modern96

machine learning algorithms and introduce a new form of regularization for97

learning from small data-sets.98

2.2. Probabilistic physics-informed neural networks99

In the proposed work we aim to approach these fundamental questions100

from a probabilistic standpoint, with our main building block being latent101

variable models of the form102

p(u|x, t, z), z ⇠ p(z), s.t ut +Nxu = 0 (3)

This setting encapsulates a wide range of deterministic and stochastic103

problems, where u(x, t) is a potentially multi-variate field, and z is a collec-104

tion of latent variables that aim to extract a low-dimensional representation105

of u(x, t). The ability to learn such a model from data is the cornerstone106

of probabilistic scientific computing and uncertainty quantification for phys-107

ical systems. Knowledge of the conditional probability p(u|x, t, z) subject108

to domain knowledge constraints opens up the path for addressing the afore-109

mentioned challenges. Specifically, it naturally introduces a regularization110

mechanism that constrains the space of admissible solutions to a manageable111

size (e.g., in fluid mechanics problems by discarding any non-realistic flow112

solutions that violate the conservation of mass principle), thus enables train-113

ing of probabilistic deep learning algorithms in small data regimes. More-114

over, by providing a complete characterization of uncertainty, it enhances115

the robustness of our predictions, and provides a-posteriori error estimates116

for rigorously assessing model inadequacy. The latter, can also enable down-117

stream tasks such as the formulation of adaptive data acquisition policies for118

active learning or Bayesian optimization with domain knowledge constraints.119

Finally, thanks to the structure encoded by the PDE itself, the resulting la-120

tent variables z can potentially lead to the extraction of physically relevant121
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the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)
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Physics-informed neural networks
Burgers equation:

p✓(u|x, t, z)
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pair of deep networks trained as an autoencoder to convert molecules represented as SMILES

strings into a continuous vector representation. In principle, this method of converting from

a molecular representation to a continuous vector representation could be applied to any

molecular representation, including chemical fingerprints,22 convolutional neural networks on

graphs,23 similar graph-convolutions,24 and Coulomb matrices.25 We chose to use SMILES

representation because it can be readily converted into a molecule.

Using this new continuous vector-valued representation, we experiment with the use of

continuous optimization to produce novel compounds. We trained the autoencoder jointly on

a property prediction task; we added a multilayer perceptron that predicts property values

from the continuous representation generated by the encoder and included the regression

error in our loss function. We examined the e�ects this joint training had on the latent space.

Figure 1: (a). A diagram of the proposed autoencoder for molecular design, including the joint
property prediction model. Starting from a discrete molecular representation, such as a SMILES
string, the encoder network converts each molecule into a vector in the latent space, which is
e�ectively a continuous molecular representation. Given a point in the latent space, the decoder
network produces a corresponding SMILES string. Another network estimates the value of target
properties associated with each molecule. (b) Gradient-based optimization in continuous latent
space. After training a surrogate model f(z) to predict the properties of molecules based on their
latent representation z, we can optimize f(z) with respect to z to find new latent representations
expected to have high values of desired properties. These new latent representations can then be
decoded into SMILES strings, at which point their properties can be tested empirically.
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2. Methods

(a) Conditional variational auto-encoders
x2Rd, y 2Rk, ŷ 2Rm, z 2Rh

p(z|x,y, ŷ)
| {z }

posterior

=

likelihoodz }| {
p(y|x, ŷ, z)

prior
z }| {
p(z|x, ŷ)p(ŷ|x)

p(y|x)
| {z }

marginal likelihood

(2.1)

� log(y|x) Ez⇠q[log q(z|x,y, ŷ)� log p(z|x, ŷ)� log p(ŷ|x)]� Ez⇠q[log p(y|x, ŷ, z)] (2.2)

(b) Adversarial inference with implicit distributions
T ⇤(x,y, ŷ, z) = log q(z|x,y, ŷ)� log p(z|x, ŷ)p(ŷ|x) (2.3)

p(y|x, ŷ, z) = f✓(x, ŷ, z, ✏) (2.4)

q(z|x,y, ŷ) = f�(x,y, ŷ, ✏) (2.5)

p(z|x, ŷ) = f�(x, ŷ, ✏) (2.6)

T (x,y, ŷ, z) = f (x,y, ŷ, z) (2.7)

✏⇠N (0, I) (2.8)

min
✓,�,�

{Ez⇠q[T (x,y, ŷ, z)� log p(y|x, ŷ, z)]} (2.9)

min
 

{�Ez⇠q[log �(T (x,y, ŷ, z))]� Ez⇠p[log(1� �(T (x,y, ŷ, z)))]} (2.10)

p(z|u,x)
| {z }

posterior

=

likelihoodz }| {
p(u|x, z)

prior
z }| {
p(z|x)

p(u|x)
| {z }

marginal likelihood

, such that ut +Nx[u] = 0 (2.11)

(c) Learning to make conditional predictions

3. Results

(a) Canonical benchmarks

(b) Application to fluid mechanics

4. Conclusion
The conclusion text goes here.
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