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Randomized dimension reduction
Let {a(j)}nj=1 be a set of points in Rm, where m is very large. Consider tasks such as:

• Suppose the points almost live on a linear subspace of (small) dimension k.
Find a basis for the “best” subspace.
• Suppose the points almost live on a low-dimensional nonlinear manifold.
Find a parameterization of the manifold.
• Given k, find the subset of k vectors with maximal spanning volume.
• Given k, find for each vector a(j) its k closest neighbors.
• Partition the points into clusters.

(Note: Some problems have well-defined solutions, some do not. The first can be solved
with algorithms with complexity O(mn), some are combinatorially hard.)

Idea: Find a “nice” embedding f : Rm→ Rd for d � m that is almost isometric:

‖f (a(i))− f (a(j))‖ ≈ ‖a(i) − a(j)‖, ∀i, j ∈ {1,2,3, . . . ,n}.

Then solve the problems for the vectors {f (a(j))}nj=1 in Rd.

Lemma [Johnson-Lindenstrauss]: For d ∼ log(n), there exists an orthogonal
projection that “approximately” preserves distances.



To be precise, we have:

Lemma [Johnson-Lindenstrauss]: Let ε be a real number such that ε ∈ (0, 1), let n be
a positive integer, and let d be an integer such that

(1) d ≥ 4
(
ε2

2 −
ε3

3

)−1
log(n).

Then for any set V of n points in Rm, there is a map f : Rm→ Rd such that

(2) (1− ε) ‖u− v‖2 ≤ ‖f (u)− f (v)‖ ≤ (1 + ε) ‖u− v‖2, ∀ u, v ∈ V .

You can prove that if you pick d as specified, and repeatedly draw a Gaussian random
matrix G of size d ×m, then the likelihood is larger than zero that the map

f (x) = 1√
d
Gx

satisfies the criteria.

Practical problem: You have two bad choices:
(1) Pick a small ε; then you get small distortions, but a huge d since d ∼ 8

ε2
log(n).

(2) Pick ε that is not close to 0, then distortions are large.



Question: Is it possible to build algorithms that combine the powerful dimension
reduction capability of randomized projections with the accuracy and robustness of
classical deterministic methods?

Putative answer: Yes — use a two-stage approach:

(A) Randomized pre-conditioner:
In a pre-computation, random projections are used to create low-dimensional
sketches of the high-dimensional data. These sketches are somewhat distorted, but
approximately preserve key properties to very high probability.

(B) Deterministic post-processing:
Once a sketch of the data has been constructed in Stage A, classical deterministic
techniques are used to compute desired quantities to very high accuracy, starting
directly from the original high-dimensional data.
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Example 1 of two-stage approach: Nearest neighbor search in Rm

Objective: Suppose you are given n points {a(j)}nj=1 in Rm. The coordinate matrix is

A =
[
a(1) a(2) · · · a(n)

]
∈ Rm×n.

How do you find the k nearest neighbors for every point?

If m is “small” (say m ≤ 10 or so), then you have several options; you can, e.g, sort the
points into a tree based on hierarchically partitioning space (a “kd-tree”).

Problem: Classical techniques of this type get very expensive as m grows.

Simple idea: Use a random map to project onto low-dimensional space. This “sort of”
preserves distances. Execute a fast search there.

Improved idea: The output from a single random projection is unreliable. But, you can
repeat the experiment several times, use these to generate a list of candidates for the
nearest neighbors, and then compute exact distances to find the k closest among the
candidates.



Example 1 of two-stage approach: Nearest neighbor search in Rm

Objective: Suppose you are given n points {a(j)}nj=1 in Rm. The coordinate matrix is

A =
[
a(1) a(2) · · · a(n)

]
∈ Rm×n.

How do you find the k nearest neighbors for every point?

(A) Randomized probing of data: Use a Johnson-Lindenstrauss random projection to
map the n-particle problem in Rm (where m is large) to an n-particle problem in Rd

where d ∼ logn. Run a deterministic nearest-neighbor search in Rd and store a list
of the ` nearest neighbors for each particle (for simplicity, one can set ` = k). Then
repeat the process several times. If for a given particle a previously undetected
neighbor is discovered, then simply add it to a list of potential neighbors.

(B) Deterministic post-processing: The randomized probing will result in a list of putative
neighbors that typically contains more than k elements. But it is now easy to
compute the pairwise distances in the original space Rm to judge which candidates
in the list are the k nearest neighbors.

Jones, Osipov, Rokhlin, 2011



Example 2 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

(A) Randomized pre-conditioner:
Use randomized projection methods to form an approximate basis for the range of
the matrix.

(B) Deterministic post-processing:
Restrict the matrix to the subspace determined in Stage A, and perform expensive
but accurate computations on the resulting smaller matrix.

Observe that distortions in the randomized projections are fine, since all we need is a
subspace that captures “the essential” part of the range. Pollution from unwanted
singular modes is harmless, as long as we capture the dominant ones. The risk of
missing the dominant ones is for practical purposes zero.



Example 2 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

Fix an over-sampling parameter p. Say p = 10.

(A) Randomized pre-conditioner:
A.1 Draw an n× (k + p) Gaussian random matrix G. G = randn(n,k+p)

A.2 Form the m× (k + p) sample matrix Y = AG. Y = A * G

A.3 Form an m× (k + p) orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

(Truncate the last p terms in step B.2 to attain a factorization of precise rank k.)



Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Analogous schemes exist for computing a partial QR factorization, or a so called
“interpolative decomposition” where a number of the columns/rows are chosen to
serve as a basis for the column/row space.

→ Relaxed solution to “maximal spanning volume” problem on first slide.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use Y = A

(
A∗
(
AG
))

instead of Y = AG.

• We can reduce the flop count from O(mnk) to O(mnlog k) by using a so called “fast
Johnson-Lindenstrauss” transform. Practical speed gain too!
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Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The output of RSVD is a random variable, as it depends on the draw of G. We have
rigorous mathematical results describing the errors of the algorithm in expectation, as
well as the risk of large deviations. Connections to random matrix theory.

The perhaps most important feature of randomized algorithms is that they are very
communication efficient. This makes them particularly competitive in strongly
communication constrained environments (huge matrices stored out-of-core, distributed
memory parallel computers, GPUs).

There exist single-pass versions of the RSVD that work even under the constraint that
each matrix element can be viewed only once. (“Streaming algorithms.”)

Recent result: Randomization can be used to greatly accelerate full rank-revealing
factorizations such as the column pivoted QR factorization, or the UTV factorization.
The gain is attained due to decreased communication, not fewer flops.



Accelerate algorithms for FULL factorizations of matrices

Starting point (Demmel, Dumitriu, Holtz, 2007): Let A be an n× n matrix. We seek a
rank-revealing UTV factorization A = UTV∗, with U,V unitary, and T triangular.

Proceed as follows:
• Draw an n× n Gaussian matrix G and orthonormalize its columns [V,∼] = qr(G).
• Form a QR factorization of AV so that AV = UT.

Then A = UTV∗ is provably “rank-revealing.” But in a very weak sense.

Improved Demmel UTV (with power iteration): Same set-up.
• Draw an n× n Gaussian matrix G and compute Y =

(
A∗A

)qG for q = 1 or 2.
• Orthonormalize the columns of Y so that [V,∼] = qr(Y).
• Form a QR factorization of AV so that AV = UT.

Then A = UTV∗ is “rank-revealing.” Very good for q = 1. Excellent for q = 2.

These algorithms require a huge number of flops!
But much faster in practice than, say, CPQR.

Key fact: The matrix-matrix multiply can be done very rapidly in many environments
. . .GPU, distributed memory, fast algorithms, Strassen, etc.



Numerical results for the “Demmel URV” factorization

There are many different ways to measure the quality of a rank-revealing factorization.
Let us describe one common measure: Let A be an n× n matrix factored as

A = UTV∗

where U and V are unitary, and where T is upper triangular. Define for
k ∈ {1,2, . . . , n− 1} the quantities

νk = σk(T(1 : k,1 : k)),
τk+1 = σ1(T((k + 1) : n, (k + 1) : n)),

where σj(X) denotes the j ’th singular value of X. One can easily prove that

νk ≤ σk(A) ≤ τk.

The more tightly that (νk, τk) constrains the k’th singular value, the better.



Numerical experiments illustrating the errors in the URV factorization
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Numerical experiments illustrating the errors in the URV factorization
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Numerical experiments illustrating the errors in the URV factorization
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Numerical experiments illustrating the errors in the URV factorization
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The UTV decomposition: A rank-revealing factorization

Given a dense m× n matrix A, with m ≥ n, compute a factorization

(3)
A = U T V∗,

m× n m× n n× n n× n
where T is upper triangular, and U and V are unitary. We want a factorization that is
“rank-revealing”, in the sense its truncation to a rank-k approximation should be of close
to optimal accuracy. We also would like for the diagonal entries of T to approximate the
singular values of A, and for the off-diagonal entries to be very small.

A rank-revealing factorization has many uses:
• Finding a low-rank approximation to a matrix. (Obviously!)
• Solving ill-conditioned linear systems, or linear regression problems.
• Finding bases for fundamental subspaces.

Basically, when (3) is rank-revealing, it can be used for almost anything that the SVD is
recommended for.



The UTV decomposition: Overview of proposed algorithm randUTV

Given a dense m× n matrix A, with m ≥ n, compute a factorization

A = U T V∗,
m× n m× n n× n n× n

where T is upper triangular, and U and V are unitary.

The technique proposed drives A to upper triangular form via unitary transformations:

A0 = A

A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3
Both Uj and Vj are (mostly...) products of b Householder reflectors.
Blocking enables high performance. Most flops are spent in matrix-matrix multiplication.
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The UTV decomposition: A single blocked step

Consider a single blocked step: We apply unitary matrices U and V to get

T = U∗AV.

Let b be a block size, and separate out the first b rows and columns so that

T =

[
U∗1
U∗2

]
A
[
V1 V2

]
=

[
T11 T12
0 T22

]
.

We want the following properties in the transformed matrix T:
• T11 should hold as much mass as possible.
• T12 should be tiny.

A perfect choice of U and V would be:
• The columns of U1 span the space spanned by the first k left singular vectors.
• The columns of V1 span the space spanned by the first k right singular vectors.

We use randomization to cheaply find a close to optimal choice:

V1 =
(
A∗A

)qA∗G,
where G is an n× b Gaussian random matrix, and where q ∈ {0,1,2}.
(Over-sampling can be used as well.)



The UTV decomposition: Overview of proposed algorithm randUTV
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The V matrices are found using the randomized projections. (Basically RSVD.)
The U matrices zero out the sub-diagonal elements.
Both U and V must be represented efficiently as products of Householder reflectors.
A full, but small (of size b× b) SVD is used to diagonalize the diagonal blocks.
The super-diagonal elements are very small — often of relative size 10−5 or so!
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Matlab code for the algorithm randUTV that given an m× n matrix A computes its UTV
factorization A = UTV∗. The input parameters b and q reflect the block size and the
number of steps of power iteration, respectively. In actual implementations, all unitary
matrices are stored as products of Householder reflectors.



Numerical experiments illustrating the errors in the UTV factorization
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Numerical experiments illustrating the errors in the UTV factorization
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Numerical experiments illustrating the errors in the UTV factorization
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Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

Fast decay - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000
10

-2

10
-1

S-shaped decay - diagonal values



Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

Fast decay - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000
10

-2

10
-1

S-shaped decay - diagonal values



Numerical experiments illustrating how close the UTV is to the SVD

As a consequence of the fact that the super-diagonal elements of T are very small, the
diagonal elements of T are excellent approximants to the singular values of A:

T(j, j) ≈ σj, j = 1, 2 . . . , min(m,n).

Question: How good?

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
-3

10
-2

10
-1

10
0

Gap - diagonal values

svds

cpqr

qlp

randUTV,q=2

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-3

10
-2

10
-1

BIE - diagonal values



0

0.5

1

1.5

2

0 20480 40960 61440 81920 102400

1
0

1
0
 ×

 T
im

e 
/ 

n
3

n

Orthonormal matrices (14 cores)

In-core MKL SVD

In-core MKL CPQR

In-core randUTV pblas q=2

Out-of-core randUTV v21v q=2





0 2000 4000 6000 8000 10000 12000

n

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 [
s
] 
/ 
n

3

10
-10 GPU, no oversampling (p=0), no orthonormalization, b=128

MAGMA dgesdd (SVD)

MAGMA dgeqp3 (CPQR)

rand_utv_gpu, q=0

rand_utv_gpu, q=1

rand_utv_gpu, q=2



Randomized Column Pivoted QR (randCPQR)

Given an m× n matrix A (with m ≥ n), we seek a QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q is
orthonormal, P is a permutation, and R is upper triangular.

Question: Is the CPQR “rank-revealing”? Does it satisfy:
• The truncated factorization is a close to optimal low-rank factorization, so that

‖A−Q(:,1 : k)R(1 : k, :)P∗‖ =≈ inf{‖A− B‖ : B has rank k}.

• σj(T(1 : k,1 : k)) ≈ σj(A) for j ∈ {1,2, . . . , k}.
In practice, it is pretty good; it is often used as a cheap substitute for SVD.
There are counter-examples, for which it performs very badly.

Note: There are sophisticated pivoting strategies that improve on how well CPQR
reveals numerical rank — seminal work by Gu and Eisenstat (1996). Tricky to implement
efficiently.



Randomized Column Pivoted QR (randCPQR)

Given an m× n matrix A (with m ≥ n), we seek a QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q is
orthonormal, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Qj is a product of Householder reflectors. Each Pj is a permutation matrix
computed via randomized sampling.



Randomized Column Pivoted QR. How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→

A Q∗AP
Q is a product of b Householder reflectors. P is a pivoting matrix that moves b “pivot”
columns to the leftmost slots. We seek P so that the set of chosen columns has maximal
spanning volume. Draw a Gaussian random matrix G of size b×m and form

Y = G A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n

References: Martinsson, arxiv, 2015. Martinsson, Quintana-Orti, Heavner, van de Giejn, SISC, 2017.
Duersch & Gu, arxiv, 2015. Duersch & Gu, SISC, 2017.



Connection to randomized Interpolatory Decomposition (ID), CUR, etc.

Let A be an m× n matrix of numerical rank k. An Interpolatory Decomposition (ID) of A
takes the form

A ≈ C X
m× n m× k k × n

where C consists of k columns of A, and where X is a well-conditioned matrix.

Let Js denote an index vector identifying the “skeleton” columns so that C = A(:, Js).

A randomized algorithm for computing the ID, given an over-sampling parameter p:
• Draw a (k + p)×m Gaussian matrix G.
• Form a (k + p)× n sampling matrix Y = GA.
• Perform a rank-k CPQR on Y so that Y ≈ Y(:, Js)X.

Then we automatically (and almost magically) get an ID of A:

A ≈ A(:, Js)X.

Can be used to compute a CUR decomposition as well.

Reference: “Randomized algorithms for the low-rank approximation of matrices.” E. Liberty, F. Woolfe,

P.G. Martinsson, V. Rokhlin, and M. Tygert; PNAS, 2007



Randomized Column Pivoted QR (randCPQR)
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Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/
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Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).



Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:
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The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).



Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

Future work: Continued development or randCPQR and randUTV. Adapt to different
computing architectures (distributed memory, out-of-core, etc). Theory. Exploit
information that is currently wasted. Multiple sweeps version. Algorithm-by-blocks.



Randomized Column Pivoted QR (randCPQR)

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

Block Krylov methods: For partial factorizations of sparse matrices, integrate ideas
from Krylov methods. Explore design space between the basic RSVD and classical
“single-vector” Krylov methods. Recent work by Musco & Musco; Tropp; Gu.



Key themes:

• Randomized projections are powerful tools for dimension reduction.

Many methods involve 1
ε2
-type scaling. Caveat emptor.

Randomized projections work particularly well as one part of a two-stage method:
• Stage A: Use randomized projections to develop a sketch of the data — “where to look”.
• Stage B: Return to the original data set to compute high accuracy answers.

• Randomized methods can reduce communication in matrix computations:
→ Key to high performance on GPUs, out-of-core, distributed memory, . . .

• randUTV and randCPQR offer much higher speed than existing methods.

Future directions: Postdoc positions available!
• Continued work on algorithms for computing full factorizations of matrices.
• Accelerated solvers for Ax = b for a “general” A.
• Compression of rank-structured matrices (H-matrices, HBS/HSS matrices, etc).
• Randomized block Krylov methods.
• Integration with applications in big data and scientific computing.
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Software for UTV: https://github.com/flame/randutv
Software for CPQR: https://github.com/flame/hqrrp


