
Manifold Learning in the Age of Big Data

Marina Meilă

University of Washington
mmp@stat.washington.edu

BDC2018 Workshop

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Supervised, Unsupervised, Reinforcement Learning

I We are witnessing an AI/ML revolution
I this is led by Supervised and Reinforcement Learning
I i.e. Prediction and Acting

I Unsupervised learning (clustering analysis, dimension reduction,
explanatory models)

I is in a much more primitive state of development
I it is harder conceptually: defining the objective is part of the problem
I but everybody does it [in the sciences]
I because exploration, explanation, understanding, uncovering the structure of

the data are necessary
in the language of the discipline

I is the next big data challenge?

Unsupervised learning at scale and automatically validated

I Topics: Geometry and combinatorics
I Non-linear dimension reduction
I Topological data analysis
I Graphs, rankings, clustering

I Mathematics/theory/theorems/models
I validation/checking/guarantees
I beyond discovering patterns

I Algorithms and computation

I Demands from practical problems stimulate good research

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

When to do (non-linear) dimension reduction

I high-dimensional data p ∈ RD , D = 64× 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n

When to do (non-linear) dimension reduction
aspirin MD simulation SDSS galaxy spectra

Why?
I To save space and computation

I n × D data matrix → n × s, s � D

I To use it afterwards in (prediction) tasks
I To understand the data better

I preserve large scale features, suppress fine scale features

ML poses special computational challenges
ethanol, n = 50, 000, D = 21

I structure of computation not regular
I dictated by a random geometric graph
I randomness: e.g. # neighbors of a data point
I affects storage, parallelization, run time (by

unknown condition numbers)

I intrinsic dimension d controls statistical and
almost all numerical properties of ML algorithm

I data dimension D arbitrarily large as long as d
small

I d must be guessed/estimated

I coordinate system is local (e.g protein folding)

I data partitioning is open problem

I not easily parallelizable ?

I problem of finding neighbors efficiently

SDDS spectra, n = 0.7M, D = 3750

Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

p1, . . . pn ⊂ RD

Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε

p1, . . . pn ⊂ RD

Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

p1, . . . pn ⊂ RD

Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Laplacian Eigenmaps/Diffusion Maps [Belkin,Niyogi 02,Nadler et al

05]

I Construct similarity matrix

S = [Spp′]p,p′∈D with Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors

I Construct Laplacian matrix L = I − T−1S with T = diag(S1)

I Calculate φ1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p ∈ D are (φ1(p), . . . φm(p))

Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Isomap [Tennenbaum, deSilva & Langford 00]

I Find all shortest paths in neighborhood graph, construct matrix of
distances

M = [distance2
pp′]

I use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional
coordinates for p ∈ D

Isomap vs. Diffusion Maps

Isomap
I Preserves geodesic distances

I but only sometimes []

I Computes all-pairs shortest paths
O(n3)

I Stores/processes dense matrix

DiffusionMap

I Distorts geodesic distances

I Computes only distances to
nearest neighbors O(n1+ε)

I Stores/processes sparse matrix

A toy example (the “Swiss Roll” with a hole)

points in D ≥ 3 dimensions same points reparametrized in 2D

Input Desired output

A toy example (the “Swiss Roll” with a hole)

points in D ≥ 3 dimensions same points reparametrized in 2D

Input Desired output

Embedding in 2 dimensions by different manifold learning algorithms
Input

Figure by Todd Wittman

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

g for Sculpture Faces

I n = 698 with 64× 64 gray images of faces
I head moves up/down and right/left

LTSA Algoritm

Isomap LTSA

Laplacian Eigenmaps

Metric ML unifies embedding algorithms

I Distortions can now be corrected
I locally: Locally Normalized Visualization
I globally: Riemannian Relaxation
I implicitly: by integrating with the right lenght or volume element

I Hence, all embedding algorithms preserve manifold geometry

Locally Normalized Visualization

local neighborhood, unnormailzed local neighborhood, Locally Normailzed

I Distortion w.r.t original data (projected on the tangent plane)

local neighborhood, unnormailzed local neighborhood, Locally Normailzed,

• original data
• embedded data

Locally Normalized Visualization

local neighborhood, unnormailzed local neighborhood, Locally Normailzed(scaling 1.00)

Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 2 0.08 0.08 1.62 3.1%

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

Calculating Areas/Volumes in the manifold

true area = 0.84
Rel.

Embedding Naive Metric err.
Original data 0.85 (0.03) 0.93 (0.03) 11.0%

Isomap 2.7 0.93 (0.03) 11.0%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11.0%

LE 1e-05 (4e-4) 0.82 (0.03) 2.6%

Vol(W) =
∫
W

√
det(g)dx1 . . . dxd

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Self-consistent method of chosing ε

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

√
ε

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p′) = e−
||p−p′||2

ε if ||p − p′||2 ≤ ε and 0 otherwise

I Problem: how to choose ε?

Existing work

I Theoretical (asymptotic) result
√
ε ∝ n−

1
d+6 [Singer06]

I Cross-validation
I assumes a supervised task given

I heuristic for K-nearest neighbor graph [Chen&Buja09]
I depends on embedding method used
I K-nearest neighbor graph has different convergence properties than ε

neighborhood

I Visual inspection

Our idea

For given ε and data point p
I Project neighbors of p onto tangent subspace

I this “embedding” is approximately isometric to original data

I Calculate Laplacian L(ε)) and estimate distortion Hε,p at p
I Hε,p must be ≈ Id identity matrix

I Idea: choose ε so that geometry encoded by Lε is closest to data geometry
Jupyter Notebook

I Completely unsupervised

https://github.com/vasiloglou/mltrain-nips-2017/blob/master/yu_chia_chen/radius_estimation_tutorial.ipynb

The distortion measure

Input: data set D, dimension d ′ ≤ d , scale ε

1. Estimate Laplacian Lε
2. For each p

I Project data on tangent plane at p by local SVD with dimension d ′

I Estimate Hε,p ∈ Rd′×d′ for this projection

3. compute quadratic distortion D(ε) =
∑

p∈D wp||Hε,p − Id ||22
Output D(ε)

I by mapping into d ′ dimensions we avoid
curse of dimensionality, reduce variance

I d ′ ≤ d

I h used instead of g – more robust

I Select ε∗ = argminεD(ε)
I minimum found by 0-th order

optimization

I Extension to embedding in m > d dimensions

Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)
Method

Dataset CV [Chen&Buja] Ours
Digit1 3.32 2.16 2.11
USPS 5.18 4.83 3.89
COIL 7.02 8.03 8.81
g241c 13.31 23.93 12.77
g241d 8.67 18.39 8.76

superv. fully unsupervised

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Scaling: Statistical viewpoint

I Manifold estimation is non-parametric
I model becomes more complex when more data available
I provided ε kernel bandwidth decreases slowly with n

I Rates of convergence for manifold estimation as n −→∞
I rate of Laplacian n−

1
d+6 [Singer 06], and of its eigenvectors n

− 2
(5d+6)(d+6)

[Wang 15]

I minimax rate of manifold learning n−
2

d+2 [Genovese et al. 12]

I Compare with rate of convergence for parametric estimation n−
1
2

I Hence,
I for non-parametric models, accuracy improves very slowly with n
I estimating M and g accurately requires big data

Scaling: Computational viewpoint

LaplacianEigenmap revisited

1. Construct similarity matrix

S = [Spp′]p,p′∈D withSpp′ = e−
1
ε
||p−p′||2

iff p, p′ neighbors

2. Construct Laplacian matrix
L = I − T−1S with T = diag(S1)

3. Calculate ψ1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p ∈ D are
(ψ1(p), . . . ψm(p))

Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix

S = [Spp0]p,p02D with Spp0 = e� 1
✏

||p�p0||2

i↵ p, p0 neighbors

2. Construct Laplacian matrix
L = I � T�1S with T = diag(S1)

3. Calculate 1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p 2 D are
(1(p), . . . m(p))

Nearest neighbor search in high
dimensions

Sparse Matrix Vector
multiplication

Principal eigenvectors

I of sparse, symmetric, (well
conditioned) matrix

ML with bandwidth [and dimension] estimation

Input εmax , εmin, n
′ subsample size, d ′ parameter

1. Find 3εmax neighborhoods

2. For ε in [εmin, εmax]

2.1 Construct Laplacian L(ε) O(n′× # neighbors2d ′)
I (graph given)
I only n′ rows needed

2.2 Local PCA at n′ points
2.3 Calculate distortion D(ε) at n′ points
2.4 Optionally: Estimate dimension for this ε

3. Choose ε, recalculate L, [fix d]

4. Eigendecomposition SVD(L, m) with m ≤ 2d

Manifold Learning and Clustering with millions of points

https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford Yu-chia Chen

I Implemented in python, compatible with scikit-learn

I Statistical/methodological novelty
I implements recent advances in the statistical understanding of manifold

learning, e.g radius based neighborhoods [Hein 2007], consistent graph
Laplacians [Coifman 2006], Metric learning

I Designed for performance
I sparse representation as default
I incorporates state of the art FLANN package1

I uses amp, lobpcg fast sparse eigensolver for SDP matrices
I exposes/caches intermediate states (e.g. data set index, distances,

Laplacian, eigenvectors)

I Designed for extensions

1Fast Approximate Nearest Neighbor search

Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford

Software overview

I Installation and dependencies Installation

I Examples/Tutorials Examples

I The Geometry class Geometry

I Embeddings Embeddings

I Other functionality
I Metric manifold learning [Perrault-Joncas,M 2013], Riemannian Relaxation

[McQueen,M,Perrault-Joncas NIPS2016], scale estimation
[Perrault-Joncas,M,McQueen NIPS2017]

I Clustering: k-means, spectral
I Visualization tools

http://mmp2.github.io/megaman/installation.html
https://github.com/mmp2/megaman/blob/master/examples/examples_index.ipynb
http://mmp2.github.io/megaman/geometry/geometry.html
http://mmp2.github.io/megaman/geometry/geometry.html

megaman on Theta

I Parallelism support (OpenMP)
I Nearest neighbors (brute force)
I Eigenproblem: SLEPc added

I Commonly used kernels for MD included and tested
I SOAP, SLATM

I (in progress) Highly parallelizable random projection based graph
Laplacian construction

“Polymorphic landscapes of molecular crystals

What next?

I Recent extensions:
I Embedding calculated for subset of data, interpolated for the rest (Nyström

extension), lazy evaluations of g
I spectral and k-means clustering
I Riemannian relaxation, scale estimation

I Near future (pilot implementations exist)
I Gaussian Process regression on manifolds
I Principal Curves and Surfaces [Ozertem 2011]
I Integration with TDA, i.e. GUDHI

I Next
I More scalable Laplacian construction?
I Platform for scalable unsupervised learning and non-parametric statistics

Challenge: neighborhood graph

I We need radius-neighbors
I i.e. [approximately] all neighbors of pi within radius r
I Why? [Hein 07, Coifman 06, Ting 10, . . .] k-nearest neighbor Laplacians

do not converge to Laplace-Beltrami operator (but to ∆ + 2∇(log p) · ∇)

I How to construct them?
I existing scalable software (FLANN) finds k-nearest neighbors

I Laplacian less tractable numerically
I number of non-zeros in each row depends on data density

Outline

Unsupervised Learning with Big Data

Manifold learning G2
Basics of manifold learning algorithms
Metric Manifold Learning
Estimating the kernel bandwidth

Scalable manifold learning
megaman

Finding filaments in high dimensions

Finding Density Ridges

I data in RD near a curve (or set of curves)

I wanted: track the ridge of the data density

Mathematically,

Peak

∇p = 0
∇2p ≺ 0

Saddle

∇p = 0
∇2p has λ1 > 0,
λ2:D < 0

Ridge

∇p = 0 in span{v2:D}
vj e-vector for λj , j = 1 : D
∇2p has λ2:D < 0

In other words, on a ridge

I ∇p ∝ v1 direction of least negative curvature (LNC)

I ∇p, v1 are tangent to the ridge

SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any x1 Density estimated by p =data ? Gaussian kernel of width h

for k = 1, 2, . . .
1. calculate gk ∝ ∇p(xk) by Mean-Shift O(nD)
2. Hk = ∇2p(xk) O(nD2)
3. compute v1 principal e-vector of Hk O(D2)
4. xk+1 ← xk + Projv⊥1

gk O(D)

until convergence

I Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

I Run time ∝ nD2/iteration

I Storage ∝ D2

Accelerating SCMS

I reduce dependency on n per iteration
I index data (clustering, KD-trees, . . .)
I we use FLANN [Muja,Lowe]

I n ← n′ average number of neighbors

I reduce number iterations: track ridge instead of cold restarts
I project ∇p on v1 instead of v⊥1
I tracking ends at critical point (peak or saddle)

I reduce dependence on D
I D2 ← mD with m ≈ 5

(Approximate) SCMS step without computing Hessian

Recall SCMS = Subspace Constrained Mean Shift

I Given g ∝ ∇p(x)

I Wanted Projv⊥1
g = (I − v1v

T
1)g

I Need v1

principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

without computing/storing H

(Approximate) SCMS step without Hessian: First idea

I Wanted
v1 principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

I First Idea
1. use LBFGSS to approximate H−1 by ˆH−1 of rank 2m [Nocedal & Wright]
2. v̂1 obtained by 2m × 2m SVD + Gram-Schmidt

I Run time ∝ Dm + m2 / iteration (instead of nD2)

I Storage ∝ 2mD for {xk−l − xk−l−1}l=1:m, {g k−l − g k−l−1}l=1:m

I Problem v1 too inaccurate to detect stopping

(Approximate) SCMS step without Hessian: Second idea

I Wanted
v1 principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

I Second Idea
1. store {xk−l − xk−l−1}l=1:m ∪ {gk−l − gk−l−1}l=1:m = V
2. minimize vTHv s.t. v ∈ spanV where H is exact Hessian

I Possible because H = 1∑
ci

∑
ciuiu

T
i − ggT − 1

h2 I with c1:n, u1:n computed
during Mean-Shift

I Run time ∝ n′Dm + m2 / iteration (instead of nD2)

I Storage ∝ 2mD

I Much more accurate

Principal curves SCMS vs. L-SCMS

Speedup per iteration Total speedup w.r.t. SCMS

For large n neighbor search dominates

Manifold learning for sciences and engineering

Manifold learning should be like PCA

I tractable/scalable

I “automatic” – minimal burden on human

I first step in data processing pipe-line

should not introduce artefacts

More than PCA

I estimate richer geometric/topological information

I dimension

I borders, stratification

I clusters

I Morse complex

I meaning of coordinates/continuous parametrization

Manifold Learning for engineering and the sciences

I “physical laws through machine
learning”

I scientific discovery by
quantitative/statistical data
analysis

I manifold learning as preprocessing
for other tasks

Thank you

Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Diffusion Maps embedding is
isometric in the limit [Besson 1994]

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

I Isomap [Tennenbaum,]recovers flat
manifolds isometrically

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10,
Gine & Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

Negative results

I obvious negative examples

I No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.

The Riemannian metric g

Mathematically

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTgpw for v ,w ∈ TpM and for p ∈M

I g is symmetric and positive definite tensor field
I g also called first fundamental form
I (M, g) is a Riemannian manifold

Computationally at each point p ∈M, gp is a positive definite matrix of rank d

All (intrinsic) geometric quantities on M involve g

I Volume element on manifold

Vol(W) =

∫
W

√
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms estimate M
I This talk: estimate g along with M

(and in the same coordinates)

Problem formulation

I Given:
I data set D = {p1, . . . pn} sampled from manifold M ⊂ RD

I embedding { xi = φ(pi), pi ∈ D }
by e.g LLE, Isomap, LE, . . .

I Estimate Gi ∈ Rm×m the (pushforward) Riemannian metric for pi ∈ D
in the embedding coordinates φ

I The embedding {x1:n,G1:n} will preserve the geometry of the original data

g for Sculpture Faces

I n = 698 gray images of faces in D = 64× 64 dimensions
I head moves up/down and right/left

LTSA Algoritm

Isomap LTSA

Laplacian Eigenmaps

Relation between g and ∆

I ∆ = Laplace-Beltrami operator on M
I ∆ = div · grad
I on C2, ∆f =

∑
j
∂2f
∂x2

j

I on weighted graph with similarity matrix S , and tp =
∑

pp′ Spp′ ,

∆ = diag { tp} − S

Proposition 1 (Differential geometric fact)

∆f =
√

det(h)
∑
l

∂

∂x l

(
1√

det(h)

∑
k

hlk
∂

∂xk
f

)
,

Estimation of g

Proposition 2 (Main Result 1)

Let ∆ be the Laplace-Beltrami operator on M. Then

hij(p) =
1

2
∆(φi − φi (p)) (φj − φj(p))|φi (p),φj (p)

where h = g−1 (matrix inverse) and i , j = 1, 2, . . .m are embedding dimensions

Intuition:

I at each point p ∈M, g(p) is a d × d matrix

I apply ∆ to embedding coordinate functions φ1, . . . φm

I this produces g−1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of ∆ is solved [Coifman&Lafon 06,Hein&al 07]

Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocess (construct neighborhood graph, ...)

2. Find an embedding φ of D into Rm

3. Estimate discretized Laplace-Beltrami operator L ∈ Rn×n

4. Estimate Hp = G−1
p and Gp = H†p for all p ∈ D

Output (φp,Gp) for all p

Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding φ of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp = G−1
p and Gp = H†p for all p

4.1 For i , j = 1 : m,
H ij = 1

2

[
L(φi ∗ φj)− φi ∗ (Lφj)− φj ∗ (Lφi)

]
where X ∗ Y denotes elementwise product of two vectors X, Y ∈ RN

4.2 For p ∈ D, Hp = [H ij
p]ij and Gp = H†p

Output (φp,Gp) for all p

Algorithm MetricEmbedding

Input data D, m embedding dimension, ε resolution

1. Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε

2. Construct similary matrix

Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors, S = [Spp′]p,p′∈D

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1 tp =
∑

p′∈D Spp′ , T = diag tp , p ∈ D
3.2 S̃ = I − T−1ST−1

3.3 t̃p =
∑

p′∈D S̃pp′ , T̃ = diag t̃p , p ∈ D
3.4 P = T̃−1S̃ .

4. Embedding [φp]p∈D = GenericEmbedding(D, m)

5. Estimate embedding metric Hp at each point

denote Z = X ∗ Y , X ,Y ∈ RN iff Zi = XiYi for all i
5.1 For i , j = 1 : m, H ij = 1

2

[
P(φi ∗ φj)− φi ∗ (Pφj)− φj ∗ (Pφi)

]
(column

vector)

5.2 For p ∈ D, H̃p = [H ij
p]ij and Hp = H̃†p

Ouput (φp,Hp)p∈D

Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates xi
Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Algorithm independent geometry preserving method

I Outputs of different algorithms on the same data are comparable

I Models built from compressed data are more interpretable

Applications
I Correcting distortion

I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation (coming next)

I Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]

I and of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])

I Accelerating Topological Data Analysis (in progress)

	Unsupervised Learning with Big Data
	Manifold learning G2
	Basics of manifold learning algorithms
	Metric Manifold Learning
	Estimating the kernel bandwidth

	Scalable manifold learning
	megaman

	Finding filaments in high dimensions
	Appendix

