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Supervised, Unsupervised, Reinforcement Learning

I We are witnessing an AI/ML revolution
I this is led by Supervised and Reinforcement Learning
I i.e. Prediction and Acting

I Unsupervised learning (clustering analysis, dimension reduction,
explanatory models)

I is in a much more primitive state of development
I it is harder conceptually: defining the objective is part of the problem
I but everybody does it [in the sciences]
I because exploration, explanation, understanding, uncovering the structure of

the data are necessary
in the language of the discipline

I is the next big data challenge?



Unsupervised learning at scale and automatically validated

I Topics: Geometry and combinatorics
I Non-linear dimension reduction
I Topological data analysis
I Graphs, rankings, clustering

I Mathematics/theory/theorems/models
I validation/checking/guarantees
I beyond discovering patterns

I Algorithms and computation

I Demands from practical problems stimulate good research
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When to do (non-linear) dimension reduction

I high-dimensional data p ∈ RD , D = 64× 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n



When to do (non-linear) dimension reduction
aspirin MD simulation SDSS galaxy spectra

Why?
I To save space and computation

I n × D data matrix → n × s, s � D

I To use it afterwards in (prediction) tasks
I To understand the data better

I preserve large scale features, suppress fine scale features



ML poses special computational challenges
ethanol, n = 50, 000, D = 21

I structure of computation not regular
I dictated by a random geometric graph
I randomness: e.g. # neighbors of a data point
I affects storage, parallelization, run time (by

unknown condition numbers)

I intrinsic dimension d controls statistical and
almost all numerical properties of ML algorithm

I data dimension D arbitrarily large as long as d
small

I d must be guessed/estimated

I coordinate system is local (e.g protein folding)

I data partitioning is open problem

I not easily parallelizable ?

I problem of finding neighbors efficiently

SDDS spectra, n = 0.7M, D = 3750
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Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Laplacian Eigenmaps/Diffusion Maps [Belkin,Niyogi 02,Nadler et al

05]

I Construct similarity matrix

S = [Spp′ ]p,p′∈D with Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors

I Construct Laplacian matrix L = I − T−1S with T = diag(S1)

I Calculate φ1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p ∈ D are (φ1(p), . . . φm(p))



Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Isomap [Tennenbaum, deSilva & Langford 00]

I Find all shortest paths in neighborhood graph, construct matrix of
distances

M = [distance2
pp′ ]

I use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional
coordinates for p ∈ D



Isomap vs. Diffusion Maps

Isomap
I Preserves geodesic distances

I but only sometimes []

I Computes all-pairs shortest paths
O(n3)

I Stores/processes dense matrix

DiffusionMap

I Distorts geodesic distances

I Computes only distances to
nearest neighbors O(n1+ε)

I Stores/processes sparse matrix



A toy example (the “Swiss Roll” with a hole)

points in D ≥ 3 dimensions same points reparametrized in 2D

Input Desired output



A toy example (the “Swiss Roll” with a hole)

points in D ≥ 3 dimensions same points reparametrized in 2D

Input Desired output



Embedding in 2 dimensions by different manifold learning algorithms
Input

Figure by Todd Wittman
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g for Sculpture Faces

I n = 698 with 64× 64 gray images of faces
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Metric ML unifies embedding algorithms

I Distortions can now be corrected
I locally: Locally Normalized Visualization
I globally: Riemannian Relaxation
I implicitly: by integrating with the right lenght or volume element

I Hence, all embedding algorithms preserve manifold geometry



Locally Normalized Visualization

local neighborhood, unnormailzed local neighborhood, Locally Normailzed

I Distortion w.r.t original data (projected on the tangent plane)

local neighborhood, unnormailzed local neighborhood, Locally Normailzed,

• original data
• embedded data



Locally Normalized Visualization

local neighborhood, unnormailzed local neighborhood, Locally Normailzed(scaling 1.00)



Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 2 0.08 0.08 1.62 3.1%

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,



Calculating Areas/Volumes in the manifold

true area = 0.84
Rel.

Embedding Naive Metric err.
Original data 0.85 (0.03) 0.93 (0.03) 11.0%

Isomap 2.7 0.93 (0.03) 11.0%
LTSA 1e-03 (5e-5) 0.93 (0.03) 11.0%

LE 1e-05 (4e-4) 0.82 (0.03) 2.6%

Vol(W ) =
∫
W

√
det(g)dx1 . . . dxd
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Self-consistent method of chosing ε

I Every manifold learning algorithm starts with a neighborhood graph
I Parameter

√
ε

I is neighborhood radius
I and/or kernel banwidth

I For example, we use the kernel

K(p, p′) = e−
||p−p′||2

ε if ||p − p′||2 ≤ ε and 0 otherwise

I Problem: how to choose ε?



Existing work

I Theoretical (asymptotic) result
√
ε ∝ n−

1
d+6 [Singer06]

I Cross-validation
I assumes a supervised task given

I heuristic for K-nearest neighbor graph [Chen&Buja09]
I depends on embedding method used
I K-nearest neighbor graph has different convergence properties than ε

neighborhood

I Visual inspection



Our idea

For given ε and data point p
I Project neighbors of p onto tangent subspace

I this “embedding” is approximately isometric to original data

I Calculate Laplacian L(ε)) and estimate distortion Hε,p at p
I Hε,p must be ≈ Id identity matrix

I Idea: choose ε so that geometry encoded by Lε is closest to data geometry
Jupyter Notebook

I Completely unsupervised

https://github.com/vasiloglou/mltrain-nips-2017/blob/master/yu_chia_chen/radius_estimation_tutorial.ipynb


The distortion measure

Input: data set D, dimension d ′ ≤ d , scale ε

1. Estimate Laplacian Lε
2. For each p

I Project data on tangent plane at p by local SVD with dimension d ′

I Estimate Hε,p ∈ Rd′×d′ for this projection

3. compute quadratic distortion D(ε) =
∑

p∈D wp||Hε,p − Id ||22
Output D(ε)

I by mapping into d ′ dimensions we avoid
curse of dimensionality, reduce variance

I d ′ ≤ d

I h used instead of g – more robust

I Select ε∗ = argminεD(ε)
I minimum found by 0-th order

optimization

I Extension to embedding in m > d dimensions



Semisupervised learning benchmarks [Chapelle&al 08]

Multiclass classification problems

Classification error (%)
Method

Dataset CV [Chen&Buja] Ours
Digit1 3.32 2.16 2.11
USPS 5.18 4.83 3.89
COIL 7.02 8.03 8.81
g241c 13.31 23.93 12.77
g241d 8.67 18.39 8.76

superv. fully unsupervised
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Scaling: Statistical viewpoint

I Manifold estimation is non-parametric
I model becomes more complex when more data available
I provided ε kernel bandwidth decreases slowly with n

I Rates of convergence for manifold estimation as n −→∞
I rate of Laplacian n−

1
d+6 [Singer 06], and of its eigenvectors n

− 2
(5d+6)(d+6)

[Wang 15]

I minimax rate of manifold learning n−
2

d+2 [Genovese et al. 12]

I Compare with rate of convergence for parametric estimation n−
1
2

I Hence,
I for non-parametric models, accuracy improves very slowly with n
I estimating M and g accurately requires big data



Scaling: Computational viewpoint

LaplacianEigenmap revisited

1. Construct similarity matrix

S = [Spp′ ]p,p′∈D withSpp′ = e−
1
ε
||p−p′||2

iff p, p′ neighbors

2. Construct Laplacian matrix
L = I − T−1S with T = diag(S1)

3. Calculate ψ1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p ∈ D are
(ψ1(p), . . . ψm(p))



Scaling: Computational viewpoint

Laplacian Eigenmaps revisited

1. Construct similarity matrix

S = [Spp0 ]p,p02D with Spp0 = e� 1
✏

||p�p0||2

i↵ p, p0 neighbors

2. Construct Laplacian matrix
L = I � T�1S with T = diag(S1)

3. Calculate  1...m = eigenvectors of L
(smallest eigenvalues)

4. coordinates of p 2 D are
( 1(p), . . .  m(p))

Nearest neighbor search in high
dimensions

Sparse Matrix Vector
multiplication

Principal eigenvectors

I of sparse, symmetric, (well
conditioned) matrix



ML with bandwidth [and dimension] estimation

Input εmax , εmin, n
′ subsample size, d ′ parameter

1. Find 3εmax neighborhoods

2. For ε in [εmin, εmax ]

2.1 Construct Laplacian L(ε) O(n′× # neighbors2d ′)
I (graph given)
I only n′ rows needed

2.2 Local PCA at n′ points
2.3 Calculate distortion D(ε) at n′ points
2.4 Optionally: Estimate dimension for this ε

3. Choose ε, recalculate L, [fix d ]

4. Eigendecomposition SVD( L, m ) with m ≤ 2d



Manifold Learning and Clustering with millions of points

https://www.github.com/megaman

James McQueen Jake VanderPlas Jerry Zhang Grace Telford Yu-chia Chen

I Implemented in python, compatible with scikit-learn

I Statistical/methodological novelty
I implements recent advances in the statistical understanding of manifold

learning, e.g radius based neighborhoods [Hein 2007], consistent graph
Laplacians [Coifman 2006], Metric learning

I Designed for performance
I sparse representation as default
I incorporates state of the art FLANN package1

I uses amp, lobpcg fast sparse eigensolver for SDP matrices
I exposes/caches intermediate states (e.g. data set index, distances,

Laplacian, eigenvectors)

I Designed for extensions

1Fast Approximate Nearest Neighbor search



Scalable Manifold Learning in python with megaman

https://www.github.com/megaman

English words and phrases taken from

Google news (3,000,000 phrases originally

represented in 300 dimensions by the Deep

Neural Network word2vec [Mikolov et al])

Main sample of galaxy spectra from the

Sloan Digital Sky Survey (675,000 spectra

originally in 3750 dimensions).

preprocessed by Jake VanderPlas, figure by Grace Telford



Software overview

I Installation and dependencies Installation

I Examples/Tutorials Examples

I The Geometry class Geometry

I Embeddings Embeddings

I Other functionality
I Metric manifold learning [Perrault-Joncas,M 2013], Riemannian Relaxation

[McQueen,M,Perrault-Joncas NIPS2016], scale estimation
[Perrault-Joncas,M,McQueen NIPS2017]

I Clustering: k-means, spectral
I Visualization tools

http://mmp2.github.io/megaman/installation.html
https://github.com/mmp2/megaman/blob/master/examples/examples_index.ipynb
http://mmp2.github.io/megaman/geometry/geometry.html
http://mmp2.github.io/megaman/geometry/geometry.html


megaman on Theta

I Parallelism support (OpenMP)
I Nearest neighbors (brute force)
I Eigenproblem: SLEPc added

I Commonly used kernels for MD included and tested
I SOAP, SLATM

I (in progress) Highly parallelizable random projection based graph
Laplacian construction

“Polymorphic landscapes of molecular crystals



What next?

I Recent extensions:
I Embedding calculated for subset of data, interpolated for the rest (Nyström

extension), lazy evaluations of g
I spectral and k-means clustering
I Riemannian relaxation, scale estimation

I Near future (pilot implementations exist)
I Gaussian Process regression on manifolds
I Principal Curves and Surfaces [Ozertem 2011]
I Integration with TDA, i.e. GUDHI

I Next
I More scalable Laplacian construction?
I Platform for scalable unsupervised learning and non-parametric statistics



Challenge: neighborhood graph

I We need radius-neighbors
I i.e. [approximately] all neighbors of pi within radius r
I Why? [Hein 07, Coifman 06, Ting 10, . . . ] k-nearest neighbor Laplacians

do not converge to Laplace-Beltrami operator (but to ∆ + 2∇(log p) · ∇)

I How to construct them?
I existing scalable software (FLANN) finds k-nearest neighbors

I Laplacian less tractable numerically
I number of non-zeros in each row depends on data density
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Finding Density Ridges

I data in RD near a curve (or set of curves)

I wanted: track the ridge of the data density



Mathematically,

Peak

∇p = 0
∇2p ≺ 0

Saddle

∇p = 0
∇2p has λ1 > 0,
λ2:D < 0

Ridge

∇p = 0 in span{v2:D}
vj e-vector for λj , j = 1 : D
∇2p has λ2:D < 0

In other words, on a ridge

I ∇p ∝ v1 direction of least negative curvature (LNC)

I ∇p, v1 are tangent to the ridge



SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any x1 Density estimated by p =data ? Gaussian kernel of width h

for k = 1, 2, . . .
1. calculate gk ∝ ∇p(xk ) by Mean-Shift O(nD)
2. Hk = ∇2p(xk ) O(nD2)
3. compute v1 principal e-vector of Hk O(D2)
4. xk+1 ← xk + Projv⊥1

gk O(D)

until convergence

I Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

I Run time ∝ nD2/iteration

I Storage ∝ D2



Accelerating SCMS

I reduce dependency on n per iteration
I index data (clustering, KD-trees, . . . )
I we use FLANN [Muja,Lowe]

I n ← n′ average number of neighbors

I reduce number iterations: track ridge instead of cold restarts
I project ∇p on v1 instead of v⊥1
I tracking ends at critical point (peak or saddle)

I reduce dependence on D
I D2 ← mD with m ≈ 5



(Approximate) SCMS step without computing Hessian

Recall SCMS = Subspace Constrained Mean Shift

I Given g ∝ ∇p(x)

I Wanted Projv⊥1
g = (I − v1v

T
1 )g

I Need v1

principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

without computing/storing H



(Approximate) SCMS step without Hessian: First idea

I Wanted
v1 principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

I First Idea
1. use LBFGSS to approximate H−1 by ˆH−1 of rank 2m [Nocedal & Wright ]
2. v̂1 obtained by 2m × 2m SVD + Gram-Schmidt

I Run time ∝ Dm + m2 / iteration (instead of nD2)

I Storage ∝ 2mD for {xk−l − xk−l−1}l=1:m, {g k−l − g k−l−1}l=1:m

I Problem v1 too inaccurate to detect stopping



(Approximate) SCMS step without Hessian: Second idea

I Wanted
v1 principal e-vector of H = −∇2(ln p) for λ1 = smallest e-value of H

I Second Idea
1. store {xk−l − xk−l−1}l=1:m ∪ {gk−l − gk−l−1}l=1:m = V
2. minimize vTHv s.t. v ∈ spanV where H is exact Hessian

I Possible because H = 1∑
ci

∑
ciuiu

T
i − ggT − 1

h2 I with c1:n, u1:n computed
during Mean-Shift

I Run time ∝ n′Dm + m2 / iteration (instead of nD2)

I Storage ∝ 2mD

I Much more accurate



Principal curves SCMS vs. L-SCMS

Speedup per iteration Total speedup w.r.t. SCMS

For large n neighbor search dominates



Manifold learning for sciences and engineering

Manifold learning should be like PCA

I tractable/scalable

I “automatic” – minimal burden on human

I first step in data processing pipe-line

should not introduce artefacts

More than PCA

I estimate richer geometric/topological information

I dimension

I borders, stratification

I clusters

I Morse complex

I meaning of coordinates/continuous parametrization



Manifold Learning for engineering and the sciences

I “physical laws through machine
learning”

I scientific discovery by
quantitative/statistical data
analysis

I manifold learning as preprocessing
for other tasks



Thank you



Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry



Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Diffusion Maps embedding is
isometric in the limit [Besson 1994]

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

I Isomap [Tennenbaum,]recovers flat
manifolds isometrically

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10,
Gine & Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

Negative results

I obvious negative examples

I No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.



The Riemannian metric g

Mathematically

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTgpw for v ,w ∈ TpM and for p ∈M

I g is symmetric and positive definite tensor field
I g also called first fundamental form
I (M, g) is a Riemannian manifold

Computationally at each point p ∈M, gp is a positive definite matrix of rank d



All (intrinsic) geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

∫
W

√
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms estimate M
I This talk: estimate g along with M

(and in the same coordinates)



Problem formulation

I Given:
I data set D = {p1, . . . pn} sampled from manifold M ⊂ RD

I embedding { xi = φ(pi ), pi ∈ D }
by e.g LLE, Isomap, LE, . . .

I Estimate Gi ∈ Rm×m the (pushforward) Riemannian metric for pi ∈ D
in the embedding coordinates φ

I The embedding {x1:n,G1:n} will preserve the geometry of the original data



g for Sculpture Faces

I n = 698 gray images of faces in D = 64× 64 dimensions
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Relation between g and ∆

I ∆ = Laplace-Beltrami operator on M
I ∆ = div · grad
I on C2, ∆f =

∑
j
∂2f
∂x2

j

I on weighted graph with similarity matrix S , and tp =
∑

pp′ Spp′ ,

∆ = diag { tp} − S

Proposition 1 (Differential geometric fact)

∆f =
√

det(h)
∑
l

∂

∂x l

(
1√

det(h)

∑
k

hlk
∂

∂xk
f

)
,



Estimation of g

Proposition 2 (Main Result 1)

Let ∆ be the Laplace-Beltrami operator on M. Then

hij(p) =
1

2
∆(φi − φi (p)) (φj − φj(p))|φi (p),φj (p)

where h = g−1 (matrix inverse) and i , j = 1, 2, . . .m are embedding dimensions

Intuition:

I at each point p ∈M, g(p) is a d × d matrix

I apply ∆ to embedding coordinate functions φ1, . . . φm

I this produces g−1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of ∆ is solved [Coifman&Lafon 06,Hein&al 07]



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocess (construct neighborhood graph, ...)

2. Find an embedding φ of D into Rm

3. Estimate discretized Laplace-Beltrami operator L ∈ Rn×n

4. Estimate Hp = G−1
p and Gp = H†p for all p ∈ D

Output (φp,Gp) for all p



Algorithm to Estimate Riemann metric g
(Main Result 2)

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding φ of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp = G−1
p and Gp = H†p for all p

4.1 For i , j = 1 : m,
H ij = 1

2

[
L(φi ∗ φj )− φi ∗ (Lφj )− φj ∗ (Lφi )

]
where X ∗ Y denotes elementwise product of two vectors X, Y ∈ RN

4.2 For p ∈ D, Hp = [H ij
p ]ij and Gp = H†p

Output (φp,Gp) for all p



Algorithm MetricEmbedding

Input data D, m embedding dimension, ε resolution

1. Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε

2. Construct similary matrix

Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors, S = [Spp′ ]p,p′∈D

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1 tp =
∑

p′∈D Spp′ , T = diag tp , p ∈ D
3.2 S̃ = I − T−1ST−1

3.3 t̃p =
∑

p′∈D S̃pp′ , T̃ = diag t̃p , p ∈ D
3.4 P = T̃−1S̃ .

4. Embedding [φp ]p∈D = GenericEmbedding(D, m)

5. Estimate embedding metric Hp at each point

denote Z = X ∗ Y , X ,Y ∈ RN iff Zi = XiYi for all i
5.1 For i , j = 1 : m, H ij = 1

2

[
P(φi ∗ φj )− φi ∗ (Pφj )− φj ∗ (Pφi )

]
(column

vector)

5.2 For p ∈ D, H̃p = [H ij
p ]ij and Hp = H̃†p

Ouput (φp,Hp)p∈D



Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates xi
Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Algorithm independent geometry preserving method

I Outputs of different algorithms on the same data are comparable

I Models built from compressed data are more interpretable

Applications
I Correcting distortion

I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation (coming next)

I Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17]

I and of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])

I Accelerating Topological Data Analysis (in progress)
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