L | Large-scale

==

Computing | 5




Workshop I: Big Data Meets Large-Scale Computing

Part of the Long Program Science at Extreme Scales: Where Big Data Meets Large-Scale Computing

SEPTEMBER 24 - 28, 2018

Overview

Increasingly large data sets are being ingested and produced by simulations. What experience from
large-scale simulation is transferable to big data applications? Conversely, what new optimal
algorithms will emerge that are motivated by data-intensive applications being pushed to large scales?
How will they enrich traditional simulation? As long as the software stacks, production facilities, and
even developer and user communities remain separate, many opportunities for mutual enhancement

will be unrealized.



Benefits of in situ convergence of simulation,
analytics, and machine learning

Evolving requirements of high-performance
analytics and simulation

Scalable hierarchical algorithms for analytics and
simulation

Detecting and exploiting data sparsity

Open problems
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Benefits of in situ convergence of simulation, analytics, and machine
learning

* Keyes: convergence overview

* Costa: architectural convergence

* Asch: model inversion & data assimilation
* Perdikaris: physics-informed learning

Evolving requirements of high-performance analytics and simulation

* Varoquaux: ML and SP with massive data
* Szalay: instruments for massive data

* Johnson: visualization for massive data

* Pascucci: workflows for massive data

e Stoica: scalable distributed Al
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Scalable hierarchical algorithms for analytics and simulation

* Peherstorfer: multi-fidelity models for MC
* Genton: surrogates in climate models

* Li: hierarchical matrices for KRR

* Martinsson: randomized matrix algorithms

Detecting and exploiting data sparsity

°* Bungartz: sparse grids in HPC and big data
* Griebel: sparse grids and manifold learning
* Pfluger: sparse grids and high-dim DM




Open problems

Candes(1): hypothesis generation from data
Candes(2): non-convex optimization
Candes(3): finding replicable selections
Charikar: importance sampling in high dim
Meila: manifold learning in high dim
Ghattas: design of experiments in high dim

Yokota: second-order optimization in DL

st
i‘:x‘,ﬁ‘



Four workshops

Big Data Meets Large-Scale
Computing

HPC and Data Science for Scientific
Discovery

HPC for Computationally and Data-
intensive Problems

New Architectures and Algorithms
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Benefits of in situ convergence of simulation, analytics, and machine
learning

* steering In high-dimensional parameter space

* smart data compression

* data-driven modeling (e.g., refinement of
empirical models through learning)

* physics-based “regularization” of analytics

* simulation as a source of training data

°* machine learning to impute missing data

Evolving requirements of high-performance analytics and simulation
Scalable hierarchical algorithms for analytics and simulation
Detecting and exploiting data sparsity

Open problems




Advocate convergence of big data and

large-scale computing
* one aspect of broad scientific
agenda for these two fields

Both fields have their own momentum and
are encountering their own limitations

Will provide background motivation and
point to four recent community reports

Coming from simulation side...




My lecture is “big picture”

My algorithmic interests were already presented by Jeff
Hittinger in jointly authored tutorials lectures on 14 Sep

* Build It and They Will Come: How Hardware
Influences Large-Scale Simulation

* High-Performance Numerical Algorithms for Large-
Scale Simulation

pdfs, mp3
linked

Cannot resist (if time permits) calling attention back to
points that Jeff mentioned on directions for algorithms
that

* benefit extreme simulation
* are conjectured to benefit big data
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David Keyes, Applied Mathematics & Computational Science

Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology
david.keyes@kaust.edu.sa



Many motivations exist to bring together large-scale
simulation and big data analytics (“convergence”)

Should be combined in situ
* pipelining between simulation and analytics through
disk files with sequential applications leaves too
many benefits “on the table”

Many hurdles to convergence
°*  but ultimately, this will not be a “forced marriage”

Scientists and engineers may be minority users of “big
data” (today and perhaps forever) but can become

leaders in the “big data” community
* by harnessing high performance computing
* being pathfinders for other applications, once
again!
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top-down,

deductive,

o laws/rules:

Artificial  gjmylation
Intelligence

bottom-up,
Inductive,
history/
examples:
Analytics
& Learning

(@

c/o E.-L. Goh, HP

predict
data points:
Regression

predict
categories:
Classification
& Clustering

Linear

Nonlinear, Bayesian
Max likelihood

supervised

labeled data: Decision tree

Classification

Neural networks

unsupervised & Deep leaning
unlabeled data:

Clustering,

Dimension K-means
reduction

& Density

estimation



Both include both models and data
e simulation uses a model

(mathematical) to produce data

analytics uses data to produce a
model (statistical)

analytics/
Models generated by analytics can
be used in simulation

learning
[ J

models
not the only source of models, of
course

data
Data generated by simulation can be

used in analytics

simulation

not the only source of data, of
course

A virtuous cycle can be set up
c/o A. Raies, KAUST
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Primary novelty in machine-
based “intelligence” is the
learning part

A simulation system is
historically a fixed, human-
engineered code that does not
improve with the flow of data
through it

<’ c/oA. Raies, KAUST

inputs

simulation
system

predictions
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Machine learning systems improve

as they ingest data
° make inferences and
decisions on their own
* actually generate the
model

Of course, as with a child, when tralgglg
provided with information, a
machine may learn incorrect rules
and make incorrect decisions
* in scientific contexts,

we have extra recourse
<’ c/oA. Raies, KAUST

inputs

neural
network

coeffs

optimizer

predictions
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Including learning in the
simulation loop can enhance
the predictivity of the
simulation

Including both simulation data
and observational data in the
learning loop can enhance the
learning

Ultimately a win-win marriage

inputs

analytics

models data

simulation

predictions



HPC: hlgh performance computing

grew up around Moore’s Law multiplied by massive
parallelism

° predictive on par with experiments (e.g., Nobel prizes in
chemistry)

° recognized for policy support (e.g., nuclear weapons,
climate treaties)

° recognized for decision support (e.g., oil drilling, therapy
planning)

HDA: hlgh-end data analytics

grew up around open-source tools (e.g., Hadoop,
TensorFlow) from online service providers
° created trillion-$ markets in analyzing human preferences
° now dictating the design of computer architecture (e.g.,
NVIDIA tensor cores, Intel A21)
* transforming university curricula and national investments
° taking on scientific data, evolving as it goes



Figure 1. Data analytics and computing ecosystem compared.
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Data ownership
HPC: generally private

HDA: often curated by community
Data access

HPC: bulk access, fixed HDA: fine-grained access, elastic

Data storage

HPC: local, temporary

HDA: cloud-based, persistent




Scheduling policies

HPC: batch

HPC: exclusive space
Community premiums
HPC: capability, reliability

Hardware infrastructure

HPC: “fork-lift upgrades”

HDA: interactive

HDA: shared space
HDA: capacity, resilience

HDA: incremental upgrades




Vendors, even those facing the lucrative call for
exascale systems by government (>$1B projects
in Japan, China, USA) must leverage their
technology developments for the much larger
data science markets

This Iincludes preoccupation with lower precision
floating point

Fortunately, there are critical cross-cutting

concerns
°* energy efficiency
°* |limited memory per core
°* limited memory bandwidth per core




Since the beginning of the big data age, data has been moved

over “stateless” networks
°* routing is based on address bits in the data packets
°* no system-wide coordination of data sets or buffering

Workarounds coped with volume but are now creaking
°* ftp mirror sites, web-caching (e.g., Akamai)

Solutions for buffering massive scientific data sets from the
“edge” ...
°* seismic arrays, satellite networks, telescopes,
scanning electron microscopes, beamlines, sensors,
drones, etc.

...will be useful for the “fog” environments of the big data
“cloud”
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“HPC supercomputers and cloud data centers [...] face challenges
[...] of extreme scalability, fault tolerance, cost of data
movement, and power management. The advent of big data has
spearheaded new large-scale distributed computing
technologies and parallel programming models such as
MapReduce, Hadoop, Spark, and Pregel, which offer innovative
approaches to scalable high-throughput computing, with a focus
on data locality and fault tolerance. [...]”

“In many applications, the need for distributed computing arises
from the sheer volume of the data. [...] The growing levels of
parallelism in computer architectures require software in
distributed machine learning systems such as TensorFlow to be
highly parallel. [...] Economy-of-scale pressures will contribute to
a convergence of technologies for computing at large scale.”

“Research and Education in CS&E” report (2018)




SIAM REVIEW
Vol. 60, No. 3, pp. 707-754

(©) 2018 Society for Industrial and Applied Mathematics

Research and Education in

Computational Science and Engineering’

“Riide report”
(2018)

Officers of the SIAM Activity Group on Computational Science and
Engineering (SIAG/CSE), 2013-2014:
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“Petzold report”
(2001)
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SIAM REVIEW
Vol. 43, No. |, pp. 163-177

Graduate Education in

Engineering®

(©) 2001 Society for Industrial and Applied Mathematics

Computational Science and

SIAM Working Group on CSE Education’




to large-scale
simulation

to data analytics

to machine learning

Simulation provides:

Physics-based

“regularization™

Data for training,
augmenting
real-world data

Analytics provides:

Steering in
high-dimensional
parameter space; in
situ processing

Feature vectors for
training

Learning provides:

Smart data
compression;
replacement of
models with
learned functions

Imputation of
missing data;
detection and
classification

Table 1 from “Pathways to Convergence” report (2018)
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International Journal of

HIGH PERFORMANCE

Research Paper COMPUTING APPLICATIONS
The International Journal of High
° + Performance Computing Applications
Big data and extreme-scale computing: D1g Vil 33 2= 7
Pathways to Convergence-Toward a i i s T
shaping strategy for a future software uralspnbomfhomahps
©®SAGE

and data ecosystem for scientific inquiry

M Asch, T Moore, R Badia, M Beck, P Beckman, T Bidot, F Bodin,

F Cappello, A Choudhary, B de Supinski, E Deelman, ] Dongarra, A Dubey,
G Fox, H Fu, S Girona, W Gropp, M Heroux, Y Ishikawa,

K Keahey, D Keyes, W Kramer, )-F Lavignon, Y Lu, S Matsuoka, B Mohr, i £
D Reed, S Requena, ] Saltz, T Schulthess, R Stevens, M Swany, BlG DATA AND

-P Vi O : EXTREME-SCALE
A Szalay, W Tang, G Varoquaux, J-P Vilotte, R Wisniewski, COMPUTING

Z Xu and | Zacharov
(URL in last slide)

“Pathways to Convergence” report (2018)
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In scientific big data, different approaches may be
natural for three different categories:

* data arriving from edge devices (often in real
time, e.g., beamlines) that is never centralized
but processed on the fly

* federated multi-source data (e.g., bioinformatics)
intended for “permanent” archive

* combinations of data retrieved from archival
source and dynamic data from a simulation (e.g.,
assimilation in climate/weather)

“Pathways” report addresses these challenges in
customized sections

.....
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Data Science Models
= Use of Data High

Figure 1 from “Theory Guided Data Science” report (2017)
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86 references, including many examples from biology, chemistry,
earth science and engineering, may be found in:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.29, NO.10, OCTOBER 2017

Theory-Guided Data Science: A New Paradigm

for Scientific Discovery from Data

Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee,
Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar

Abstract—Data science models, although successful in a number of commercial domains, have had limited applicability in scientific
problems involving complex physical phenomena. Theory-guided data science (TGDS) is an emerging paradigm that aims to leverage
the wealth of scientific knowledge for improving the effectiveness of data science models in enabling scientific discovery. The
overarching vision of TGDS is to introduce scientific consistency as an essential component for learning generalizable models. Further,
by producing scientifically interpretable models, TGDS aims to advance our scientific understanding by discovering novel domain
insights. Indeed, the paradigm of TGDS has started to gain prominence in a number of scientific disciplines such as turbulence
modeling, material discovery, quantum chemistry, bio-medical science, bio-marker discovery, climate science, and hydrology. In this
paper, we formally conceptualize the paradigm of TGDS and present a taxonomy of research themes in TGDS. We describe several
approaches for integrating domain knowledge in different research themes using illustrative examples from different disciplines. We
also highlight some of the promising avenues of novel research for realizing the full potential of theory-guided data science.

Index Terms—Data science, knowledge discovery, domain knowledge, scientific theory, physical consistency, interpretability

» “Theory-Guided Data Science” report (2017)




“Data science models, although successful in a number of
commercial domains, have had limited applicability in scientific
problems involving complex physical phenomena. Theory-guided
data science (TGDS) is an emerging paradigm that aims to
leverage the wealth of scientific knowledge for improving the
effectiveness of data science models in enabling scientific
discovery. The overarching vision of TGDS is to introduce
scientific consistency as an essential component for learning
generalizable models.”

“Further, by producing scientifically interpretable models, TGDS
aims to advance our scientific understanding by discovering
novel domain insights. Indeed, the paradigm of TGDS has started
to gain prominence in a number of scientific disciplines such as
turbulence modeling, material discovery, quantum chemistry, bio-
medical science, bio-marker discovery, climate science, and
hydrology.”

“Theory Guided Data Science” report (2017)
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Each point in the (generally) high-dimensional space
below represents a model; three families of increasing
complexity are depicted.

/ Physically Inconsistent
Physically Inconsistent S 4« Models

Models w-.._ . <k Truth -y

.
~Z %
’

Fig. 2. Scientific knowledge can help in reducing the model variance by
removing physically inconsistent solutions, without likely affecting their
bias.

<" “Theory Guided Data Science” report (2017)



The generation of the images from

Major Histo- molecular dynamics software creates
Compatibility . .
Complex (€ a more favorable training set than in
(MHC) classification of standard images

because differences due to rotation,
illumination, etc. can be removed.

Train the CNN to capture

complicated interaction
Transform 3 —
patterns

f.maps B O\ -

model to an e
image

- — Estimate
\ - Y = :::::::::: " blndlng
-.Tffffi.- ‘ [ ] [ probability

Convolutions Subsampling Convolutions Subsampling Fully connected

This campaign has led to success in the Critical Assessment of PRediction of
Interactions (CAPRI) competition for protein docking, now in its 42" round

=7 c/o M. Ignatov, SUNY Stony Brook
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| Data for trauning,

................

Predicting and mitigating disruptions
(fluid instabilities) of the magnetic
bottle that contains the 300,000,000
Celsius burning plasma cannot be
done in real time with simulations

30ms warning is needed for effective
control

<" c/oW. Tang, Princeton Plasma Physics Lab
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Internal
State

OD signals 1D

This campaign won the NVIDIA Global Impact Award at the 2018 GPU
Technology Conference

S

29 c/o W. Tang, Princeton Plasma Physics Lab
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FRNN Code PERFORMANCE: ROC CURVES
JET ITER-like Wall Cases @30ms before Disruption

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False
Positives (bad: safe shot incorrectly labeled disruptive).

—

10 — . — e
,,'f TP: 93.5%
aal FP: 7.5%
‘/
ol TP: 90.0%
- FP: 5.0%
[
= ROC Area:
o4t 0.96
0.2
0.0 i N
c.C 0.2 c.4 0.6 0.8 1.0
FP rare

Data (r~50 GB), 0D signals: _
* Training; on 4100 shots from JET C-Wall campaigns
» Testing 1200 shots from Jet ILW campaigns
* All shots used, no signal filtering or removal of shots

c/o W. Tang, Princeton Plasma Physics Lab
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Train (DIII-D)

T NN

FRNN 1D

0.836

FRNN 0D

0.817

XGBoost

0.616

c/o W. Tang, Princeton Plasma Physics Lab
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SCALE MATTERS! TIMELY ITERATIONS ENLIGHTEN

Top Performance for larger datasets and batch sizes
Time-to-Train requires quick cycles
Aggregated processing with Ks nodes
, Experimentation may take multiple tries
E.g., Climate Pattern Discovery - 15 PF¥

High-end data

parallel compute Massive bandwidth/

Throughput

Large storage

Speed and £ management

repeatability

IXPUG 2018

c/o A. Gara, Intel




/1//5':—\} U S DEPARTMENT OF

/
/

POWERFUL CAPABILITY COMPLEMENTARY
FOR HIGH PERF DATA TOMODELING &
ANALYTICS SIMULATION

No need for complete /
complex models

Supervised, Semi-,
and Un-supervised

¥ US Department of Energy Office of Science and Berkeley Lab

IXPUG 2018

c/o A. Gara, Intel

DL METHODOLOGIES
& CAPABILITES:
AGREAT MATCH

Pattern Classification,
Clustering, Feature
Learning, Anomaly

Detection

Officeof ~ —
S ‘\m BERKELEY LAB

BREAKTHROUGH
OPPORTUNITIES

Precision Medicine

‘Faint Signal’ Fraud
Detection




“Nothing tends so much to the
advancement of knowledge as the
application of a new instrument. The
native intellectual powers of men in
different times are not so much the
causes of the different success of their
labors, as the peculiar nature of the
means and artificial resources in their

possession.”

—Humphrey Davy (1778-1829)

Inventor of electrochemistry (1802)
Discoverer of K, Na, Mg, Ca, Sr, Ba, B, Cl (1807-1810)



Dallas, |hpc
TX|inspires.

The International Conference for High Performance
Computing, Networking, Storage, and Analysis

The “steroids” are high performance computing technologies

’
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Invited Speakers

Tuesday

10:30-11:15
11:15-12:00
3:30-4:15
4:15-5:00

Wednesday

10:30-11:15
11:15-12:00
3:30-4:15
4:15-5:00

Thursday
8:30-9:15
9:15-10:00

10:30-11:15
11:15-12:00

Speakers

Chris Johnson, U Utah

Steve Furber, U Manchester
Margaret Martonosi, Princeton
Bryan Catanzaro, NVIDIA

Doug Kothe, ORNL

Depei Qian, Xi’an Jiaotong U
Satoshi Sekiguchi, AIST
Mary-Anne Piette, LBNL

Matthias Troyer, Microsoft

Cecilia Aragon,
U Washington

Pete Beckman, ANL
Padma Raghavan, Vanderbilt

Topics

Scientific Visualization

Machine Learning

US DOE’s Exascale Computing Program
China’s Exascale Computing Program
Japanese Program in Artificial Intelligence
HPC Modeling of Urban Systems

Enabling humans to explore and gain
insight from vast data sets

Internet of Things

Energy Efficiency and Linear Algebra

Dalas, |hpc
TX|inspires.



?2? SC18  Gordon Bell Finalists

Tsuyoshi Ichimura, U Tokyo

Wenguang Chen, Tsinghua U
ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds

Andre Walker-Loud, LBNL

Simulating the weak death of the neutron in a femtoscale universe with near-
exascale computing

Prabhat, LBNL

Robert Patton, ORNL

Daniel Jacobson, ORNL
Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic

Architectures for Chronic Pain and Opioid Addiction
Dalas, |hpc
TX|inspires.



Scientific and engineering advances
* tune physical parameters in simulations for
predictive performance
* tune algorithmic parameters of simulations for
execution performance
* filter out nonphysical candidates in learning
°* provide data for learning

Economy of data center operations

e obviate I/O
* obviate computation!

Development of a competitive workforce
* leaders in adopting disruptive tools have
advantages in capability and in recruiting

PO |



Economy of data centeroperations

|
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Reduce the time burden of 1/0O

plattorm == Edison == Intrepid == Mira

® Non-global dataI/O ™ Non-global Metadata * Global data I/O
® Global Metadata ® Not 1/0

100% =
80% g:
3 £
o 60% o
E =2
5 a0%
0% o 25% 50% 75% 100%
Applications
0%
. Earth1's Jobs V59 Figure 6: Maximum I/O throughput of each app across all its
Figure 4: Breakdown of total run time for each Earth1 job. jobs on a platform, and platform peak I/O throughput.
(é’”)), c/o W. Gropp, UIUC Extreme Computing Research Center (ECRC) 45



Reduce the space burden of 1/0O

1000 |4

b "y 1
1200 S0
1400 [
1600

1800
0 500 1000 1500 2000 2500 3000 3500

1000
)

1200 £

1400

1600

1800

0

500 1000 1500 2000 2500 3000 3500

SZ Compression
factor: 6.4
(1.4 with GZIP)

‘e” clo F. Cappello, Argonne



'Bonus rethinking HP in HDA @ﬂ@f@@i@yg@
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"FP16 over FP32
Seismic Modeling and Inversion Using 20
Half Precision
| 1.5
Outline *%
1. Introduction é 1.0
2. Scaling the wave equation <
3. Results: Speed-up and accuracy
By: 4. Impact on FWI 0.5
Gabriel Fabien-Ouellet > Conclusion
00 PL00 V100
Model
(@), G. Fabien-Ouellet at GTC 2018 Santa Clara Extreme Computing Research Center (ECRC) 47



DEEP LEARNING HARDWARE ACGELERATES FUSED

DISCONTINUOUS GALERKIN SEISMIC SIMULATIONS

Alexander

Parallel Co

Intel Labs
USA

~

mputing Lab

at's inside

TFLOPS

Heinecke

5 10 15 20 25 30 35 40
|

-
o

2 3 4
knm

0
|

A. Heinecke at IXPUG 2018 Saudi Arabia
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single precision

skx
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double precision



CALL FOR PROPOSALS: A21 ESP DATA, LEARNING PROJECTS

DATA LEARNING

* CFP 10 January 2018
— Deadline 8 April 2018

= Selections June 2018
— 5 Data projects
— 5 Learning projects

= Two-year funded ALCF
postdoc

= Cross-cutting proposals
targeting the convergence
of simulation, data and
learning are very much
encouraged.

Tang’s tokamak
disruption
detection project
is one of those

selected

=" c/o D. Martin, Argonne

{

» Experimental/observational
data
—Image analysis
— Multidimensional structure
discovery

= Complex and interactive
workflows

= On-demand HPC

= Persistent data techniques
— Object store
—Databases

» Streaming/real-time data
» Uncertainty quantification
» Statistical methods

» Graph analytics

Deep learning

Machine learning steering
simulations

— Parameter scans

— Materials design

— Observational signatures

Data-driven models and
refinement for science using
ML/DL

Hyperparameter optimization
Pattern recognition

Reduced model derivation
Bridging gaps in theory

12

NATIONAL LARORATORY



INTERNATIONAL

EXASCALE ROADMAP1.0

-
L S

SOF TWARE PROJECT THE INTERNATIONAL JOURNAL of

HIGH
PERFORMANCE
COMPUTING
APPLICATIONS

The International Journal of High
Performance Computing Applications

The International Exascale Software 000(00) 1-58

© The Author(s) 2010

P roj e ct road m ap Reprints and permission:

sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342010391989
hpc.sagepub.com

®SAGE

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts,

Giovanni Aloisio, Jean-Claude Andre, David Barkai,

Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig,

Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh,
Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld,
Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson,
Sanjay Kale, Richard Kenway, David Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky,
Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka, Paul Messina,

Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima,
Michael E Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner,

Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto,
William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero,

Aad van der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski and Kathy Yelick

“Exascale Software Roadmap” report
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Reduce synchrony

* in frequency or span or both
« cannot afford to synchronize a billion
imbalanced cores

Reside “high” on the memory hierarchy

 as close as possible to the processing
elements

- |latency to DRAM may be a thousand cycles
 moving data is orders of magnitude more
costly in energy than computing

Increase SIMT/SIMD-style shared-memory
concurrency

 one instruction can trigger 8 (AVX 512) to 64
(tensor core) operations

30 g O
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Employ dynamic runtime systems
based on directed acyclic task

graphs (DAGs) ‘ P
* e.g., ADLB, Argo, Charm++, Y

HPX, Legion, OmpSs, Quark,
STAPL, StarPU

Exploit hierarchical low-rank
data sparsity

000000000000000000

|

 meet “curse of dimensionality” -

with “blessing of low rank”

Code to the architecture, but present

an abstract API

*  “hourglass model” of IP/TCP for
processors

applications
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infrastructure

architectures



Some open

source
software
released
KAUST’s
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RECURSIVE ALGORITHMS: TRMM and TRSM

KAUST BASIC
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KAUST BLAS (KBLAS) is a high performance CUDA fibrary implementing a subset of BLAS as wel as Linear Algebra
PACKage (LAPACK] routines on NVIDIA GPUs. batch aigorhms.
reuses locally cached data and increases device occupancy. KBLAS represents, therefore. a comprehensive and effcent

KBLAS 20
+ Logacy Levet2 BLAS: rao) SYMV, GEMY,
=
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BATCH ALGORITHMS: Recursive Cholesky POTRF
b b

KBLAS HIGHLIGHTS
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Advantages
 remove artifactual synchronizations in
the form of subroutine boundaries
* remove artifactual orderings in the form
of pre-scheduled loops
* expose more concurrency

Disadvantages
 pay overhead of managing task graph
 potentially lose some memory locality
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Ax = ABx

Operation Explanation LAPACK routine name

Q@ B=LxLT Cholesky factorization POTRF

©@ C=L"1xAxLT application of triangular factors SYGST
or HEGST

© T=Q" xCxQ tridiagonal reduction SYEVD or HEEVD
9 Tx=Ax QR iteration STERF

00000000060
00000000000




Diagram shows a
dataflow ordering of
the steps of a4 X4
symmetric generalized
eigensolver

Nodes are tasks, color-
coded by type, and
edges are data
dependencies

Time is vertically
downward

Wide is good; short is
good
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Green, blue and
magenta symbols
represent tasks in
separate loop bodies
with dependences
from an adaptive
optics computation

Zooming
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<" c/o H. Ltaief (KAUST) & D. Gratadour (OdP)
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Tasks from 3 loops of optical
“reconstructor’ pipeline are
executed together
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Advantages
* shrink memory footprints to live

higher on the memory hierarchy
(higher means quicker access)
* reduce operation counts

« tune work to accuracy requirements
(e.g., preconditioner versus solver)

Disadvantages
« must pay cost of compression
 not all operators compress well

i‘:&i‘



* [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

* By exploiting low rank, kK, memory requirements and

operation counts approach optimal in matrix dimension n:

— polynomial in k
— lin-loginn
— constants carry the day
* Such hierarchical representations navigate a compromise
— fewer blocks of larger rank (“weak admissibility”) or

— more blocks of smaller rank (“strong admissibility”)
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* Global indices *
doi {
doj {
for (i,j) in S do op
}
}
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* Local indices *
for matrix blocks (k,/)
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doi {

doj {
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for (i,j) in S, ,do op

}
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Recursive constructioniof antk=maitrix
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strong weak admissibility
admissibility
after Hackbusch, et al., 2003




Replace dense linear algebra
Compute : O(N?) — (’)(k“Nlogb N)
Memory : O(N?) — O(kN)

Hierarchical off-diagonal blocks

Approximated with rank &
@ and b are small constants

Augment sparse linear algebr
Sparse direct solvers

Schur complement (frontal matrix) is dense but numerically low-rank
Nested dissection

21

[ —31 il — l;!
1 — -8

£|'—l('—23— 19— 20

Iterative solvers s —1ulis—r
g3 | |

Use small £ to precondition 't s la) Le s

Less sensitive to matrix condition than multigrid

Schur complement

"&"c/o Rio Yokota, Tokyo Tech




Advantages

* tiling and recursive subdivision create
large numbers of small problems
suitable for batched operations on
GPUs and MICs

reduce call overheads
polyalgorithmic approach based on block size

 non-temporal stores, coalesced
memory accesses, double-buffering,
etc. reduce sensitivity to memory

Disadvantages

« code Is more complex

 code is architecture-specific at the
bottom

S0h Y
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algorithmic
infrastructure




“Convergence” began as an architectural
imperative due to market size, but flourishes as a
stimulus to both simulation science and data
science

However, the two distinct ecosystems require
blending

In standalone modes, architectures, operations,
software, and data characteristics often strongly
contrast

This must be overcome since standalone mode
may not be competitive

PO |



“Convergence” began as an architectural
imperative due to market size, but flourishes as a
stimulus to both simulation science and data
science

However, the two distinct ecosystems require
blending

In standalone modes, architectures, operations,
software, and data characteristics often strongly
contrast

This must be overcome since standalone mode
may not be competitive
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on the left

Comparing Architecture

Big Data Extreme Computing

? Cost in memory and
interconnect bandwidth

Little Cost for resilient hardware
in data storage

Little Cost for hardware to
support system-wide resilience

Significant Cost: increased
aggregate I0Ps

Often trades performance for
capacity

Data access often fine-grained

Services are resilient to fault

Often customized programming
models

Libraries help move computation
to storage

Users routinely deploy their own
services

Significant Cost in memory and
interconnect bandwidth
Significant Cost in resilient
hardware in shared file system
Significant Cost in resilience
hardware to reduce whole-
system MTTI

Significant Cost: cutting-edge CPU
performance features

Often trades capacity for
performance

Comparing Software
Bigata

until termination

Data access is large bulk
(aggregated) requests

Applications restart after fault
Widely standardized
programming models

Libraries help move data to CPUs

Users aimost never deploy
customized services

Comparing Operations

Big Data Extreme Computing

Continuous access to long-lived Periodic access to compute
“services” created by science resources via job submitted to
community scheduler and queue
Time-shared access to elastic Space-shared compute resources
resources for exclusive access during jobs
New hardware capacity New tightly integrated system
purchased incrementally purchased every 4 years

Users charged for all resources Users charged for CPU hours,
(storage, cpu, networking) storage and networking is free

Comparing Data

Scientific Big Data Extreme Computing

Inputs arrive continuously, Inputs arrive infrequently,
streaming workflows buffering carefully managed
Data is unrepeatable snapshot in  Data often reproducible

time (repeat simulation)

Data generated by sensors Data generated from simulation
(error: from measurement) (error: from simulation)

Data rate limited by sensors Data rate limited by platform

Data often shared ond curated by Data often private
community

Often unstructured Semi-structured

on the right




HPC hardware technology “trickle down” benefits

e “Petascale in the machine room means
terascale on the node.” [Petaflops
Working Group, 1990s]

* Extrapolating: exascale on the machine

room floor means petascale under the
desk.

HDA software technology “trickle back” benefits

* “Google is living a few years in the future
and sends the rest of us

messages.” [Doug Cutting, Hadoop
founder]

PO |



Many motivations exist to bring together large-scale
simulation and big data analytics (“convergence”)

Should be combined in situ
* pipelining between simulation and analytics through
disk files with sequential applications leaves too
many benefits “on the table”

Many hurdles to convergence
°*  but ultimately, this will not be a “forced marriage”

Scientists and engineers may be minority users of “big
data” (today and perhaps forever) but can become

leaders in the “big data” community
* by harnessing high performance computing
* being pathfinders for other applications, once
again!

PO |



Galileo =

timeline, Greeks =» “Humboldt integrated
model” vision

1850’s 2018

experiment
pre-computational
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Models from physics
Or processed observations?

Better together!

<" thescikuproject.org
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Thank you!
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http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/

whitepapers/bdec2017pathways.pdf

* “Big Data and Extreme-scale Computing: Pathways to
Convergence,” M. Asch, et al., Int. J. High Perf. Comput.
Applics., 2018
http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf

* “The International Exascale Software Roadmap,” J.
Dongarra, et al., Int. J. High Perf. Comput. Applics.,
2011
https://arxiv.org/abs/1610.02608

* “Research and Education in Computational Science and
Engineering,” U. Rlide, et al., SIAM Review, 2018
https://arxiv.org/abs/1610.02608

* “Theory-guided Data Science,” A. Karpatne, et al., IEEE
Trans. Knowledge and Data Engineering, 2017
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http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf
https://arxiv.org/abs/1610.02608
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