Frank Jenko

Director, Max Planck Institute for Plasma Physics, Garching Professor, The University of Texas at Austin Professor, Technical University of Munich

BOOSTING PLASMA SCIENCE THROUGH BIG DATA & HPC

Long Program "Science at Extreme Scales"
Los Angeles, September 12, 2018

FUSION ENERGY IN THE NEWS (JUST TWO EXAMPLES)

How the Sun shines

Fusion of 4 protons (in steps)

Idea: Carbon-free energy source for the 21st century and well beyond

Fusion Energy in the Laboratory

This process has by far the highest reaction rate under experimentally accessible conditions:

Still, temperatures of about 100 million degrees are required! Thus, we are dealing with a fully ionized gas (plasma).

Magnetic Confinement of Plasmas

Charged particles basically follow magnetic field lines

Axisymmetric "tokamak": Nested magnetic surfaces

The crucial next step: ITER

Goals:

- 500 MW of fusion power for 50 MW of external heating
- "Burning" plasma

More info: www.iter.org

ITER CONSTRUCTION SITE IN SOUTHERN FRANCE

ACCELERATING FUSION RESEARCH VIA HPC

3 key challenges for fusion physics

KEY THEME: INTEGRATION

Applied mathematics
Computer science

Plasma astrophysics
Complex systems

incl. High Performance
Computing and Data Analytics

TOWARDS A "VIRTUAL" TOKAMAK

Goals: prepare and interpret ITER discharges, guide the development of power plants

Increasing fidelity & modeling capability with increasing computing power

Gigaflops

Core: ion-scale electrostatic physics in simplified geometry

Teraflops

Core: adding kinetic electron electromagnetic physics in a torus

Edge: ion+neutral electrostatic physics in a torus

Petaflops

Core: adding electron-scale physics

Edge: adding kinetic electron electrostatic physics

Exaflops

Core-edge coupled studies of wholedevice ITER, incl. turbulence, MHD instability, fast particles, heating, and plasma-wall interactions

Beyond

Whole device modeling of all relevant fusion science

Acknowledgements: ECP

MULTI-FIDELITY APPROACH

Vital role of **theory** (for deriving fundamental equations, analytical solutions in limiting cases, reduced models etc.) and **modern data analytics**

The gyrokinetic Vlasov code GENE

Some background on GENE

Almost linear scaling on Titan (up to ~90% of the machine size)

- First GENE publication: Jenko PoP 2000 (> 550 citations)
- More than 100,000 lines of source code, plus 200,000 lines for pre-/post-processing
- Single repository: version control via Git
- Open source policy
- Significant user base:
 ~300 registered users
- Active user support via support@genecode.org
- Website: genecode.org
 ~50,000 views

New GENE-3D code: Applications to a QA stellarator

(Pre-)Exascale supercomputers provide unprecedented opportunities for designing turbulence-optimized stellarators (via reduced models)

INTEGRATED DATA ANALYSIS

R. Fischer

Fig. 1. Schematic comparison of the conventional data analysis with the IDA approach.

UNCERTAINTY QUANTIFICATION

A truly predictive computational capability must include UQ

REAL-TIME PLASMA PREDICTION

From *nonlinear* gyrokinetics to *quasilinear* gyrokinetics/gyrofluids to NNs: Calls for **deep understanding of turbulence** in plasmas

NL gyrokinetics: ~10⁵ core-h

QL gyrokinetics: ~10⁻³ core-h

NNs: real-time capability

DEEP LEARNING FOR REAL-TIME PLASMA CONTROL

Plasma tomography: Use CNNs to reconstruct cross-section from projections

Deep learning for plasma tomography using the bolometer system at JET PhD student at IPP

Francisco A. Matos, Diogo R. Ferreira 4,*, Pedro J. Carvalho b, JET Contributors 1

REAL-TIME EVENT DETECTION

Time series predictions via Deep Learning

Examples: Financial data, earthquakes, plasma disruptions etc.

Possible approach: Recurrent Neural Networks (RNNs)

Long Short-Term Memory (LSTM) Deep Learning method, developed at the TUM by Hochreiter & Schmidhuber in 1997

HPC MEETS BIG DATA

Two recent waves of innovations affecting science (= main drivers of the expansion of the role of the mathematical sciences¹):

High Performance Computing & Big Data

¹emphasized by the NRC

Currently, these themes are usually addressed rather independently – but they are intrinsically linked:

- HPC needs Big Data for dealing with increasingly large data sets
 - ✓ Communication bottleneck on the path to exascale computing
 - ✓ Develop novel ways of representing, reducing, reconstructing, and transferring huge amounts of data (need new algorithms!)
- Big Data needs HPC for analyzing increasingly large data sets
 - ✓ Data analytics becomes ever more compute-intensive