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FUSION ENERGY IN THE NEWS
(JUST TWO EXAMPLES)
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How the Sun shines

Fusion of 4 protons (in steps)
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ldea: Carbon-free energy source
for the 21st century and well beyond




Fusion Energy in the Laboratory

This process has by far the highest reaction rate
under experimentally accessible conditions:

Deuterium Neutron

Tritium Helium

Still, temperatures of about 100 million degrees are required!
Thus, we are dealing with a fully ionized gas (plasma).




Magnetic Confinement of Plasmas

Charged particles basically Axisymmetric “tokamak’:
follow magnetic field lines Nested magnetic surfaces
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The crucial next step: ITER

Goals:

« 500 MW of fusion
power for 50 MW
of external heating

« ,Burning” plasma

More info:
www.iter.org

LN The 7 ITER parties



ITER CONSTRUCTION SITE
IN SOUTHERN FRANCE
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ACCELERATING FUSION
RESEARCH VIA HPC




3 key challenges for fusion physics

SMALL-SCALE INSTABILITIES: controls
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KEY THEME: INTEGRATION
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Applied mathematics Plasma astrophysics

Computer science Complex systems

incl. High Performance
Computing and Data Analytics




TOWARDS A “VIRTUAL” TOKAMAK

Goals: prepare and interpret ITER discharges, guide the development of power plants

Increasing fidelity & modeling capability with increasing computing power
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MULTI-FIDELITY APPROACH

An example: High fidelity model
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Low fidelity model

» High-fidelity models provide reliable predictive capability
» Lower-fidelity models foster high-throughput computing
* Both are needed — together

faster

Vital role of theory (for deriving fundamental equations, analytical solutions in
limiting cases, reduced models etc.) and modern data analytics




The gyrokinetic Vlasov code GENE

Almost linear scaling on Titan
Some background on GENE (up to ~90% of the machine size) ,
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« First GENE publication: Jenko PoP 2000 (> 550 citations)
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« More than 100,000 lines of source code, plus 200,000 lines for pre-/post-processing

. Single repository:
version control via Git

« Open source policy

« Significant user base: 9. L3 % ¢ TN s e
~300 registered users
. Active user support via s e

support@genecode.org

. Website: genecode.org

~50,000 views
Scientific institutions using GENE




New GENE-3D code: Applications to a QA stellarator

Density

(Pre-)Exascale supercomputers provide unprecedented opportunities
for designing turbulence-optimized stellarators (via reduced models)




DATA ANALYTICS
FOR FUSION




INTEGRATED DATA ANALYSIS

R. Fischer
(a) Conventional data analysis (b) Integrated Data Analysis (IDA)
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Fig. 1. Schematic comparison of the conventional data analysis with the IDA approach.




UNCERTAINTY QUANTIFICATION

A truly predictive computational capability must include UQ
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v. [GyroBohm]

REAL-TIME PLASMA PREDICTION

From nonlinear gyrokinetics to quasilinear gyrokinetics/gyrofluids to NNs:
Calls for deep understanding of turbulence in plasmas

FT Meneghini NF 2017
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DEEP LEARNING FOR REAL-TIME
PLASMA CONTROL

Plasma tomography: Use CNNSs to reconstruct cross-section from projections
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Men 100001 original tomogram network output
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Deep learning for plasma tomography using the bolometer system at

JET PhD student at IPP
<fo_éilcisco A. Mga:tbr;{?b. Diogo R. Ferreira®-*, Pedro J. Carvalho®, JET Contributors'




REAL-TIME EVENT DETECTION

Plasma Disruptions

| Time series predictions via Deep Learning

Sudden loss of plasma control,
can cause serious damage

Examples: Financial data, earthquakes, plasma disruptions etc.

Possible approach: Recurrent Neural Networks (RNNs)
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Long Short-Term Memory (LSTM) Deep Learning method,
developed at the TUM by Hochreiter & Schmidhuber in 1997




HPC MEETS BIG DATA

Two recent waves of innovations affecting science (= main drivers
of the expansion of the role of the mathematical sciences’):
High Performance Computing & Big Data
temphasized by the NRC
Currently, these themes are usually addressed rather independently —
but they are intrinsically linked:
« HPC needs Big Data for dealing with increasingly large data sets
v' Communication bottleneck on the path to exascale computing
v Develop novel ways of representing, reducing, reconstructing,
and transferring huge amounts of data (need new algorithms!)
« Big Data needs HPC for analyzing increasingly large data sets

v' Data analytics becomes ever more compute-intensive




