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1. Motivation
Why use multifidelity modeling?
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)
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Why use a multifidelity formulation?

Computationally 

expensive

Computationally 

cheap(er)

Full model

(“truth”)

Reduced model

(approximate)
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Propagate error estimates 
on forward predictions to 
determine error in
{opt, UQ, inverse} solutions
(may be non-trivial)

Full model

(“truth”)

Reduced model

(approximate)

Certified?

yes
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Hope for the best

Full model

(“truth”)

Reduced model

(approximate)

Certified?

no
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)

Certified?

• Use a multifidelity formulation that invokes both 
the reduced model and the full model

• Trade computational cost for the ability to place 
guarantees on the solution of {opt, UQ, inverse}

no
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Why use a multifidelity formulation?

Full model

(“truth”)

Reduced model

(approximate)

Certified?

• Use a multifidelity formulation that invokes both 
the reduced model and the full model

• Trade computational cost for the ability to place 
guarantees on the solution of {opt, UQ, inverse}

• Certify the solution of {opt, UQ, inverse} even in 
the absence of guarantees on the reduced 
model itself

no



2. Multifidelity models and 
multifidelity methods
“All models are wrong, but some are useful.” 

George Box, 1979



Decisions are 
informed by 
multiple sources 
of information

Analysis and design 

typically begin with 

low-fidelity models 

and progressively 

incorporate higher 

fidelity tools

Many information sources available: multifidelity models, 
historical data, operational data, experimental data, expert opinions

Experimental data

Physics-based 
models

Source: wikipedia.org

ExpertsTelling us different 
things about the 
system:

Critical to get the right 
information early in the 

decision process

the collective 
information is 
greater than the 
individual parts

Surrogate & 
reduced models

Historical data

Source: Choi et al. Source: UM MDOLab
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Multifidelity models can come in different forms

• Covering a range of different resolutions, scales, modeling assumptions, etc.

• Simplified physics, loosened tolerance, coarse grid, data-fit,

projection-based reduced models, etc. 



Multifidelity 
models can 
come in different 
forms

Covering a range of 
different resolutions, 
scales, modeling 
assumptions, etc.

Simplified physics, 
loosened tolerance, 
coarse grid, data-fit, 
projection-based ROM, 
etc. 

• high-fidelity model (“truth”)

mapping input 𝑧 to output 𝑦

𝑓(1): 𝒵 → 𝒴

• k – 1 lower-fidelity models

mapping input 𝑧 to output 𝑦

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴

• model 𝑓 𝑖 has cost 𝑤𝑖

• model 𝑓 𝑖 has fidelity 𝑓𝑖

• models do not necessarily form a hierarchy

𝑓(1)
𝑦𝑧

𝑓(2)
𝑦𝑧

𝑓(𝑘)
𝑦𝑧

⋮

𝑓(3)
𝑦𝑧



14

Multifidelity methods for outer-loop problems

• Outer-loop: computational applications 

that form outer loops around a model

– overall outer-loop result is obtained at 

the termination of the outer loop

– examples: optimization, uncertainty 

propagation, inverse problems, data 

assimilation, control, sensitivity analysis

• Multifidelity methods: goal is to solve 

the outer-loop problem at high fidelity

– invoke multiple models to reduce 

computational cost

– maintains guarantees on outer-loop 

result
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Multifidelity methods for outer-loop problems

• Multifidelity methods: goal is to solve 

the outer-loop problem at high fidelity

– invoke multiple models to reduce 

computational cost

– maintains guarantees on outer-loop 

result

• Key questions

– how to combine model estimates?

– how to balance evaluations among models?

– how to guarantee outer-loop result?
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Multifidelity strategies for the outer loop



Multifidelity 
strategies

Examples of 
multifidelity 
strategies for the 
outer loop

• optimization – trust regions
Alexandrov & Lewis, 1999; Eldred et al., 2004

• forward propagation of uncertainty – control variates
Giles, 2008, Ng & Eldred, 2012, Ng & W., 2012, 2014; Peherstorfer et al., 2016

• failure probability estimation – adaptive sampling 
Bichon et al, 2008; Li & Xiu, 2010; Peherstorfer et al., 2016; Peherstorfer et al., 

2017

• optimization under uncertainty – control variates
Ng, Huynh, W., 2012; Ng & W., 2014, 2016

• statistical inverse problems – adaptive delayed acceptance
Fox & Christensen, 2008; Efendiev & Hou, 2009; Cui et al., 2014



3. Multifidelity Optimization

m𝑖𝑛
𝑥

𝑓(𝑥)

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0
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Design optimization formulation

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

• Interested in optimization of systems governed by PDEs
(constraints and objective evaluation is expensive)

optimizer

x
fhi

ghi

hhi

hi-fi model
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Multifidelity optimization formulation

optimizer

x

fhi ghi hhi

hi-fi model

xj

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

optimizer

x
fhi

ghi

hhi

hi-fi model
lo-fi

model correction

flo + a
glo + b
hlo+ g



Multifidelity 
optimization

Defining the 
surrogate model

• Denote a surrogate model of fhigh(𝐱) as 𝑚(𝐱)

• The surrogate model could be:

1. The low-fidelity function (reduced model)

2. The sum of the low-fidelity function and an additive correction

where 𝑒(𝐱) is calibrated to the difference fhigh(𝐱)- flow(𝐱) 

3. The product of a low-fidelity function and a
multiplicative correction

where 𝛽𝑐 𝐱 is calibrated to the quotient fhigh(𝐱) / flow(𝐱)

• Update the correction terms as the optimization algorithm proceeds 
and additional evaluations of fhigh(𝐱) become available
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Multifidelity optimization: Trust-region model management

• At iteration 𝑘, define a trust region centered on iterate 𝐱𝑘 with 
size Δ𝑘

• 𝑚𝑘 is the surrogate model on the 𝑘th iteration

• Determine a trial step 𝒔𝑘 at iteration 𝑘, by solving a subproblem
of the form:

(unconstrained case)
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Multifidelity optimization: Trust-region model management

• Evaluate the function at the trial point:  fhigh(𝐱𝑘+𝐬𝑘) 

• Compute the ratio of the actual improvement in the function 
value to the improvement predicted by the surrogate model:

• Accept or reject the trial point and update trust region size 
according to (typical parameters):

Reject step

Accept step

Accept step

Accept step

0k

1.00  k

kk   5.01

75.01.0  k

k75.0

kk   5.01

kk  1

kk   21
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Trust-Region Demonstration
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• Provably convergent to local minimum of high-fidelity function if 
surrogate is first-order accurate at center of trust region
[Alexandrov et al., 2001]

• Additive correction:

with surrogate constructed as

• Multiplicative correction: 

with surrogate constructed as

• Only first-order corrections required to guarantee convergence; quasi-
second-order corrections accelerate convergence [Eldred et al., 2004]

• Trust-region POD [Arian, Fahl, Sachs, 2000]

Trust-region model management: Corrections and convergence
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• Derivative-free trust region approaches
[Conn, Scheinberg, and Vicente, 2009]

• Provably convergent under appropriate conditions if the 
surrogate model is “fully linear”

• Achieved through adaptive corrections or adaptive calibration
e.g., radial basis function calibration with sample points chosen 
to make surrogate model fully linear by construction
[Wild, Regis and Shoemaker, 2011; Wild and Shoemaker, 2013]

• Key: never need gradients wrt the
high-fidelity model

Trust-region model management: Derivative-free framework

kgkhigh mf  )()( xx

2)()( kfkhigh mf  xx

Trust Regions and Calibration Points

x1 x1

x2x2



4. Multifidelity Monte Carlo
(MFMC)

Efficient uncertainty propagation leveraging multiple models

Ng & W., Multifidelity approaches for optimization under uncertainty, IJNME, 2014

Peherstorfer, W. & Gunzburger, Optimal model management for multifidelity Monte 
Carlo estimation, SISC, 2016



Estimating 
QoI statistics

via Monte Carlo 
sampling

• uncertain input 𝑧 ∈ 𝒵

• output quantity of interest 𝑦 ∈ 𝒴

• high-fidelity model

𝑓(1): 𝒵 → 𝒴
with cost 𝑤1 > 0 (“truth”)

• Goal: given random input variable Z,

estimate statistics s of 𝑓 1 𝑍

• Example: expected value

𝑠 = 𝐸 𝑓 1 𝑍

• Monte Carlo estimator for 𝑠 using
𝑛 realizations 𝑧1, … , 𝑧𝑛 of Z has costs 𝑛𝑤1:

Ƹ𝑠 = ത𝑦𝑛
(1)

=
1

𝑛


𝑖=1

𝑛

𝑓 1 (𝑧𝑖)

𝑓(1)
𝑦𝑧

𝑓(1)



Multifidelity 
Monte Carlo

leveraging multiple 
approximate models to 
estimate statistics of 
the high-fidelity model

• high-fidelity model

𝑓(1): 𝒵 → 𝒴(“truth”)

• k – 1 surrogate models

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴

• model 𝑓 𝑖 has cost 𝑤𝑖

• 𝑚𝑖 evaluations for model 𝑖, with

𝑚1 ≤ 𝑚2 ≤ … ≤ 𝑚𝑘

• Models do not necessarily form a hierarchy

(cf. multi-level Monte Carlo)

– How to combine models?

– How to balance evaluations among them?

𝑓(1)
𝑦𝑧

𝑓(2)
𝑦𝑧

𝑓(𝑘)
𝑦𝑧

⋮



Multifidelity 
Monte Carlo

leveraging multiple 
approximate models to 
estimate statistics of 
the high-fidelity model

• Draw 𝑚𝑘 realizations 𝑧1, … , 𝑧𝑚𝑘
of Z and evaluate 𝑓(𝑖):

𝑓 𝑖 𝑧1 , … , 𝑓 𝑖 (𝑧𝑚𝑖
)

• Compute mean estimators

ത𝑦𝑚1

(1)
, … , ത𝑦𝑚𝑘

(𝑘)
and   ത𝑦𝑚1

(2)
, … , ത𝑦𝑚𝑘 −1

(𝑘)

• MFMC estimator: 

𝑓(1)

𝑓(2)

𝑓(𝑘)

⋮

Ƹ𝑠 = ത𝑦𝑚1

(1)
+ 

𝑖=2

𝑘

𝛼𝑖 ത𝑦𝑚𝑖

(𝑖)
− ത𝑦𝑚𝑖 −1

(𝑖)

MFMC 
estimate for 

the mean

mean estimate using 
𝑚1 evaluations of 

truth model

mean estimate 
using 𝑚𝑖

evaluations of 
model 𝑖

mean estimate 
using 𝑚𝑖−1

evaluations of 
model 𝑖



Multifidelity 
Monte Carlo

Example for intuition:
two models (𝒌 = 𝟐)

Ng & W., AIAA 2012, IJNME 2014, 
J. Aircraft 2015

random
uncertain
parameters

random output of 
high-fidelity model

random output of 
low-fidelity model

𝑧𝑖 = samples of 𝑍

𝑎𝑖 = 𝑓(1) 𝑧𝑖 = samples of 𝐴
𝑏𝑖 = 𝑓(2) 𝑧𝑖 = samples of 𝐵 = 𝑎𝑖 + error

𝑠𝐴 = statistics of 𝐴 (e.g., mean, variance)
ොs𝐴 = estimator of 𝑠𝐴

𝑓(1)
𝐴𝑧

𝑓(2)
𝐵𝑧



Monte Carlo 
variance 
reduction

Classical control variate 
approach

• Regular MC estimator for 𝑠𝐴 = 𝔼 𝐴 using 𝑛 samples of 𝐴:

• Control variate estimator of 𝑠𝐴:

– Additional random variable 𝐵 with known 𝑠𝐵 = 𝔼 𝐵

• Minimize Var Ƹ𝑠𝐴 with respect to 𝛼

ത𝑎𝑛 =
1

𝑛


𝑖=1

𝑛

𝑎𝑖 Var ത𝑎𝑛 =
𝜎𝐴
2

𝑛

Definitions:

𝜎𝐴
2 = Var 𝐴

𝜎𝐵
2 = Var 𝐵

𝜌𝐴𝐵 = Corr 𝐴,𝐵

Ƹ𝑠𝐴 = ത𝑎𝑛 + 𝛼 𝑠𝐵 − ത𝑏𝑛

Var Ƹ𝑠𝐴 =
𝜎𝐴
2 + 𝛼2𝜎𝐵

2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵
𝑛

Var Ƹ𝑠𝐴
∗ = 1 − 𝜌𝐴𝐵

2
𝜎𝐴
2

𝑛

≤ 1
n Samples of B

n
 S

a
m

p
le

s
 o

f 
A

𝛼

ത𝑏𝑛 𝑠𝐵

ത𝑎𝑛

Ƹ𝑠𝐴



Multifidelity 
Monte Carlo

Low-fidelity model 
as a control variate

Ng PhD 2013

Ng, W., 2012, 2014

• Multifidelity estimator of 𝑠𝐴 based on
control variate method:

– 𝐴 = random output of high-fidelity model

– 𝐵 = random output of low-fidelity model
(𝑠𝐵 unknown)

• Using difference ത𝑏𝑚 − ത𝑏𝑛 as correction to ത𝑎𝑛

• Leveraging correlation between 𝐴 and 𝐵

– Correlation captured in 𝛼

Ƹ𝑠𝐴,𝑝 = ത𝑎𝑛 + 𝛼 ത𝑏𝑚 − ത𝑏𝑛 with 𝑚 ≫ 𝑛

Var Ƹ𝑠𝐴,𝑝 =
𝜎𝐴
2 + 𝛼2𝜎𝐵

2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵
𝑛

−
𝛼2𝜎𝐵

2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵
𝑚

n Samples of B

n
 S

a
m

p
le

s
 o

f 
A

𝛼

ത𝑏𝑛 ത𝑏𝑚

ത𝑎𝑛

Ƹ𝑠𝐴,𝑝

Definitions:

𝜎𝐴
2 = Var 𝐴

𝜎𝐵
2 = Var 𝐵

𝜌𝐴𝐵 = Corr 𝐴,𝐵



Multifidelity 
Monte Carlo

optimally allocate 
computational 
budget across
k models

Peherstorfer, W., Gunzburger, 
SISC, 2015

• MFMC estimator

• MFMC estimator is unbiased, even with no

error bounds for surrogates: 𝐸 Ƹ𝑠 = 𝑠

• The costs of the MFMC estimator are

𝑐 Ƹ𝑠 = 

𝑖=1

𝑘

𝑤𝑖𝑚𝑖

• Distinguishing features of MFMC method:

– optimal selection of the number of model evaluations 
𝑚1 ≤ 𝑚2 ≤ … ≤ 𝑚𝑘 and of coefficients 𝛼2, … , 𝛼𝑘

– applicable to general information sources
(e.g., any type of surrogate model, database curve fits, etc.)

Ƹ𝑠 = ത𝑦𝑚1

(1)
+ 

𝑖=2

𝑘

𝛼𝑖 ത𝑦𝑚𝑖

(𝑖)
− ത𝑦𝑚𝑖 −1

(𝑖)

MFMC 
estimate for 

the mean

mean estimate using 
𝑚1 evaluations of 

truth model

mean estimate 
using 𝑚𝑖

evaluations of 
model 𝑖

mean estimate 
using 𝑚𝑖−1

evaluations of 
model 𝑖



Multifidelity 
Monte Carlo

We optimally balance 
the number of model 
evaluations to obtain 
the best multifidelity 
estimator given the 
computational budget

• Minimize the MSE of the MFMC estimator for a given 
computational budget 𝑝

• MFMC estimate Ƹ𝑠 is unbiased; MSE is given by Var[ Ƹ𝑠]

Var Ƹ𝑠 =
𝜎1
2

𝑚1
+ 

𝑖=2

𝑘
1

𝑚𝑖 −1
−

1

𝑚𝑖
𝛼𝑖
2𝜎𝑖

2 − 2𝛼𝑖𝜌𝑖𝜎𝑖𝜎1

 𝜎𝑖
2 is variance of 𝑓 𝑖 (𝑍)

 𝜌𝑖 is correlation coefficient between 𝑓 1 𝑍 and 𝑓 𝑖 𝑍

• Leads to optimization problem

min
𝑚 ∈ ℝ𝑘,𝛼2,…,𝛼𝑘∈ ℝ

such that

𝑐 Ƹ𝑠 = 𝑝

Var[ Ƹ𝑠]

𝑚𝑖−1 ≤ 𝑚𝑖 , 𝑖 = 2,… , 𝑘
0 ≤ 𝑚1

𝑐 Ƹ𝑠 = 𝑤𝑇𝑚 = 𝑝



Balancing the number of information source (IS) evaluations

• Optimization problem has unique (analytic) solution if

𝜌1
2 > 𝜌2

2 > … > 𝜌𝑘
2

and
𝑤𝑖 −1

𝑤𝑖
>

𝜌𝑖 −1
2 − 𝜌𝑖

2

𝜌𝑖
2 − 𝜌𝑖+1

2 , 𝑖 = 2, … , 𝑘

• The costs/correlation ratio establishes a relationship between 
 preceding IS 𝑓(𝑖 −1),

 current IS 𝑓(𝑖), and 

 succeeding IS 𝑓(𝑖+1)

• If 𝑓(1), … , 𝑓 𝑘 violate conditions, can construct a subset of IS’s that satisfy 
conditions

IS 𝑓(𝑖 −1) IS 𝑓(𝑖) IS 𝑓(𝑖+1)

The interactions between the 

IS’s impact the behavior of the 

MFMC estimator; not the 

properties of the IS’s alone



MFMC variance reduction

• Let ത𝑦𝑛
(1)

be the (benchmark) Monte Carlo estimator with computational budget 𝑝

• Ratio of MSE of MFMC estimator Ƹ𝑠 and MSE of ത𝑦𝑛
(1)

is

𝑒( Ƹ𝑠)

𝑒( ത𝑦𝑛
(1)
)
= 

𝑖=1

𝑘
𝑤𝑖

𝑤1
𝜌𝑖
2 − 𝜌𝑖+1

2

2

• The MFMC estimator has lower MSE than the Monte Carlo estimator if



𝑖=1

𝑘
𝑤𝑖

𝑤1
𝜌𝑖
2 − 𝜌𝑖+1

2 < 1

• Condition on the collective whole of the models (sum), 
not on properties of each model separately

• The interaction between the models is what drives the 
MFMC estimator, not model properties alone



Example: three information sources (𝒌 = 𝟑)

• truth model 𝑓(1), cost 𝑤1

• surrogate model 𝑓(2), cost 𝑤2, correlation with truth 𝜌2

• surrogate model 𝑓(3), cost 𝑤3, correlation with truth 𝜌3

• feasibility conditions

1 > 𝜌2
2 > 𝜌3

2 ,
𝑤1

𝑤2
>

𝜌1
2 − 𝜌2

2

𝜌2
2 − 𝜌3

2 ,
𝑤2

𝑤3
>

𝜌2
2 − 𝜌3

2

𝜌3
2

• variance reduction (low S → low variance)

S 𝑤1, 𝑤2, 𝑤3, 𝜌2, 𝜌3 = 

𝑖=1

𝑘
𝑤𝑖

𝑤1
𝜌𝑖
2 − 𝜌𝑖+1

2

= 1 − 𝜌2
2 +

𝑤2

𝑤1
𝜌2
2 − 𝜌3

2 +
𝑤3

𝑤1
𝜌3
2

< 1 for the MFMC estimator to be efficient



• Set 𝑤2/𝑤1 = 0.1, 𝜌2 = 0.9

• Using 𝑓(1), 𝑓(2) only → larger variance than MC estimator (S > 1)

• Vary 𝑤3/𝑤1 and 𝜌3;
plot contours of S

• If costs 𝑤3 high (> 0.01𝑤1):
third term in S can 
dominate, increasing 
correlation 𝜌3 can lead
to larger S

• If 𝑤3 low, then increase of 𝜌3
always reduces S

Example: three information sources (𝒌 = 𝟑)

S 𝑤1, 𝑤2, 𝑤3, 𝜌2, 𝜌3 = 1 − 𝜌2
2 +

𝑤2

𝑤1
𝜌2
2 − 𝜌3

2 +
𝑤3

𝑤1
𝜌3
2

infeasible



Example: three information sources (𝒌 = 𝟑)

• Set 𝑤2/𝑤1 = 0.1, 𝜌2 = 0.6

• Increasing the correlation can
violate feasibility condition: 
if 𝜌3 ≈ 𝜌2 then denominator 
𝜌2
2 − 𝜌3

2 in feasibility 
condition becomes small
and condition is violated 

S 𝑤1, 𝑤2, 𝑤3, 𝜌2, 𝜌3 = 1 − 𝜌2
2 +

𝑤2

𝑤1
𝜌2
2 − 𝜌3

2 +
𝑤3

𝑤1
𝜌3
2

infeasible 𝑆 > 1

in
fe

as
ib

le



Example: three information sources (𝒌 = 𝟑)

• Set 𝑤2/𝑤1 = 0.1, 𝜌2 = 0.4

• IS 𝑓(2) has high costs and low correlation

• Variance cannot be improved
by adding a third IS

• Any third IS will lead
either to a violation of the
feasibility condition or
to a higher variance than 
the MC estimator (𝑆 > 1)

• Have to remove/change
IS 𝑓(2) to reduce variance

S 𝑤1, 𝑤2, 𝑤3, 𝜌2, 𝜌3 = 1 − 𝜌2
2 +

𝑤2

𝑤1
𝜌2
2 − 𝜌3

2 +
𝑤3

𝑤1
𝜌3
2

infeasible

𝑆 > 1

in
fe

as
ib

le



Example: three information sources (𝒌 = 𝟑)

• Set 𝑤2/𝑤1 = 10−4, 𝜌2= 0.4

• Decreasing the costs of 𝑓(2)

releases deadlock; 
adding a third model can
improve the variance

S 𝑤1, 𝑤2, 𝑤3, 𝜌2, 𝜌3 = 1 − 𝜌2
2 +

𝑤2

𝑤1
𝜌2
2 − 𝜌3

2 +
𝑤3

𝑤1
𝜌3
2

infeasible
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Example: Locally damaged plate (multiple models)

• Locally damaged plate

• Inputs: nominal thickness, load,

two damage parameters

• Inputs uniformly distributed in

[0.05, 0.1] x [1, 100] x [0, 0.2] x (0, 0.05]

• QoI: maximum deflection of plate

• Six models available

 High-fidelity model: FEM, 300 dof

 Reduced model: POD, 10 dof

 Reduced model: POD, 2 dof

 Reduced model: POD, 5 dof

 Data-fit model: linear 

interpolation, 256 pts

 Support vector machine: 256 pts

• Variance, correlation, 

runtime estimated from

100 samples



Locally 
damaged 
plate: MFMC

MFMC estimation of 
mean deflection 
achieves up to 4 
orders of magnitude 
reduction in 
computational cost

• Combine high-fidelity + reduced (POD, 10) + 

data-fit (linear interp, 256)

• Reduced and data-fit model lead to biased 

estimator, MFMC is unbiased



Locally 
damaged plate: 
MFMC mean 
estimate

Successively add 
reduced (POD, 10), 
data-fit (linear interp, 
256), and then all others

Adding data-fit model 
reduces variance, even 
though data-fit model is 
poor approximation of 
high-fidelity model 

MFMC achieves almost 4 orders of magnitude 
improvement over standard Monte Carlo simulation with 
high-fidelity model only.



A broad view 
of multifidelity 
models

in many outer-loop 
applications, can 
exploit past 
evaluations as a
low-fidelity model

Ng & W., J. Aircraft, 2015

Cook, Jarrett, W., IJNME 2018

• in optimization under uncertainty, can exploit model 
correlation over design space

• at current design point 𝑥𝑘

– Define 𝐴 = 𝑓(1) 𝑥𝑘 , 𝑧

– Want to compute Ƹ𝑠 as estimator of s = 𝔼 𝐴

• previously visited design point 𝑥ℓ where ℓ < 𝑘

– Define surrogate as 𝐶 = 𝑓(1) 𝑥ℓ, 𝑧

– Reuse available data: Ƹ𝑠𝐶 as estimator of
𝑠𝐶 = 𝔼 𝐶 with error Var Ƹ𝑠𝐶

Simulation𝑥𝑘 Ƹ𝑠 𝑥𝑘

Simulation𝑥𝑘−1 Ƹ𝑠 𝑥𝑘−1

Simulation𝑥ℓ Ƹ𝑠 𝑥ℓ

⋮
optimization

progress

design variables estimators
⋮

– use 𝑓(1) 𝑥 + Δ𝑥, 𝑧 as surrogate for 𝑓(1) 𝑥, 𝑧

Information 
Reuse 

Estimator
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MFMC vs. MLMC

Multifidelity Monte Carlo

• control variate formulation

• applies to general models and 

information sources

• need to sample and learn the 

correlation between models

• optimal model allocations

Multilevel Monte Carlo [Heinrich 2001, 

Giles, 2008, Cliffe 2011]

• control variate formulation

• formulated for hierarchies of grids 

in specific problems (elliptic 

PDEs)

• leverage known error rates and 

cost rates

→ Clear connections between the two, especially as MLMC is expanded to 

consider a broader range of problems

→ Comparative analysis in Peherstorfer, Gunzburger, W., Convergence analysis 

of multifidelity Monte Carlo estimation, Numerische Mathematik, 2018.



5. Multifidelity Importance Sampling
(MFIS)

Efficient estimation of low probability events, leveraging 
multiple models

Peherstorfer, Cui, Marzouk, W., Multifidelity importance sampling, CMAME, 2016

Peherstorfer, Kramer, W., Combining multiple surrogate models to accelerate failure probability 
estimation with expensive high-fidelity models, J. Computational Physics, 2017

Peherstorfer, Kramer, W. Multifidelity preconditioning of the cross-entropy method for rare event 
simulation and failure probability estimation. SIAM/ASA J. Uncertainty Quantification, 2018.



Estimating
a failure 
probability

via Monte Carlo 
sampling

• uncertain input 𝑧 ∈ 𝒵

• output quantity of interest 𝑦 ∈ 𝒴

• high-fidelity model   𝑓(1): 𝒵 → 𝒴
with cost 𝑤1 > 0 (“truth”)

• define indicator function 𝐼(1): 𝒵 → 𝒴 as

𝐼 1 𝑧 = ቊ
1, if 𝑓 1 𝑧 < 0
0, else

• random variable 𝑍 with probability density 𝑝

• goal: estimate failure probability  𝑃𝑓 = 𝔼𝑝[𝐼
(1)(Z)]

• Monte Carlo estimation of 𝑃𝑓 using N realizations 
𝑧1, … , 𝑧𝑁:

𝑓(1)
𝑦𝑧

𝑓(1)𝑃𝑓
MC =

1

𝑁


𝑖=1

𝑁

𝐼 1 (𝑧𝑖)

← failure event



Estimating
a failure 
probability

via importance 
sampling

• Importance sampling: create biasing density
𝑞 that puts more weight on failure events

• Let መ𝑍 be the corresponding RV

• Introduce the weight function

𝑤 𝑧 =
𝑝(𝑧)

𝑞(𝑧)

• Reformulate failure probability as

• Goal: construct a biasing density 𝑞 such that

• Lower variance means fewer realizations of መ𝑍 than of 𝑍 are 
necessary to achieve the same MSE → fewer model 
evaluations

𝑃𝑓 = 𝔼𝑝 𝐼 1 (Z) = 𝔼𝑞 𝐼 1 ( መ𝑍)𝑤( መ𝑍)

Var𝑞 𝐼 1 ( መ𝑍)𝑤 መ𝑍 < Var𝑝 𝐼 1 (Z)



Multifidelity 
importance 
sampling 
(MFIS)

with two models

Peherstorfer, Cui, Marzouk, 
W., Computer Methods in 
Applied Mechanics and 
Engineering, 2016

• We derive biasing distribution 𝑞 with surrogate 𝑓(2),
and use 𝑓(1) to estimate 𝑃𝑓

• Step 1: Construction of biasing distribution (“speedup”)

• Step 2: Estimation of 𝑃𝑓 using 𝑞 (“establish accuracy 
guarantees”)



Multifidelity 
importance 
sampling

Step 1: construction 
of biasing density

• Draw many realizations 𝑧1, … , 𝑧𝑁 of 𝑍 (nominal)

• Evaluate surrogate model to obtain outputs

𝑓 2 𝑧1 , … , 𝑓 2 𝑧𝑁

• Fit normal dist. 𝑞 to realizations that correspond to 
failure

𝑧𝑖 | 𝐼
2 𝑧𝑖 = 1, 𝑖 = 1,… , 𝑁

• Use Expectation-Maximization (EM) algorithm to fit 
density

• Derive random variable መ𝑍 with distribution given by 𝑞



Multifidelity 
importance 
sampling

Step 2: estimation of 
failure probability

• Draw 𝑀 ∈ ℕ realizations Ƹ𝑧1, … , Ƹ𝑧𝑀 of መ𝑍 (biasing)

• Evaluate high-fidelity model to obtain outputs

𝑓 1 Ƹ𝑧1 , … , 𝑓 1 Ƹ𝑧𝑀

• typically have 𝑀 ≪ 𝑁, and therefore fewer high-fidelity 
model evaluations

• Derive the multifidelity importance sampling 
(MFIS) estimate

𝑃𝑓
MFIS =

1

𝑀


𝑖=1

𝑀

𝐼 1 Ƹ𝑧𝑖 𝑤( Ƹ𝑧𝑖)

• We can show unbiasedness of the MFIS estimator
𝑃𝑓 = 𝔼𝑞[𝑃𝑓

MFIS]



Mixed MFIS

extending MFIS to 
multiple models

• Given are 𝑘 − 1 models

• Approximation qualities of these
sources unknown

• Which of these should we use
for constructing 𝑞?

• Our approach: Mixed MFIS
• Use each surrogate 𝑓(𝑖) to construct a density 𝑞𝑖, for 𝑖 = 2,… , 𝑘

• Sample from all these densities 𝑞2, … , 𝑞𝑘 and combine samples

• Mixed MFIS estimator 𝑃𝑓
Mixed derived as in [Owen et al, 2000]

• Known that
Var 𝑃𝑓

Mixed

𝑘 − 1
≤ min

𝑖=2,…,𝑘
Var 𝐼(1)

𝑝

𝑞𝑖

• Our 𝑃𝑓
Mixed is up to factor 𝑘 − 1 as good as using the 

surrogate that minimizes variance

𝑓(1)
𝑦𝑧

𝑓(2)
𝑦𝑧

𝑓(𝑘)
𝑦𝑧

⋮

𝑓(2), … , 𝑓 𝑘 : 𝒵 → 𝒴



Locally 
damaged 
plate: MFIS

Estimate the 
probability that the 
deflection exceeds a 
critical value 

• Biasing density 

constructed from 

𝑁 = 106

realizations

• Using surrogate 

only leads to

large bias

• MFIS leads to 

unbiased estimate 

of 𝑃𝑓

• If ROM available, 

speedup of up to 

104, cf. high-fidelity 



6. Bayesian Optimization and

Multi-Information Source Optimization

Optimal management of multiple sources of information



Bayesian optimization is a powerful and 

flexible foundation for multifidelity modeling



Components 
of Bayesian 
optimization

1. Statistical model 

uses data and Bayes’ Theorem to compute 

posterior distribution

2. Optimization via a value of information analysis 

uses the posterior distribution and an acquisition 

function to decide what data to obtain next

𝑥 (Design variable)  

𝑦
(P

e
rf

o
rm

a
n

c
e
 m

e
tr

ic
) 

 

sample points

Gaussian process 

model mean

true function

Gaussian process 

model std dev
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Bayesian Model Calibration

• Instead of modeling fhigh(x) directly using a Gaussian 

process, use a Gaussian process to capture the error 

between fhigh(x) and flow(x)  (Kennedy and O’Hagan, 2000)

• Low-fidelity information

can greatly improve

convergence rates

• Model calibration also

useful when high-fidelity

analysis is black box – only

need sample information
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Efficient Global Optimization (Jones, 1998)

• Define fmin as the lowest observed value of the high-fidelity function

• Improvement would be finding a value of fhigh that is lower than fmin

• Using Gaussian process model, improvement at point x is

• Maximum expected improvement is

where 𝑃 ∙ is the standard normal cdf and p ∙ is the standard normal pdf

𝐼 𝑥 = max(𝑓𝑚𝑖𝑛 − 𝐺 𝑥 , 0)
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EGO Algorithm

EGO algorithm from Jones (1998):

• Sample the high-fidelity function at M
design points

• Find the point that globally maximizes the 
expected improvement in fhigh(x)

• do

– Calculate fhigh(x) at the point maximizing the 
expected improvement and construct a new 
Gaussian process model

– (Optional) Validate the new Gaussian process 
model using cross-validation 

– Find the point that globally maximizes the 
expected improvement in fhigh(x)

while the maximum expected improvement 
is larger than a tolerance



Multifidelity 
surrogates can 
also embed 
estimation of 
information 
source fidelity

A particularly important 

source of uncertainty 

in early-stage design

[Lam, Allaire, Willcox, AIAA 2015]

Our fidelity function encodes 

confidence in underlying info 

source (model discrepancy)

A standard Gaussian process 

model encodes uncertainty 

due to training point locations

Our multifidelity surrogate

• combines training uncertainty 

and fidelity

𝜎𝑡 = 𝜎𝐺𝑃
2 + 𝜎𝑓

2

• fuses information from 

multiple sources



Multi-information 
source 
optimization with 
general model 
discrepancies

misoKG samples to 

maximize expected 

information gain

per unit cost

[Poloczek, Wang, Frazier, 

NIPS 2016]

Two kinds of uncertainty

I) Model discrepancy

The internal model of each information source deviates from 

reality. This results in an unknown bias, e.g., due to an 

incomplete implementation of physical laws.

II) Noise and numerical errors

when observing the output of an information source.

→ More general than traditional “multifidelity”; no hierarchy that 

limits correlations. Indeed, misoKG exploits correlations 

among information sources.

Assemble-To-Order (8d)• GP regression: a unified treatment

of the various (latent) quantities

• Value of information analysis to 

decide optimally in a single, 

coordinated step what information 

source to query and for what design. 

Balances expected information gain 

and cost for every sampling decision.



Gaussian 
process 
regression 
naturally 
accommodates 
derivative 
observations

Exploiting availability 

of adjoints gives better 

scalability

[Wu, Poloczek, Wilson, 

Frazier, NIPS 2017]

• Value of information analysis must account for the 

expected information gain and the cost of sampling

both 𝑓(𝑥) and 𝛻𝑓(𝑥)

• Derivative observations can be incomplete and/or noisy



Multifidelity 
stability 
boundary 
characterization

• Combines many cheap ROM 

evaluations and few expensive 

FOM evaluations 

• New Bayesian optimization 

formulation that adaptively 

chooses when and where in 

parameter space to evaluate a 

ROM

[Marques, Lam, W. NIPS 2018]
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“Brute force” grid search Multi-fidelity approach

• Rigorous multi-fidelity framework 

combines accuracy of HFM with 

computational efficiency of ROM

• Use Bayesian optimization 

formulation: Gaussian process 

model + new acquisition function 

to drive adaptive sampling based 

on Knowledge of Boundary (KoB)

Tubular reactor

test problem

(LCO instability): 

algorithm explores

using ROM + 

handful of carefully 

placed HFM 

evaluations

stable

unstable



7. Conclusions



• Multifidelity optimization (MFO) via trust region 
model management

• Multifidelity Monte Carlo (MFMC): a control 
variate formulation for estimating means

• Multifidelity Importance Sampling (MFIS): an 
importance sampling formulation for estimating 
probabilities

• Bayesian optimization and Multi-Information 
Source Management (MISO)

• Many more topics to cover!

• Many methods to construct multifidelity surrogates

• Bayesian optimization in a variety of settings

• MFMC for global sensitivity analysis

• Optimization under uncertainty (control variate, 
importance sampling formulations)

• Adaptive delayed acceptance MCMC

Multifidelity 
strategies for 
the outer loop

Leverage 
approximate models 

but maintain 
guarantees on
outer-loop result
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