
LLNL-PRES-758289
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Build It and They Will Come: How Hardware
Influences Large-Scale Simulation
Science at Extreme Scales: Where Big Data Meets Large-Scale Computing

Tutorials

Jeffrey A. F. Hittinger14 Sep 2018
Director

2
LLNL-PRES-758289

§ David Keyes, KAUST

§ Rob Neely, LLNL

§ And others…

Thanks to

3
LLNL-PRES-758289

Each of these eras defines a new common programming model and
transitions are taking longer; we are entering a fourth era

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

Jan-52

Jun-54

Dec-56

May-59

Nov-61

May-64

Oct-6
6

Apr-6
9

Sep-71

Mar-7
4

Aug-76

Feb-79

Aug-81

Jan-84

Jul-8
6

Dec-88

Jun-91

Nov-93

May-96

Nov-98

Apr-0
1

Oct-0
3

Mar-0
6

Sep-08

Feb-11

Aug-13

Jan-16

Jul-1
8

Jan-21

Jun-23

Dec-25

Me
ga

sc
ale

Gi

ga
sc

ale

Te
ra

sc
ale

Pe

ta
sc

ale

Ki
lo

sc
ale

peak
(flops)

Serial Era Vector Era

Blue Pacific

BlueGene/L

White

Roadrunner

Many Core Era Distributed Memory Era

Cielo

ATS-4 Ex
as

ca
le

ATS-5

Sierra

Trinity

Sequoia
Purple

ASCI Red

Red Storm

Crossroads Transitions are
essential for
progress: between
1952 and 2012
(Sequoia), NNSA saw
a factor of ~1 trillion
improvement in peak
speed

Code
Transition

Period

Serial Era Vector Era Distributed Memory Era

Advancements in HPC have happened over three major epochs, and we’re
settling on a fourth (heterogeneity)

After a decade or
so of uncertainty,
history will most
likely refer to this
next era as the
heterogeneous era

Heterogeneous Era

4
LLNL-PRES-758289

§ 1830’s – The Difference Engine

— Charles Babbage / Ada Lovelace

— Not built during his lifetime

§ 1930’s – The Turing Machine

— Alan Turing (England / Princeton)

— Theory of programmable algorithms

§ 1940’s – ENIAC

— Mauchly/Eckert – Moore School of Eng. (Philadelphia)

— 1st general programmable electronic computer

§ 1940’s – EDVAC design.

— John Von Neumann (Los Alamos)

— Basis for “stored program architecture” still used today

Pre-WWII – the theoretical foundations of modern computing
are built in the U.S. and England

4

Ballistics projectile calculations were the first “killer app” for computers, and were historically done

by a pipeline of human “computers”

5
LLNL-PRES-758289

The “mainframe” era – general purpose computers designed for
scientific computing

5

§ Univac 1
— First machine installed at LLNL in 1953

§ IBM 701
— Installed at Los Alamos also in 1953
— Williams tubes (fast memory, but unreliable)

§ IBM 704
— Core memory, floating point arithmetic, CRT
— Commercially successful

§ IBM 709
— Seamless porting

§ IBM 7090
— Transistor-based
— Large speed increases

§ Univac LARC
— Co-designed with, and for, LLNL
— One of the first transistor-based machines

1960

1954

1953

1956

1958

6
LLNL-PRES-758289

The “mainframe” era – continued

6

1962

§ IBM 7030 (Stretch)

• Competitor to LARC

• Considered a failure at the time (only achieved 50% of performance goals)

• Introduced many concepts that went into the IBM System/360

§ CDC 1604

• First designed by Seymour Cray

§ CDC 3600

• 48-bit words (higher precision)

§ CDC 6600

• Considered the first real “supercomputer” (1st at CERN)

• Full separation of input/output from computing (precursor to RISC designs)

§ CDC 7600

• Hierarchical memory design

• Instruction pipeline (allowed for modest parallelism)

• Fastest computer in world from 1969-1975

1961

1964

1969

7
LLNL-PRES-758289

§ Programming was often an intimate exercise with the particular
computer you were targeting

§ Entirely serial programming

§ Lack of sufficient memory was often the limiting factor in scientific
software design

§ This era saw huge innovations in hardware and software, despite
computer science not yet being an established discipline
— Development of compilers (e.g. Fortran)
— Operating systems (e.g. CTSS)
— Batch environments and time-sharing
— Use of terminals for viewing output
— LLNL’s “Octopus” network

§ U.S. stood largely alone in dominating the HPC market

Programming in the mainframe era

7

8
LLNL-PRES-758289

The vector era

8

§ CDC Star 100
• First CDC design not led by Seymour Cray
• One of the first commercial vector machines
• Hard to achieve anything near peak performance
• Large disparity between serial and vector code

§ Illiac IV (Burroughs & Univ of Illinois)
• First massively parallel machine portends future trends
• Moved to NASA Ames in 1975 (defense at a public university? Bah)

§ Cray 1
• First machine developed at Seymour Cray’s new company
• Applications saw immediate gains in performance (vs CDC 7600), and

could incrementally improve with additional vectorization

§ Cray X-MP
• Designed by Steve Chen at Cray
• First multi-processor supercomputer

1976

1978

1983

1975

9
LLNL-PRES-758289

The vector era – soon dominated by Cray in the U.S.

9

§ Cray 2
• Seymour’s 2nd design
• Flourinert-cooled
• Most performance gains were due to very fast memory

§ Cray Y-MP
• Successor to X-MP
• First delivered with Unix-based UNICOS OS

§ Cray C90

§ Cray J90
• “Mini” supercomputer – helped bridge gap into MPP era

§ Cray T90
• End of an era!

1985

1988

1991

1995

1994

Other players in vector
computer design:
US
• Convex
• Thinking Machines
• ETA (spinoff of CDC)
• IBM
Non-US
• NEC
• Fujitsu
• Hitachi

10
LLNL-PRES-758289

§ Machines were often delivered with no operating system—just hardware
— Labs created their own software environments
— Took years for the Cray compiler to catch up to the NNSA lab compilers

§ Vector computers are designed to work with arrays and loops
— Lots of those in scientific codes!

§ Vectorizing was difficult, and many codes did not lend themselves to this
— Loop dependencies (e.g. fib[i] = fib[i-1] + fib[i-2])
— Conditional statements
— Non-constant stride through memory
— I/O or system calls
— Function calls

Programming vector computers in that era

Machine details matter for effective use…

11
LLNL-PRES-758289

§ Compilers became increasingly sophisticated at being able

to perform some code transformations
— Yet “automatic parallelization” never fully achieved its academic

promises

§ Vectorized portions of code could realize anywhere from

2 – 50x speedups over a serial counterpart

§ Vectorization (via SIMD units) eventually made its way

into commodity CPUs with the Pentium III (SSE)
— Also, AVX, ARM Neon, Power QPX

— (Not quite the same, but close enough…)

§ Stable programming model, but
— Lots of effort for potentially limited payoff

— Vectorized coding could get ugly!

Programming in the vector era – cont’d

11

Vectorization lives on in the form of SIMD units (e.g., Intel AVX)

(Acquired by Intel, 200)

12
LLNL-PRES-758289

§ Late 1980s; heavy influence by the PC/workstation market
— Reduced instruction set computing (RISC) processors dominated price-performance
— Mainframes became “dinosaurs running COBOL”

§ Revolution driven largely by cost and scaling
— Cost: computing went mainstream
— Scaling: commodity processors could be interconnected
— Programming: rewrite from vector code to commodity processors

Soon…mainframes (vector or not) faced the
“attack of the killer micros”

With industry focusing its investment on commodity processors, the writing was on the wall for the labs:
leverage or fall behind the curve…

Penetrate lower end
market through

low-cost commodity
CMOS processors

Penetrate high end
(HPC) market

through parallel
scaling

13
LLNL-PRES-758289

§ Workstations (e.g. Silicon Graphics) were doing the work of mainframes for
50x cheaper!
— SGI acquires Cray Research

§ The relative ease of building distributed memory systems launched a wave of
innovation and new supercomputer companies in the 90’s
— IBM, Cray [Research, Computer, Inc], SGI, Intel, nCube, MasPar, Alliant,

Multiflow, Kendall Square, BBN, DEC, Sequent, Convex, Encore, HP, Meiko,
Supertek, Floating Point Systems, Tera, MIT J-machine, …

§ Fast commodity Ethernet and Linux eventually lead to the “Beowulf” explosion
— Anyone can build a supercomputer now!
— Great boon to universities and small companies
— By the 2000’s, the list of dead or dying U.S. Supercomputing companies

exceeded those still alive

Commodity hardware components thus defines the distributed
memory era

13

14
LLNL-PRES-758289

§ ASCI program launches in ~1995

— Replace underground nuclear testing with science-based stockpile stewardship

(simulation and experimental facilities)

§ Meanwhile, the Japanese “stay the course” with vectors

— Gov’t funding pumped up their market

— Some concern that US had forever lost it’s edge when the Japanese Earth

Simulator was deployed in 2002.

— Many here deemed it a Pyrrhic victory

• It had a HUGE footprint and power use

§ BlueGene/L (@ LLNL) retakes the crown in 2004 for 3.5 straight years, putting a nail

in the coffin of the Japanese dominance

§ DOE Leadership Computing Facilities (ANL/ORNL) launched in ~2004 to help

reestablish US lead in open scientific computing

— Currently housing Summit (#1 @ ORNL), Mira (#17 @ ANL)

— Argonne scheduled to receive first exascale computer in 2021-22 (A21)

The distributed computing or MPP era

14

15
LLNL-PRES-758289

§ Going on 20+ years of stability in programming model
— PVM, and then ultimately MPI, provide performance portability
— Unix becomes the de-facto standard for HPC
— Object-oriented design helps balance complexity and performance
— Programming Languages and compilers continue to improve
— Emergence of grid and distance computing

§ Mission-delivery and scientific advancement has advanced rapidly, partly due to this
stability
— Seldom must one spend majority of time porting or rewriting

§ Some feel disenfranchised with the transition from vector
— Reaching anything near peak performance on RISC architectures is even more difficult than on

vector machines
— This is expected, and in fact defines the boundaries between “eras”

Programming in the Distributed Computing Era

15

16
LLNL-PRES-758289

§ Mainframe->Vector: FLOPs at any cost
— Vector hardware could simultaneously perform the same operation

across all elements of an array
— Radical change in programming model

§ Vector->Distributed: Large scale, low cost
— Calculation partitioned among many independent, relatively simple,

compute nodes
— The development of high performance interconnects became crucial
— Inter-node communication via message passing (MPI)

§ Distributed->Heterogeneous: Power Efficiency
— Still distributed, but much more on-node parallelism
— “MPI+X”, where �X� is threading (and vectorization)

Each era represents a radical shift in hardware technology to
obtain greater performance

17
LLNL-PRES-758289

Data motion and memory capacity are becoming the limiting

factors in high performance computing

100x FLOPS
MORE

5-8x BANDWIDTH
MORE

EXASCALE:

with only

0.1x MEMORY/CORE

and

MEMORY IS

POWER-HUNGRY

NUMBER
BANDWIDTHAND

OF PINS IS LIMITED

18
LLNL-PRES-758289

Power has become the dominant constraint

Based on current technology, scaling today’s systems to an
exaflop level would consume more than a gigawatt of power,
roughly the output of Hoover Dam

– 2012 ASCAC Report “The Opportunities and Challenges of Exascale Computing”

Using commodity hardware:
Exascale Machine: $100B
Annual Power Bill: $1B
Phenomenal science: Priceless

Hoover Dam at Night, Tex Roy Bean, CC BY-SA 3.0

http://commons.wikimedia.org/wiki/File:Hoover_Dam_at_Night.JPG
http://creativecommons.org/licenses/by-sa/3.0/

19
LLNL-PRES-758289

Processor trends tell the parallelism story….

Moore’s Law – Alive and well!

Barely hanging on (dynamic clock
management, IPC tricks)

Flat (or even slightly down)

Mostly flat

Exponential growth?

20
LLNL-PRES-758289

§ Dennard scaling (aka MOSFET scaling)
— As transistors shrink (Moore’s Law) -> Decrease Voltage ->

Constant Energy-Density
— Clock rates increase to boost single-thread performance

§ End of Dennard c. ~2003-2005
— Can’t reduce voltage further w/o excessive leakage (heat)
— Increasing power densities on chips
— Energy per operation no longer dropping
— Clock rates stagnate (or at least peak)

§ How to keep riding the Moore’s Law wave?

Why? It’s Physics

21
LLNL-PRES-758289

Based on slide from J. Shalf

NVRAM: Burst
Buffers / rack-
local storage

Memory Stacks on Package
Low Capacity, High Bandwidth

DRAM
DRAM

DRAM
DRAM

Bu
lk

y
Co

re
s

La
te

nc
y

O
pt

im
ize

d

Lightweight Cores
(tiny, simple, massively parallel)

Throughput-Optimized

Integrated
NIC

Node architectures are gaining many cores and deep memory
hierarchies

22
LLNL-PRES-758289

Power

• Unreasonable
operating costs

• Today's tech =
$100M/year –
exceeds capital
investments

Chip /
processor
efficiency

• GPUs /
accelerators

• Simpler cores
• Unreliability at

near-threshold
voltages –
compounded by
scale of systems

On-node
"inscaling"
challenges

• Complex
hardware

• Massive on-
node
concurrency
requirements

• New
programming
and memory
models

Disruptive
Changes

• Code
evolution

• Algorithm
rewrites

• Platform
uncertainty

The drive for more capable high-end computing is driving disruption in
HPC application development

Meanwhile, Data Analytics are driving industry investments: Social Networking, Machine/Deep Learning, Cloud Computing,…
Software innovation in data-centric HPC is thriving, but traditional HPC is facing strong headwinds if it can’t adapt

External
Constraints

Hardware
Designs

Software
Supports

Applications
React

The trickle down…

Assumption:
Continued increased
computational power is desired

23
LLNL-PRES-758289

Exascale computing introduces several fundamental challenges

Extreme
Concurrency

•Processing units é
•Bulk-synchronous

will not scale
•Concurrency é
•Synchronization ê
•Communication ê
•Dynamic task

parallelism

Limited
Memory

•Memory gains less
than processing

•Memory/core ê
•Minimize memory

usage
•Deeper ,

heterogeneous
memory hierarchies

Data
Locality

•Transfer gains less
than processing

•Bandwidth/core ê
•Energy and time

penalties for data
motion

•Greater need for
data locality

•Reduce data
transfers

Resilience

•Massive number of
components: hard
faults é

•Running closer to
threshold voltage:
soft faults é

•Bulk-synchronous
checkpoint restart is
dead

24
LLNL-PRES-758289

§ PGAS (Partitioned Global Address Space)
— Gives the appearance of a global address space on top of scalable

distributed memory
• Communication done through array reads and writes
• Programmer control over what’s local vs remote

— UPC, Co-array Fortran (CAF), Titanium, Chapel

§ Task-based / Event-driven / Async Task Model (ATM)
— Define your problem as independent tasks
— A run-time system manages scheduling of work
— Good for load imbalanced problems and hiding communication latency
— Legion, Charm++, HPX, OCR, …

Alternative Emerging Programming Models for Exascale

24

Both of these models can demand fine-grained messaging on the interconnect (i.e., lots of small messages)

Tasks are
launched as
input
dependencies
are fulfilled

25
LLNL-PRES-758289

An organizing principle for numerical algorithms is the
Mathematics Stack

Problem Formulation

Mathematical Modeling

Model Discretization

Numerical Solvers

Data Analysis

Robustness and Correctness

•Questions to be answered?
•Relevant processes & scales?
•Single forward simulation?
• Inverse problem?
•Optimization? UQ?

•Expressing the problem
mathematically
•Appropriate multiscale and
multiphysics models?
•Coupling between models?
•UQ formulation?
•Optimization formulation?

•Expressing mathematical model
discretely
•Discretization in space / time
•Splitting between operators and
spatial domains

•Solving the discrete system
•Eigensolvers
•Linear and nonlinear solvers
•ODE integrators

•Understanding the results
•Data and dimension reduction
•Automated analysis
• Integration of models,
experiments, observations &
simulations

•Trusting the results
•Robustness to errors
•Faults
•Round-off error
•Discretization error
• Iteration error

Decisions in any one can
significantly impact the

others

26
LLNL-PRES-758289

Systems of Systems

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Robust Analysis with Parameter Sensitivities

Accurate & Efficient Forward Analysis

Forward Analysis

Problem Formulation: A dramatic potential to change the
questions we ask

Sim
ulatio

n Capabilit
y

Algorith
m/Li

brary Demands

Oberkampf, Pilch, Trucano, SAND2007-5948, SNL, 2007

27
LLNL-PRES-758289

§ Can we model additional physics?

§ How else can we model the problem?

§ Do some models expose more concurrency?

§ Scale-bridging models
— Hierarchical representations
— Coarse-graining

§ Particle vs. continuum

Mathematical Modeling: In forward simulation, we must
consider new models

Boltzmann

Extended
Hydrodynamics

Navier-Stokes

Euler

We must respect the physics!

28
LLNL-PRES-758289

§ Concurrent-point methods
§ Mixed-integer, simulation-based, and global optimization
§ Multi-fidelity hierarchies
§ Robust optimization and optimization under UQ
§ Optimal design and coupling of experiments

Mathematical Modeling: Exascale will enable the solution of
new optimization problems

• MIPDECOs generate huge
search trees

• Each node is PDE-
constrained
optimization

Branch and Bound Tree for MIPDECO

[Leyffer & Mahajan]

29
LLNL-PRES-758289

Mathematical Modeling: Uncertainty quantification plays a
larger role at exascale

§ Adaptive hierarchical methods

§ Advanced multilevel methods
— Model hierarchies
— Stochastic hierarchies

§ Architecture-aware UQ

§ Adaptive and robust methods for
fusing computation and
experimental data

1.0$
1.5$
2.0$
2.5$
3.0$
3.5$
4.0$
4.5$

1$ 2$ 4$ 8$ 16$ 32$ 64$128$

En
se
m
bl
e$
$S
pe

ed
5U
p$

Nodes$

Blue$Gene/Q$
1MPIRank/Node,64Threads/Rank$

(~$64x64x64$Mesh/Node)$

PCG$Solve$
Ensemble$=$16$
PCG$Solve$
Ensemble$=$32$
AMG$Setup$
Ensemble$=$16$
AMG$Setup$
Ensemble$=$32$

Phipps, Edwards, Hu, Webster, Equinox project, ASCR XUQ

Performance Increase 3D FEM
Nonlinear Diffusion

§ We must be clever in combating the curse of dimensionality

30
LLNL-PRES-758289

Discretization: High-order, partitioning, and adaptivity will play
important roles
§ High-order discretizations

— High arithmetic intensity
— Maximize on-node performance
— Robustness? BCs?

§ Partitioned algorithms
— Models, equations, and operators
— Spatial (FSI)
— Temporal (multimethod)

§ Need better coupling strategies
— High-order
— Splittings based on strength of coupling
— Compatible interface treatments
— Nonlinearly converged strategies

§ Adaptivity in mesh, model, discretization and order

§ Scalable computational geometry and mesh generation
Kolev et al.

Ho
rn

un
g

et
 a

l.

102
4

512

256

128

64

32

16

Pe
rfo

rm
an

ce

(G
Fl

op
/s

)

321684211/2

Arithmetic Intensity
(flop/byte)

Machine peak

M
achine balance

No FMA

No AVX

Low-order
Stencils

FFTs Dense Matrix
Multiply

G
reater concurrency

Bandwidth

31
LLNL-PRES-758289

Performance effects of order in CFD: Helmholtz solve in
spectral element code for incompressible Navier-Stokes

fourth order thirty-second
order

c/o Hutchinson et al. (2016) ISC’16

32
LLNL-PRES-758289

§ Parallel-in-time
— More concurrency, not faster clock speeds
— Hierarchy of representations of varying fidelity
— Iterative time advancement
— Useful beyond some scale
— Long-time integrations = more potential for large

speed-ups

§ Research issues:
— Optimal convergence
— Chaotic systems
— Oscillatory systems
— Hyperbolic systems

J. Schroder et al., XBRAID project

Solved in concurrently
t

Tf0

Heat equation, 2572x16,384 space-time grid

Discretization / Solvers: Overcome sequential bottleneck of
time integration

33
LLNL-PRES-758289

PIT has been demonstrated on real problems

Helios
•Ultimate goal = 100x

speed-up
•Long simulation times
•Periodic hovering = days

to a week
•Non-periodic

maneuvering = weeks

Strand2D
•Vortex shedding, Re=100
•7.5x speed-up @ 4k

cores
•Cross-over @ 80 cores
•~600 lines of code to

couple
•~3 weeks of effort

Cart3D
•Taylor-Green problem,

Re=1600
•Promising rapid initial

convergence
•Unexplained stalls in

convergence

DoD Collaborators: Wissink, Sitaraman, Leffel, Atwood

34
LLNL-PRES-758289

§ Communication-avoiding
§ Synchronization reduction
§ Data compression
§ Mixed-precision
§ Randomization and sampling
§ Adaptive load balancing
§ Scheduling and memory management
§ Autotuning algorithms
§ Energy-efficient algorithms

Scalable Solvers: In solving the discrete system, numerous topics
must be addressed

Example: Timings on 100^3 7-point Laplacian stencil [E. Chow and A. Patel]

0.01

0.1

1

10

1 2 4 8 16 32 64 128 180 240

Ex
ec

ut
io

n
Ti

m
e

(s
)

Threads

Fine-Grained Parallel ILU Performance
Relative to Level Scheduled ILU

New ILU
Level Scheduled ILU

uij = aij �
i�1X

k=1

likukj

lij = u�1
jj aij � u�1

jj

j�1X

k=1

likukj i > j

i  j

35
LLNL-PRES-758289

§ Many of the bits are error

§ 11 bit exponent: 616 orders of magnitude

§ This is wasteful!
— Use more work, power, or time than necessary
— Move around lots of meaningless bits

of atoms in universe ~ 1081

Diameter of universe
Planck length ~ 1061

Mass of universe
Electron mass ~ 1083

051526263

exponent

sign

fraction

Only a few of bits are meaningful Truncation and other error

Eliminate the bottlenecks: use only as many bits as needed

Do we need so much
dynamic range?

36
LLNL-PRES-758289

RAM Cache Processor

Storage

NIC

Infrequent slow
data transfer

Frequent fast
data transfer

Uses:
• Data output
• Tabular data reads
• Restart r/w

Uses:
• Solution state storage
• Temporary storage
• In situ analysis

Decompress

Recompress

New data
representations

Mixed precision
algorithms

Data Transfer Operations

37
LLNL-PRES-758289

Can we make use of compression beyond I/O?

§ Address memory bandwidth limit while computing
—Store data in memory in compressed format
—Decompress before computing
—Recompress after computing

§ Ideally, handle compression/decompression in
hardware

§ How does this modify the simulation result?
—Compression errors can accumulate
—Could effect accuracy and stability of algorithms

RAM

Cache

Processor

Decom
press

Re
co

m
pr

es
s

38
LLNL-PRES-758289

: High-order
Eulerian hydrodynamics
• QoI: Rayleigh-Taylor mixing layer thickness
• 10,000 time steps
• At 4x compression, relative error < 0.2%

: Laser-plasma multi-physics
• QoI: backscattered laser energy
• At 4x compression, relative error < 0.1%

: Lagrangian shock hydrodynamics
• QoI: radial shock position
• 25 state variables compressed over 2,100 time steps
• At 4x compression, relative error < 0.06%

20 bits/value uncompressed

: Cubic finite elements
• QoI: function approximation
• 6x compression with ZFP

error < 0.7% relative to FEM error

16 bits/value

39
LLNL-PRES-758289

K� := O(max{21�k, 21��
})

Machine Precision ZFP Fixed Precision (β: bit-plane index)

kD(C(~x))� ~xk1  K�k~xk1

Decompression
Operator

Compression
Operator

Original Data

Error introduced through
lossy compression and
decompression is bounded
in the max norm (pointwise)

Exponent Range:

Sampled maximum
and million from 1

million trials

O(21��)

O(21�k)

40
LLNL-PRES-758289

§ Consider bounded advancement operators (||"#||≤M)

§ Example: 1D Lax-Wendroff scheme with periodic boundary conditions ($ ≤ 2)

Theorem: kA(D(C(~vt)))| {z }
(de)compression

�A~utk1  M
Pt

j=0 K�jk~vjk1,

Truncation Error

Theoretical Bound

Measured error of solution
with inline lossy ZFP

41
LLNL-PRES-758289

ZFP adaptive arrays improve accuracy in PDE solution over IEEE by
6 orders of magnitude using less storage

42
LLNL-PRES-758289

ARC prototype improves accuracy in Euler2D PDE solution over
IEEE by 6 orders of magnitude using less storage

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

RM
S

er
ro

r

time

IEEE (32-bit) posit1 (32-bit) zfp (32-bit) arc (28-bit)

43
LLNL-PRES-758289

§ Reproducibility and
verification techniques rely
on determinism

§ Can we justify cost of
enforcing determinism?

§ Should we interpret
reproducibility and
verification statistically?

§ Analysis to understand the
variability of deterministic
algorithms

Resilience and Correctness: Dynamic adaptation impairs
determinism

Sources of

variability

Task-based

scheduling
Problem

decomp

Adaptive

mesh

Adaptive

models
Adaptive

discretization

Fault

tolerance &

recovery

44
LLNL-PRES-758289

§ Resilient programming models
— Skeptical
— Relaxed bulk synchronous
— Local failure, local recovery
— Selective reliability

§ Algorithm-Based Fault Tolerance
— Protect from silent data corruption
— Use properties of models and algorithms to detect

(good) or be insensitive (better) to faults
— Understanding how random faults alter solutions

and/or convergence

Resilience and Correctness: Trusting the results in the presence
of faults

Data from M. Heroux, M. Hoemmen, K. Teranishi

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6 7 8 9 10 11

Re
la

tiv
e

Re
sid

ua
l 2

-n
or

m

Outer Iteration Number

GMRES Convergence
Deterministic Faulty SpMV’s in Inner Solves

GMRES(500)
GMRES(50), 10 restart cycles
FT-GMRES(50,10)2

What is the right approach for stochastic or chaotic models?

45
LLNL-PRES-758289

It will result in
significant
scientific

breakthroughs

Transition poses
numerous

scientific and
technological

challenges

Success will
require close

interdisciplinary
collaboration

Advances in
applied

mathematics
will be essential

Exascale computing will allow us to compute in ways that are
not feasible today

46
LLNL-PRES-758289

Many additional resources are available

http://science.energy.gov/ascr/news-and-resources/program-documents

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges

DOE Exascale Reports

DOE Grand Challenge Science Reports

Sponsored by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research

Tools for Exascale
Computing: Challenges
and Strategies
Report of the 2011 ASCR Exascale Tools Workshop
held October 13-14, Annapolis, Md.

The Opportunities
and Challenges of

Exascale Computing

Summary Report of the
Advanced Scientific

Computing Advisory
Committee (ASCAC)

Subcommittee

Fall 2010

http://science.energy.gov/ascr/news-and-resources/program-documents
http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

