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§ Rob Neely, LLNL
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O(Np)
Model and algorithm 

improvements can 
improve exponent

Machine improvements tend 
to improve base or 

coefficient

Hardware improvements are not enough

Mathematics by Robert Scarth / CC BY-SA 2.0

https://www.flickr.com/photos/18222776@N00/401067121/
https://www.flickr.com/photos/robert_scarth/
https://creativecommons.org/licenses/by-sa/2.0/
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§ The ability of a system or code’s capabilities to increase commensurate with 
additional resources or cost
— Hardware scalability typically refers to the cost
• e.g., All-to-all interconnects between N processors or nodes are fine for small values of N, but are cost 

prohibitive at large N
— Algorithmic scalability typically refers to performance or memory usage relative to number of nodes 

or processors
• e.g., Code runs twice as fast if you double the number of processors

§ Most algorithms/data sizes have scaling limits and performance will not improve 
indefinitely

Definition: Scalability

4
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§ Strong Scaling 
— Overall problem size is fixed
— Goal is to run same size problem faster as resources are 

increased
— Perfect scaling means problem runs in 1/P time 

(compared to serial)

§ Weak Scaling
— Problem size per processor is fixed
— Goal is to run larger problem in same amount of time
— Perfect scaling means a problem P-times larger runs in 

same time as single processor run

Definitions: Strong vs. Weak Scalability
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Courtesy: Steve Smith, LLNL
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§ The amount of computation performed by a task 
— Often in relation to frequency of communication

§ Coarse-grained
— Lots of work (between communication or sync)
— Smaller number of infrequent communication tasks
— MPI: perform a lot of computation before “hitting the network”
— Communication requirements often reduced by replicating portions of 

memory from neighboring tasks ( “ghost elements”)

§ Medium-grained
— Relatively little work between communication
— Larger number of smaller tasks/threads
— Threads (shared-memory accesses) typically incur less overhead

§ Fine-grained
— Instruction-level parallelism (e.g. vectors or SIMD)
— Hardware (and compiler) support to minimize overhead/contention

Definition: Granularity

6

It’s a balancing act: Finer granularity means more opportunity for parallelism, 
but a corresponding need for more synchronization (communication)

Modern HPC applications must 
account for all levels of granularity, 
and use the corresponding 
hardware features as appropriate
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§ Parallel Speedup is a commonly reported metric
— Primarily for strong scaling studies
— In its simplest form is just ratio of time
— Example: 
• 1 processor run takes 100s
• 16 processors take 10s
• 10x speedup

§ Parallel Efficiency
— Measures closeness to ideal speedup – usually expressed as a percentage
— Above example: 10 / 16 = 62.5% parallel efficient
— Also useful for weak scaling studies
• Replace total time with a time-per-work-unit, e.g., “Grind time” = μs/zone/cycle

Definitions: Parallel Speedup and Efficiency

7

These metrics may or may not be based on a serial (single processor) run; 
Strong scaling studies are often limited in the dynamic range of processor counts.
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Definition: Amdahl’s Law
The Importance of Exposing Parallelism
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§ Potential speedup is limited by the 
sequential fraction of your code

• S = Theoretical maximum speedup
• N = number of processors
• P = fraction of code that can be parallelized

Bottom line: You can spend a lifetime getting 95% of your code to be parallel, 
and never achieve better than 20x speedup no matter how many processors you throw at it! 

(99% è 90x, 99.9% è 500x)
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§ Shared memory
— Common address space across all cores
— Communication done through shared addresses/variables
— Does not scale well beyond O(75) cores
• Assuming cache coherence

§ Distributed memory
— Address space is local to each node
— Explicit communication between tasks via network
— Demonstrated to be highly scalable

§ Current machines are hybrids
— Shared memory within a CPU or node, distributed memory 

between nodes

Definition: Shared memory vs distributed memory
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§ Errors that occur when two or more processes access the same memory location and one 
access is for writing

§ Often seen in concurrent programming
§ Often non-deterministic, i.e., a “Heisenbug”

Task 1 Task 2

read

writemodify

write modify
read

Shared 
Data Task 1 Task 2

read

write

modify

write
modify

read

Shared 
Data

Correct Behavior Incorrect Behavior
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§ Minimize communication
— Communicate less often 
— Consolidate messages to hide latency
— Communication-avoiding algorithms

§ Overlap communication
— Do useful work while waiting for data
— Communication-hiding algorithms

§ Minimize synchronization
— Perform extra flops between global reductions or exchanges to require fewer global operations
— Asynchronous algorithms

§ Bandwidth vs FLOPs
— Do more work for every byte transferred
— High operational intensity algorithms

Well established resource trade-offs



12
LLNL-PRES-758288

§ Iterative methods based on data decomposition and message-passing
— Data structures are distributed
— Each processor works on a subdomain of the original
— Information exchanged with processors with data with which interactions are required to update
— Computation and neighbor communication are parallelized, with their ratio constant in weak scaling

§ The programming model is BSP/SPMD/CSP
— Bulk Synchronous Programming 
— Single Program, Multiple Data
— Communicating Sequential Processes

§ Almost all “good” algorithms in linear algebra, differential equations, integral 
equations, signal analysis, etc., like to globally synchronize – and frequently!
— Inner products, norms, pivots, fresh residuals are “addictive” idioms
— Tends to hurt efficiency beyond 100,000 processors
— Can be fragile for less concurrency: algorithmic load imbalance, hardware performance variation, etc

How are most scientific simulations implemented at the 
petascale today?
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§ Advection and wave 
propagation

§ No dissipation

§ Finite wave speeds

§ Explicit time stepping

§ Local dependence

Different classes of problems have different characteristics that 
inherently make concurrency easier (or not) 

Hyperbolic PDEs Parabolic PDEs Elliptic PDEs

Real problems exhibit combinations of these behaviors

@tu+ a@xu = 0

§ Diffusion evolution: 
“To slump”

§ Infinite wave speeds

§ Implicit time stepping

§ Global dependence

§ Equilibrium problem

§ Steady-state

§ Global dependence
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§ Linear algebra on dense symmetric/Hermitian matrices
— Hamiltonians (Schrödinger) in chemistry/materials

— Hessians in optimization

— Schur complements in linear elasticity, Stokes, and saddle points 

— Covariance matrices in statistics

§ Poisson solves
— Highest order operator in many PDEs in fluid and solid mechanics, 

EM, DFT, MD, etc.

— Diffusion, gravitation, electrostatics, incompressibility, equilibrium, 

Helmholtz, image processing – even analysis of graphs 

What types of problems occupy major supercomputer 
centers?
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§ Iterative methods for solving large-scale linear systems

§ “Matrix free” - Only require action of matrix on a vector

§ Search for an approximate solution to                 in the 
subspace

§ Examples:
— Conjugate Gradient (CG) [Symmetric, positive-definite systems (SPD)]
— Generalized Minimum Residual (GMRES) [Nonsymmetric systems]
— Biconjugate Gradient (BiCGSTAB) [Nonsymmetric systems]

Krylov Subspace Methods

https://en.wikipedia.org/wiki/Conjugate_gradient_method
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§ Partitioning of a domain is often done by using a graph representation
— Element based (FEM)
— Edge-based
— Vertex-based

§ Domain Decomposition methods are characterized 
by four decisions
— Type of partitioning
— Overlap
— Processing of interface values
— Subdomain solution method

Domain decomposition choices

W1

W2

W3
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§ As part of a divide-and-conquer approach, we partition a domain into subdomains

§ The linear system has the general block form

where x are interior unknowns and y are interface unknowns

Domain decomposition and block systems

or

From: Y. Saad, Iterative Methods for Sparse Linear Systems, p. 473
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§ Solving first for x in the system

one can write the reduced system

where    is the Schur Complement

§ If this system can be solved, all of the interface variables will be known
— All of the subdomains then decouple and can be solved in parallel
— Global Schur complement can often be assembled from local Schur complements

Schur Complement
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§ Multiplicative
— Solve on each subdomain independently
— Use lagged interface data from other domain(s)
— Iterate to convergence
— Related to Block Gauss Seidel on the local Schur 

complement system

§ Additive
— Like multiplicative, but components in each 

subdomain are only updated after a complete cycle 
across the whole domain completes 

— Similar to Block Jacobi iteration

Schwarz Alternating Methods
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§ Block-Jacobi
— Use an additive projection onto a specific set of subspaces
— Overlap regions are weighted and added

§ Polynomial Preconditioners
— Preconditioner is defined as low-degree polynomial in A
— Can be constructed using only matvecs
— Chebyshev Acceleration
• Optimal in the sense that preconditioned matrix is close to identity
• No inner products

§ Multicoloring
— Graph coloring techniques
• Adjacent nodes have different colors

— Nodes of same color determined simultaneously in ILU sweeps 
— Red-Black (Re-)Ordering
• Block diagonal matrices are made diagonal
• Highly parallel solution

Parallel Preconditioning Strategies
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Multigrid (MG) uses a hierarchical sequence of coarse grids to 
accelerate the fine grid solution

Error on the fine grid

Error approximated on a 
smaller coarse grid

restriction

prolongation
(interpolation)

Multigrid
V-cycle

smoothing
(relaxation)

Multigrid solvers have 
O(N) complexity and 
hence have good 
scaling potential
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§ Unstructured grids lack simple coarsening rules

§ Automatically coarsens “grids”

§ Error left by pointwise relaxation is 
called algebraically smooth error
— Not always geometrically smooth

§ Weak approximation property: interpolation must interpolate small eigenmodes well

§ Near null-space is important!
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AMG grid hierarchies for several 2D problems

domain1 - 30º domain2 - 30º pile square-hole
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§ ~ 1.5 million idle cores on Sequoia, but still performs optimally

§ Multigrid has a high degree of concurrency
— Size of the sequential component is only O(log N)
— This is often the minimum size achievable

§ Parallel performance model has the expected log term

Straightforward MG parallelization yields optimal-order 
performance for V-cycles

…

Level  1 Level  2 Level  L

!" = $ log( (comm latency) + $ Γ4 (comm rate) + $(Ω4)(7lop rate)
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§ m x n denotes m MPI tasks and n OpenMP threads per node
§ Largest problem above: 72B unknowns on 1.1M cores

Parallel AMG scales to 1.1M cores on Sequoia (IBM BG/Q)
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§ Realistic models of materials and biomolecules require very 
large ab initio simulations

§ Standard algorithms
— Efficient only up to 500 atoms 
— Reaching limits on today’s largest computers 
— Have O(N3) complexity and global communications

§ New O(N) algorithm with short-range communications only
— Represent electronic structure as set of localized functions 

(cf. eigenfunctions)
— Use approximate inverse strategy to calculate coupling between 

these functions (compute selected elements of Gram matrix 
inverse)

§ Controllable accuracy with O(N) approximations

§ Demonstrated excellent weak scaling up to 100,000 atoms

O(N) complexity for First-Principles Molecular Dynamics

New algorithm 
allows fast and 
accurate solutions 
in O(N) operations 
for 100K atoms

Courtesy of Jean-Luc Fattebert, ORNL
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§ Advantages
— Remove artifactual synchronizations in the form of subroutine 

boundaries
— Remove artifactual orderings in the form of pre-scheduled loops
— Expose more concurrency

§ Disadvantages
— Pay overhead of managing task graph
— Potentially lose some memory locality

Taskification based on Directed Acyclic Graphs (DAGs)
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Loop nests and subroutine calls, with their over-
orderings, can be replaced with DAGs
§ Diagram shows a dataflow ordering of 

the steps of a 4×4 symmetric 
generalized eigensolver

§ Nodes are tasks, color-coded by type, 
and edges are data dependencies

§ Time is vertically downward

§ Wide is good; short is good
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Loops can be overlapped in time

Green, blue and magenta 
symbols represent tasks in 
separate loop bodies with 
dependences from an 
adaptive optics computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Tasks from 3 loops of optical 
“reconstructor” pipeline are 
executed together
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§ Advantages
— Shrink memory footprints to live higher on the memory hierarchy

• Higher means quick access
— Reduce operation counts
— Tune work to accuracy requirements

• e.g., preconditioner versus solver

§ Disadvantages
— Cost of compression
— Not all operators compress well

Hierarchically low-rank operators

=
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§ [Hackbusch, 1999] : off-diagonal blocks of typical differential and integral operators 
have low effective rank

§ By exploiting low rank, k , memory requirements and operation counts approach 
optimal in matrix dimension n:
— From O(n2) to O(k n log(n))
— Constants carry the day

§ Such hierarchical representations navigate a compromise
— Fewer blocks of larger rank (“weak admissibility”) 
— More blocks of smaller rank (“strong admissibility”)

Key tool: Hierarchical matrices
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Example: 1D Laplacian
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“Standard (strong)” vs. “weak” admissibility

Weak admissibilityStrong admissibility

After Hackbusch, et al., 2003 
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Block Structured Adaptive Mesh Refinement provides another 
hierarchical approach to focusing effort where it is most needed
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§ Domain is decomposed into disjoint rectangular patches

§ Solution is updated from coarse to fine patches

§ Corrections are propagated from fine to coarse patches

§ Fine patches are subcycled time accurately

§ Global composite solve needed for parabolic/elliptic problems
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§ While hardware improvements have provided gains, algorithmic improvements also 
play a big role in achieving high performance

§ The best algorithms have common features
— Hierarchical structures that minimize communication
— Divide-and-conquer
— Large amounts of local work that minimize impact of communication
— Avoidance of unneccesary global operations (norms, inner products, etc)

Summary
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