
LLNL-PRES-758288
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

High-Performance Numerical Algorithms for
Large-Scale Simulation
Science at Extreme Scales: Where Big Data Meets Large-Scale Computing

Tutorials

Jeffrey A. F. Hittinger14 Sep 2018
Director

2
LLNL-PRES-758288

§ David Keyes, KAUST

§ Rob Neely, LLNL

§ And others…

Thanks to

3
LLNL-PRES-758288

O(Np)
Model and algorithm

improvements can
improve exponent

Machine improvements tend
to improve base or

coefficient

Hardware improvements are not enough

Mathematics by Robert Scarth / CC BY-SA 2.0

https://www.flickr.com/photos/18222776@N00/401067121/
https://www.flickr.com/photos/robert_scarth/
https://creativecommons.org/licenses/by-sa/2.0/

4
LLNL-PRES-758288

§ The ability of a system or code’s capabilities to increase commensurate with
additional resources or cost
— Hardware scalability typically refers to the cost
• e.g., All-to-all interconnects between N processors or nodes are fine for small values of N, but are cost

prohibitive at large N
— Algorithmic scalability typically refers to performance or memory usage relative to number of nodes

or processors
• e.g., Code runs twice as fast if you double the number of processors

§ Most algorithms/data sizes have scaling limits and performance will not improve
indefinitely

Definition: Scalability

4

5
LLNL-PRES-758288

§ Strong Scaling
— Overall problem size is fixed
— Goal is to run same size problem faster as resources are

increased
— Perfect scaling means problem runs in 1/P time

(compared to serial)

§ Weak Scaling
— Problem size per processor is fixed
— Goal is to run larger problem in same amount of time
— Perfect scaling means a problem P-times larger runs in

same time as single processor run

Definitions: Strong vs. Weak Scalability

T

p

good

poor

poor

N µ p

log T

log p
good

N constant

Slope=
-1

Slope=
0

Courtesy: Steve Smith, LLNL

6
LLNL-PRES-758288

§ The amount of computation performed by a task
— Often in relation to frequency of communication

§ Coarse-grained
— Lots of work (between communication or sync)
— Smaller number of infrequent communication tasks
— MPI: perform a lot of computation before “hitting the network”
— Communication requirements often reduced by replicating portions of

memory from neighboring tasks (“ghost elements”)

§ Medium-grained
— Relatively little work between communication
— Larger number of smaller tasks/threads
— Threads (shared-memory accesses) typically incur less overhead

§ Fine-grained
— Instruction-level parallelism (e.g. vectors or SIMD)
— Hardware (and compiler) support to minimize overhead/contention

Definition: Granularity

6

It’s a balancing act: Finer granularity means more opportunity for parallelism,
but a corresponding need for more synchronization (communication)

Modern HPC applications must
account for all levels of granularity,
and use the corresponding
hardware features as appropriate

7
LLNL-PRES-758288

§ Parallel Speedup is a commonly reported metric
— Primarily for strong scaling studies
— In its simplest form is just ratio of time
— Example:
• 1 processor run takes 100s
• 16 processors take 10s
• 10x speedup

§ Parallel Efficiency
— Measures closeness to ideal speedup – usually expressed as a percentage
— Above example: 10 / 16 = 62.5% parallel efficient
— Also useful for weak scaling studies
• Replace total time with a time-per-work-unit, e.g., “Grind time” = μs/zone/cycle

Definitions: Parallel Speedup and Efficiency

7

These metrics may or may not be based on a serial (single processor) run;
Strong scaling studies are often limited in the dynamic range of processor counts.

8
LLNL-PRES-758288

Definition: Amdahl’s Law
The Importance of Exposing Parallelism

0

5

10

15

20

25

1 2 4 8 16 32 64 128

256

512

1024

2048

4096

Sp
ee

du
p

Number of Processors

Amdahl's Law

0.25

0.5

0.9

0.95

Parallel Fraction

§ Potential speedup is limited by the
sequential fraction of your code

• S = Theoretical maximum speedup
• N = number of processors
• P = fraction of code that can be parallelized

Bottom line: You can spend a lifetime getting 95% of your code to be parallel,
and never achieve better than 20x speedup no matter how many processors you throw at it!

(99% è 90x, 99.9% è 500x)

9
LLNL-PRES-758288

§ Shared memory
— Common address space across all cores
— Communication done through shared addresses/variables
— Does not scale well beyond O(75) cores
• Assuming cache coherence

§ Distributed memory
— Address space is local to each node
— Explicit communication between tasks via network
— Demonstrated to be highly scalable

§ Current machines are hybrids
— Shared memory within a CPU or node, distributed memory

between nodes

Definition: Shared memory vs distributed memory

(Common/Shared)
Memory

P P P P PP

Memory
Bus

P

M

P

M

P

M

P

M

P

M

P

M

Inter-
connect

10
LLNL-PRES-758288

§ Errors that occur when two or more processes access the same memory location and one
access is for writing

§ Often seen in concurrent programming
§ Often non-deterministic, i.e., a “Heisenbug”

Task 1 Task 2

read

writemodify

write modify
read

Shared
Data Task 1 Task 2

read

write

modify

write
modify

read

Shared
Data

Correct Behavior Incorrect Behavior

11
LLNL-PRES-758288

§ Minimize communication
— Communicate less often
— Consolidate messages to hide latency
— Communication-avoiding algorithms

§ Overlap communication
— Do useful work while waiting for data
— Communication-hiding algorithms

§ Minimize synchronization
— Perform extra flops between global reductions or exchanges to require fewer global operations
— Asynchronous algorithms

§ Bandwidth vs FLOPs
— Do more work for every byte transferred
— High operational intensity algorithms

Well established resource trade-offs

12
LLNL-PRES-758288

§ Iterative methods based on data decomposition and message-passing
— Data structures are distributed
— Each processor works on a subdomain of the original
— Information exchanged with processors with data with which interactions are required to update
— Computation and neighbor communication are parallelized, with their ratio constant in weak scaling

§ The programming model is BSP/SPMD/CSP
— Bulk Synchronous Programming
— Single Program, Multiple Data
— Communicating Sequential Processes

§ Almost all “good” algorithms in linear algebra, differential equations, integral
equations, signal analysis, etc., like to globally synchronize – and frequently!
— Inner products, norms, pivots, fresh residuals are “addictive” idioms
— Tends to hurt efficiency beyond 100,000 processors
— Can be fragile for less concurrency: algorithmic load imbalance, hardware performance variation, etc

How are most scientific simulations implemented at the
petascale today?

13
LLNL-PRES-758288

§ Advection and wave
propagation

§ No dissipation

§ Finite wave speeds

§ Explicit time stepping

§ Local dependence

Different classes of problems have different characteristics that
inherently make concurrency easier (or not)

Hyperbolic PDEs Parabolic PDEs Elliptic PDEs

Real problems exhibit combinations of these behaviors

@tu+ a@xu = 0

§ Diffusion evolution:
“To slump”

§ Infinite wave speeds

§ Implicit time stepping

§ Global dependence

§ Equilibrium problem

§ Steady-state

§ Global dependence

14
LLNL-PRES-758288

§ Linear algebra on dense symmetric/Hermitian matrices
— Hamiltonians (Schrödinger) in chemistry/materials

— Hessians in optimization

— Schur complements in linear elasticity, Stokes, and saddle points

— Covariance matrices in statistics

§ Poisson solves
— Highest order operator in many PDEs in fluid and solid mechanics,

EM, DFT, MD, etc.

— Diffusion, gravitation, electrostatics, incompressibility, equilibrium,

Helmholtz, image processing – even analysis of graphs

What types of problems occupy major supercomputer
centers?

15
LLNL-PRES-758288

§ Iterative methods for solving large-scale linear systems

§ “Matrix free” - Only require action of matrix on a vector

§ Search for an approximate solution to in the
subspace

§ Examples:
— Conjugate Gradient (CG) [Symmetric, positive-definite systems (SPD)]
— Generalized Minimum Residual (GMRES) [Nonsymmetric systems]
— Biconjugate Gradient (BiCGSTAB) [Nonsymmetric systems]

Krylov Subspace Methods

https://en.wikipedia.org/wiki/Conjugate_gradient_method

16
LLNL-PRES-758288

§ Partitioning of a domain is often done by using a graph representation
— Element based (FEM)
— Edge-based
— Vertex-based

§ Domain Decomposition methods are characterized
by four decisions
— Type of partitioning
— Overlap
— Processing of interface values
— Subdomain solution method

Domain decomposition choices

W1

W2

W3

17
LLNL-PRES-758288

§ As part of a divide-and-conquer approach, we partition a domain into subdomains

§ The linear system has the general block form

where x are interior unknowns and y are interface unknowns

Domain decomposition and block systems

or

From: Y. Saad, Iterative Methods for Sparse Linear Systems, p. 473

18
LLNL-PRES-758288

§ Solving first for x in the system

one can write the reduced system

where is the Schur Complement

§ If this system can be solved, all of the interface variables will be known
— All of the subdomains then decouple and can be solved in parallel
— Global Schur complement can often be assembled from local Schur complements

Schur Complement

45

44

43

42

41

25

29

33

21

37

22

26

30

34

38 39 40

35

31

27 28

23 24

36

32

5

9

13

1

17

2

6

10

14

18 19 20

15

11

7 8

3 4

16

12

19
LLNL-PRES-758288

§ Multiplicative
— Solve on each subdomain independently
— Use lagged interface data from other domain(s)
— Iterate to convergence
— Related to Block Gauss Seidel on the local Schur

complement system

§ Additive
— Like multiplicative, but components in each

subdomain are only updated after a complete cycle
across the whole domain completes

— Similar to Block Jacobi iteration

Schwarz Alternating Methods

45

44

43

42

41

25

29

33

21

37

22

26

30

34

38 39 40

35

31

27 28

23 24

36

32

5

9

13

1

17

2

6

10

14

18 19 20

15

11

7 8

3 4

16

12

20
LLNL-PRES-758288

§ Block-Jacobi
— Use an additive projection onto a specific set of subspaces
— Overlap regions are weighted and added

§ Polynomial Preconditioners
— Preconditioner is defined as low-degree polynomial in A
— Can be constructed using only matvecs
— Chebyshev Acceleration
• Optimal in the sense that preconditioned matrix is close to identity
• No inner products

§ Multicoloring
— Graph coloring techniques
• Adjacent nodes have different colors

— Nodes of same color determined simultaneously in ILU sweeps
— Red-Black (Re-)Ordering
• Block diagonal matrices are made diagonal
• Highly parallel solution

Parallel Preconditioning Strategies

A1

A2

A3

A4

A5

A6

13

23

8

18

3

16

6

21

1

11

14

4

19

9

24 12 25

22

7

17 5

2 15

10

20

21
LLNL-PRES-758288

Multigrid (MG) uses a hierarchical sequence of coarse grids to
accelerate the fine grid solution

Error on the fine grid

Error approximated on a
smaller coarse grid

restriction

prolongation
(interpolation)

Multigrid
V-cycle

smoothing
(relaxation)

Multigrid solvers have
O(N) complexity and
hence have good
scaling potential

22
LLNL-PRES-758288

§ Unstructured grids lack simple coarsening rules

§ Automatically coarsens “grids”

§ Error left by pointwise relaxation is
called algebraically smooth error
— Not always geometrically smooth

§ Weak approximation property: interpolation must interpolate small eigenmodes well

§ Near null-space is important!

23
LLNL-PRES-758288

AMG grid hierarchies for several 2D problems

domain1 - 30º domain2 - 30º pile square-hole

24
LLNL-PRES-758288

§ ~ 1.5 million idle cores on Sequoia, but still performs optimally

§ Multigrid has a high degree of concurrency
— Size of the sequential component is only O(log N)
— This is often the minimum size achievable

§ Parallel performance model has the expected log term

Straightforward MG parallelization yields optimal-order
performance for V-cycles

…

Level 1 Level 2 Level L

!" = $ log((comm latency) + $ Γ4 (comm rate) + $(Ω4)(7lop rate)

25
LLNL-PRES-758288

§ m x n denotes m MPI tasks and n OpenMP threads per node
§ Largest problem above: 72B unknowns on 1.1M cores

Parallel AMG scales to 1.1M cores on Sequoia (IBM BG/Q)

0

5

10

15

20

25

30

35

40

0 200000 400000 600000 800000 1000000

se
co

n
d

s

No of cores

Total times (AMG-PCG)
16x1
16x2
16x3
16x4
8x2
8x4
8x6
8x8
4x4
4x8
4x12
4x16
32x1
32x2
64x1
1x16
1x32
1x48
1x64

26
LLNL-PRES-758288

§ Realistic models of materials and biomolecules require very
large ab initio simulations

§ Standard algorithms
— Efficient only up to 500 atoms
— Reaching limits on today’s largest computers
— Have O(N3) complexity and global communications

§ New O(N) algorithm with short-range communications only
— Represent electronic structure as set of localized functions

(cf. eigenfunctions)
— Use approximate inverse strategy to calculate coupling between

these functions (compute selected elements of Gram matrix
inverse)

§ Controllable accuracy with O(N) approximations

§ Demonstrated excellent weak scaling up to 100,000 atoms

O(N) complexity for First-Principles Molecular Dynamics

New algorithm
allows fast and
accurate solutions
in O(N) operations
for 100K atoms

Courtesy of Jean-Luc Fattebert, ORNL

27
LLNL-PRES-758288

§ Advantages
— Remove artifactual synchronizations in the form of subroutine

boundaries
— Remove artifactual orderings in the form of pre-scheduled loops
— Expose more concurrency

§ Disadvantages
— Pay overhead of managing task graph
— Potentially lose some memory locality

Taskification based on Directed Acyclic Graphs (DAGs)

28
LLNL-PRES-758288

Loop nests and subroutine calls, with their over-
orderings, can be replaced with DAGs
§ Diagram shows a dataflow ordering of

the steps of a 4×4 symmetric
generalized eigensolver

§ Nodes are tasks, color-coded by type,
and edges are data dependencies

§ Time is vertically downward

§ Wide is good; short is good

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

29
LLNL-PRES-758288

Loops can be overlapped in time

Green, blue and magenta
symbols represent tasks in
separate loop bodies with
dependences from an
adaptive optics computation

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)

Tasks from 3 loops of optical
“reconstructor” pipeline are
executed together

30
LLNL-PRES-758288

§ Advantages
— Shrink memory footprints to live higher on the memory hierarchy

• Higher means quick access
— Reduce operation counts
— Tune work to accuracy requirements

• e.g., preconditioner versus solver

§ Disadvantages
— Cost of compression
— Not all operators compress well

Hierarchically low-rank operators

=

31
LLNL-PRES-758288

§ [Hackbusch, 1999] : off-diagonal blocks of typical differential and integral operators
have low effective rank

§ By exploiting low rank, k , memory requirements and operation counts approach
optimal in matrix dimension n:
— From O(n2) to O(k n log(n))
— Constants carry the day

§ Such hierarchical representations navigate a compromise
— Fewer blocks of larger rank (“weak admissibility”)
— More blocks of smaller rank (“strong admissibility”)

Key tool: Hierarchical matrices

32
LLNL-PRES-758288

Example: 1D Laplacian

33
LLNL-PRES-758288

“Standard (strong)” vs. “weak” admissibility

Weak admissibilityStrong admissibility

After Hackbusch, et al., 2003

34
LLNL-PRES-758288

Block Structured Adaptive Mesh Refinement provides another
hierarchical approach to focusing effort where it is most needed

1
n+

2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

§ Domain is decomposed into disjoint rectangular patches

§ Solution is updated from coarse to fine patches

§ Corrections are propagated from fine to coarse patches

§ Fine patches are subcycled time accurately

§ Global composite solve needed for parabolic/elliptic problems

35
LLNL-PRES-758288

§ While hardware improvements have provided gains, algorithmic improvements also
play a big role in achieving high performance

§ The best algorithms have common features
— Hierarchical structures that minimize communication
— Divide-and-conquer
— Large amounts of local work that minimize impact of communication
— Avoidance of unneccesary global operations (norms, inner products, etc)

Summary

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

