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Introduction

The kinetic (Vlasov) equation for the distribution function f(r,p, t) is

∂f

∂t
+ v · ∂f

∂r
+ e[E(r, t) +

1

c
v× B(r, t)] · ∂f

∂p
= 0

f(r,p, t) is the distribution function averaged over small volumes of the
phase space. In principle, the RHS can include effects of particle
collisions, damping, diffusion, etc. The electric and magnetic fields are
calculated self-consistently from Maxwell’s equations with account of
charges and currents generated by the beam

ρ(r, t) = e

∫
d3p f(r,p, t), j(r, t) = e

∫
d3p v f(r,p, t)

The Vlasov equation is widely used in accelerator physics for studies of
collective effects, in theory of FELs, plasma wake field acceleration, etc.
[Variables (r,p, t) are usually replaced by more convenient variables.]
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This distribution function treats the beam as a fluid evolving in 6D phase
space under the influence of the self consistent EM fields.

In the standard interpretation of f(r,p, t), it does not include fluctuations
in the beam. In problems where the shot noise in the beam is important
(start up of a SASE FEL, stochastic and collective cooling) it is usually
introduced switching to the picture of discrete particles (

∑Ne
n=1).
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Summation over discrete particles

FEL textbooks:

Stochasting cooling

Collective cooling

There is nothing wrong with this approach, but...
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Summation over discreet particles

It is inconsistent with the fluid treatment of the beam media

It becomes complicated in difficult problems and is prone to errors

Justification for this treatment comes from the so called Klimontovich
microscopic distribution function

fM(r,p, t) =

Ne∑
n=1

δ(r− rn(t))δ(p− pn(t))

Summation over macroparticles is natural in computer codes. It is less
natural in theoretical work.
One can also treat fluctuations in the beam through the formalism of the
higher-order distribution functions1:

f2(r1,p1, r2,p2, t) = f1(r1,p1, t)f1(r2,p2, t) + g2(r1,p1, r2,p2, t)

1
O. A. Shevchenko and N. A. Vinokurov, NIM, 507A, 84 (2003).
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Fluctuations in the kinetic equation

There are simple and powerful methods of treating fluctuations with
distribution functions: Landau and Lifshitz, Physical Kinetics, vol. 10:

In many problems of the beam physics we need this technique applied to
ideal gas only (an ensemble of non-interacting, non-correlated particles).
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Correlation functions in 1D beam model

Denote by η the relative energy deviation of a particle in the beam, η = ∆E/E0.
Consider a beam with the averaged energy distribution h(η) that does not
depend on z (an infinitely long beam). The fluctuating distribution function is

f(z, η) = n0h(η) + δf(z, η), 〈δf〉 = 0

where
∫
dηh(η) = 1 and n0 is the averaged 1D density of the beam. The

fluctuational part δf(z, η) can be Fourier expanded

δf̂k(η) =

∫
dz e−ikzδf(z, η)

For the shot noise, in the ideal gas approximation, according to Landau and
Lifshitz,

〈δf(z, η)δf(z ′, η ′)〉 = n0h(η)δ(z− z ′)δ(η− η ′)

This includes both the density fluctuations and the energy fluctuations. The
Fourier transform gives

〈δf̂k(η)δf̂k ′(η ′)〉 = 2πn0h(η)δ(k+ k ′)δ(η− η ′)
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Correlation functions in 1D beam model

The density fluctuation δn(z) is

δn(z) =

∫
dη δf(z, η)

Integrating the correlation function over η and η ′ gives

〈δn(z)δn(z ′)〉 = n0δ(z− z ′).

We can formally introduce the Fourier spectrum of δn(z)

δn̂k =

∫∞
−∞ dz e−ikzδn(z) =

∫∞
−∞ dη δf̂k(η)

We have

〈δn̂kδn̂k ′〉 = 2πn0δ(k+ k ′) ≡ |δnk|
2δ(k+ k ′)

Here |δnk|
2 is the spectrum of the density fluctuations.
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Other correlators

We can also consider fluctuations of the integrated energy (at a given
location z)

δη̄(z) =

∫
η δf(z, η)dη

The correlation function

〈δη̄(z)δη̄(z ′)〉 = n0δ(z− z ′)σ2η

where ση is the rms energy spread.

Particle interactions in relativistic beams are weak, and, for a quiet beam,
it is usually assumed that the ideal gas approximation is a good one (at
least in the range of high frequencies).
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Incoherent radiation

Consider electromagnetic radiation of a particle beam. Each particle
radiates its own pulse e(t) of the electric field:

∫∞
−∞ dt e(t) = 0.

What is the energy radiated by the beam?

WEM ∝

[
Ne∑
n=1

e(t− tn)

]2
6=

Ne∑
n=1

e(t− tn)
2

In general, the radiation pulses from different particles overlap, or
interfere, and one cannot neglect terms e(t− ti)e(t− tj).

The standard approach is to use the Fourier decomposition of e(t) and
argue that in the shot noise the phases of each harmonic from different
electrons are random.
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Incoherent radiation

An alternative approach: think about the beam as a charged fluid with
density fluctuations. Particles are moving with velocity v; an electron
located at z radiates at t ′ = −z/v

E(t) =

∫
d(vt ′) [n0 + δn(vt

′)]e(t− t ′) =

∫
d(vt ′) δn(vt ′)e(t− t ′)

The averaged field is zero, 〈E(t)〉 = 0. Calculate the averaged square
〈E2(t)〉 using 〈δn(z)δn(z ′)〉 = n0δ(z− z ′),

〈E2(t)〉 =
∫
d(vt ′)d(vt ′′)e(t− t ′)e(t− t ′′)〈δn(vt ′)δn(vt ′′)〉

= vn0

∫
dt ′e2(t− t ′)

The intensity of radiation is equal to the EM energy in one pulse
multiplied by the number of electrons per unit time.

In FEL the correlation 〈δn(z)δn(z ′)〉 is different and the radiation is
greatly amplified compared with the shot noise.
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Bunching factor in 1D FEL

SASE FEL starts from the shot noise in the electron beam. What is the
density fluctuations at the exit from the undulator of length `?

13



Bunching factor in 1D FEL

In 1D cold-beam, linear FEL theory we calculate the amplification of an initial
density modulation (assuming no initial electric field and no energy modulation)

δn̂k(`) = H(k)δn̂
(0)
k

with

H(k) =
1

3
exp

(
2ρku`

[√
3

2
+
i

2
−
i

3

q

2ρ
−
1

9

(√
3

2
−
i

2

)(
q

2ρ

)2])
where q = (k− k0)/k0, ρ is the Pierce parameter, ck0 is the FEL fundamental
frequency. We then have

〈δn̂k(`)δn̂k ′(`)〉 = H(k)H(k ′)〈δn̂(0)
k δn̂

(0)
k ′ 〉 = 2πn0δ(k+ k ′)|H(k)|2

Hence 〈δn̂k(`)δn̂k ′(`)〉 = |δnk(`)|
2δ(k+ k ′) with

|δnk(`)|
2

2πn0
= 1

9
exp

{
2
√
3ρku`

[
1− 2

9

(
k−k0
2ρk0

)2]}
|δnk(`)|

2 is the spectrum of density fluctuation. Its Fourier transform gives the
correlation function of the fluctuations in the beam at distance `.
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Stochastic cooling

For this work, van der Meer was awarded the Nobel Prize in Physics in
1984.

In this problem we need to consider an ensemble of oscillators.
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Stochastic cooling

The Hamiltonian

H(x, p) =
p2

2
+ω2

x2

2

We assume that all the oscillators have the same frequency ω. It is
convenient to work with the action-angle variables I, φ instead of x, p,

x =

√
2I

ω
cosφ, p = −

√
2Iω sinφ

Oscillator dynamics: I = const and φ = ωt+ φ0.

16



Stochastic cooling

We need to know the dynamics of the distribution function of the beam
entering the pick-up.
The distribution function

f(φ, I, t) = f0(I) + δf(φ, I, t)

where the averaged distribution function f0(I) satisfies

2π

∫∞
0

dI f0(I) = 1

We assume that when the beam enters pick up, it is represented by an
ensemble of non-interacting, uncorrelated particles (ideal gas). For
stochastic cooling one needs the correlator at different times

〈δf(φ, I, t)δf(φ ′, I ′, t ′)〉 = 1
Nδ(I− I

′)δ[φ− φ ′ −ω(t− t ′)]f0(I)

N is the number of particles in the beam
17



Stochastic cooling

First calculate the fluctuating offset of the beam ∆x at time t

∆x =

∫
dI dφx δf(I, φ, t) =

∫
dI dφ

√
2I

ω
cos(φ)δf(I, φ, t)

This offset is measured, amplified and then applied at time t1 > t to the
whole beam as a kick ∆p

∆p = gω∆x

where g is the amplification factor. Without the kick the distribution
function at time t1 would be f0(I) + δf(φ, I, t1); with the kick it is
shifted along p by ∆p:

f0(x, p) + δf(x, p, t1)→ f0(x, p− ∆p) + δf(x, p− ∆p, t1)

Assume that ∆p is small and use the Taylor expansion in ∆p.
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Stochastic cooling

Consider the fluctuating part,

∆f1 = −
∂δf

∂φ

∂φ

∂p
∆p−

∂δf

∂I

∂I

∂p
∆p

Note that 〈∆f1〉 6= 0.
Using the correlation function 〈δf(φ, I, t)δf(φ ′, I ′, t ′)〉 one can find

〈∆f1〉 =
1

N
g
∂

∂I
If0(I)

Assuming that the cooling events are repeated with the period T we can
write the kinetic equation for the evolution of the averaged distribution
function f0(I, t)

∂f0
∂t

=
1

T N
g
∂

∂I
If0

Evolution of the average action (emittance) Ī =
∫
I f0(I, t)dI

dĪ

dt
= −

g

T N
Ī
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Stochastic cooling

There is another contribution to ∆f from the non-fluctuating part of the
distribution function. It comes from the second order term in the
averaged distribution function (the linear term vanishes after the
averaging):

∆f2 =
1

2

[
∂2f0
∂I2

(
∂I

∂p

)2
+
∂f0
∂I

∂2I

∂p2

]
(∆p)2

The result is

〈∆f2〉 =
1

2N
g2Ī

When we combine with 〈∆f1〉 we find the following equation for Ī

dĪ

dt
= −

1

T N

(
g−

g2

2

)
Ī

For cooling, the amplification factor g should be smaller than 2.
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Noise reduction in relativistic beams

For the shot noise we have
|δnk|

2 = 2πn0

Can we make
|δnk|

2 < 2πn0

in some parts of the spectrum?

The general idea is known since 1950s from RF sources—after a quarter of
plasma oscillations in an electron beam the shot noise is reduced. Noise
suppression for relativistic beams was proposed by Gover and Dyunin2 in 2009.

Possible applications include: suppression of the fundamental harmonic in favor
of higher harmonics in FELs; noise suppression for seeding; application in
collective electron cooling3.

2
Gover and Dyunin, PRL, 102, 154801, (2009).

3
Litvinenko, paper TUOB05 FEL 2009.
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Shot noise suppression in electron beams

Beam

Hshot noiseL

Interaction

Dispersion

In the interaction region, the density modulation changes particles’
energy through the longitudinal wake w(z). The energy change ∆E(z) of
particles at point z after passage of the interaction region is

∆E(z) = e2
∫∞
z

w(z ′ − z)δn(z ′)dz ′

The longitudinal impedance is proportional to the Fourier transform of
the wake, Z(k) = ŵk/c. In terms of Z(k)

∆η(z) =
∆E(z)

E0
=
rec

2πγ

∫∞
−∞ dkZ(k)δn̂keikz
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Calculation of noise suppression

���γ

��(��η) ��(��η) ��(��η)

�

���

Let f0(z, η) = h(η) + δf be the distribution function before the
interaction. After the interaction,

f1(z, η) = f0(z, η− ∆η(z))

Sending the beam through the chicane with the dispersive strength R56
shift the particles longitudinally ∆z = R56η. We change the distribution
function again

f2(z, η) = f1(z− R56η, η)

We consider ∆η as a small quantity and use the Taylor expansion

f2(z, η) = n0h(η) − n0∆η(z− R56η)h
′(η) + δf(z− R56η, η)
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Noise suppression

Our goal is to compute the spectum |δnk|
2. If |δnk|

2 becomes smaller than

|δn
(0)
k |2 = 2πn0 then the noise is suppressed.

The result of the calculations is

F ≡ |δnk|
2

2πn0
= 1+ 2T ImQ+ |Q|2T,

where
Q(k) = R56n0

rec

γ
kZ(k).

and, for a Gaussian distribution,

T(k) = e−(kR56ση)
2

For the noise suppression we need ImQ < 0; for R56 > 0 this means
ImZ(k) < 0. Also, T should not be small (need small energy spread, not very
large k).
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Noise suppression

In case of the Coulomb interaction the impedance is

Zsc(k) = −
4πiL

Skc

where S is the beam cross section area. This formula is valid for√
S� γ/k.

For a cold beam (T = 1) the formfactor F is4

F = (1− Υ)2

with

Υ = n0R56
4πreL

Sγ

4
Ratner, Huang and Stupakov, PRSTAB, 14, 060710, 2011.
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Experiment at LCLS

Noise suppression experiment has been carried out at LCLS5.

The OTR signal was observed after the BC1 chicane (no energy chirp
was introduced in the beam). The intensity was measured as a function
of R56 of the chicane. We expect a quadratic dependence of intensity of
OTR versus R56.
It is important to establish uncorrelated noise condition in the beam at
the entrance to the system.

5
Ratner, Stupakov, PRL 109, 034801 (2012).
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Noise suppression and experiment at LCLS

Beam image without noise suppression (left) and with (right).
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Noise suppression and experiment at LCLS

From theory we expect the minimal point to be located at
R56 ∝ 1/Qbeam (Υ = n0R56

4πreL
Sγ ). An incomplete suppression is

explained by relatively large collection angle of the optics of the CCD
camera and finite transverse size of the beam.
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1D undulator interaction

Increasing the interaction length of the drift to make ImZ(k) larger
would eventually violate the requirement of particles being frozen,
L� πc/2ωp. Un undulator can generate a larger ImZ(k) than a drift,
but in a limited range of k. Noise suppression with an undulator was
propose in6

beam

R56

Electrons passing through an undulator interact with each other through
emitted electromagnetic field (similar to CSR wake). 1D model is valid if
S� Lu/k.

6
Stupakov, Sessler, Zolotorev, Proceedings of COOL13 Conference, Mürren, Switzerland, 2013.
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1D undulator interaction

Consider a helical undulator with Nu periods and the undulator
parameter K = eB/mc2ku. 1D wake oscillates with the undulator
radiation wavelength, λ0 = λu(1+ K

2)/2γ2:

wu(z) =

{
−W[1− z/(Nuλ0)] cosk0z, 0 < z < Nuλ0,

0, otherwise,

where λ0 = 2π/k0 is the wavelength of the undulator radiation,

W = 8π
Nuλ0γ

2

S

K2

(1+ K2)2
.
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1D undulator interaction

Plot of the wake and impedance for Nu = 10.
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1D undulator interaction

In the limit K & 1, the undulator impedance is Nu/2 times larger than
Zsc. But the real part of Zu vanishes only at particular values of ω.

Assuming for simplicity K = 1 we obtain for the noise factor

minF =

(
IA
I

2Sση

N2uλ
2
0γ

)2
As a numerical example we consider the case: beam energy 1 GeV, I = 1
kA, S = 100 µm ×100 µm, ση = 10

−4, λ = 10 nm, Nu = 30. These
parameters give minF = 0.04.

Increasing Nu would narrow the suppression band and lead to the FEL
effects in the undulator.
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Simulation

105 particles interact through the 1D undulator wakefield,
∆ηi = (e2/γmc2)

∑
jw(zi − zj), and then shifted ∆zi = R56ηi. The final

bunching factor bf is calculated as a function of frequency ω,
F = |bf(ω)|2/b20.
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Suppressing fluctuations driving FEL for warm beam

For and FEL with a warm beam the FEL starts not only from density, but
also energy. Can we suppress this driver? The question was raised in7.
The driver is

J = |µ0|
2

∫
dηdη ′

〈δf̂k(η)δf̂∗k ′(η ′)〉
(µ0 − η)(µ

∗
0 − η

′)

where µ0 is the complex frequency of the fastest growing FEL mode
normalized by 2kuc. Note that in the limit of a cold beam, ση → 0, the
quantity J reduces to 〈δn̂kδn̂∗k ′〉, as expected.

7
K.-J.Kim, R. Lindberg, FEL 2011, (2011), p. 160.
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Suppressing fluctuations driving FEL for warm beam

It turns out that suppression of the quantity J is not as effective as suppression
of the density fluctuations. Define the suppression factor Fn = J/J0 where J0 is
the value of J before the suppression. We find

minFn ≡
J

J0
≈ k2R256σ2η · S

(
kR56ση,

ση

ρ

)
where the function S is greater than one.
Plot of S as a function of the relative energy spread for kR56ση = 0.1.
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One can interpret this result as an additional (to density fluctuations) energy
fluctuations that are not diminished when the density fluctuations are decreased.
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Other areas where this method works

Noise amplification in FEL seeding8

Optical stochastic cooling9

Coherent cooling10

Other...

8
Stupakov, FEL 2010; Stupakov, Huang, and Ratner, FEL 2010.

9
Mikhailichenko and Zolotorev, PRL, 71, 4146 (1993); Zolotorev and Zholents, Phys. Rev. E, 50 3087 (1994).

10
Litvinenko and Derbenev, PRL, 102, 114801 (2009); Ratner, PRL, 111, 084802 (2013).
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Conclusions

Fluctuations in particle beams can be treated using the formalism of
fluctuating, one-particle distribution functions. It is relatively simple,
universal, and can be applied to variety of problems. It is naturally
connected to the kinetic (Vlasov) equation, and allows one to take
into account the interaction between the particles, collisions,
radiation, etc.

How far can it be extended?

3D problems?
Higher-order (say, fourth order, needed for intensity correlators)
correlations?
Extension beyond the Taylor expansion technique (stochastic cooling,
large amplification g)?
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