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Basic Algorithms and  
Field/Beam Representation 
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Undulator 

Dealing with the FEL Length Scales 
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Bunch Micro-bunching 

~ 100m ~ 10 microns ~ 0.1 nm 

1st Approach 

 
• Put grid over electron bunch in 

co-moving frame 

• Adjust Maxwell equations for 

co-moving frame 

• Treat undulator field as 

external, time-dependent field 

About 100.000 longitudinal grid points 

2nd Approach 

 
• Apply Lorenz transformation 

 Bunch is stretched 

 Undulator becomes EM wave with shorter 

wavelength 

• Choose boost frame to obtain equal length 

for bunch and field 

• Use a PIC solver for Inverse Compton 

Scattering (ICS) 

About 200.000 longitudinal grid points 

3rd Approach of transforming into electron rest frame is only beneficial 

if bunch has only one spike in SASE 



• Assuming resonant interaction (narrow bandwidth signal) and a slowly varying 

envelope (SVE) A0 of the signal, Maxwell equation can be approximated: 

Resonant Interaction 
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• By extracting the carrier frequency w0=ck0, it is sufficient to sample field only 

once every wavelength (or even less) 

w0 2w0 3w0 0 

Fundamental 

• If harmonics are considered: 

 Each harmonic has its own SVEA Maxwell equation 

 Sampling with the fundamental wavelength to avoid overlap in frequency 

band, resulting in same grid sizes 

2nd harmonic 3rd harmonic 



• Make a projection onto a set of orthonormal functions (e.g. Gauss-Hermite  

modes of free space) to calculate evolution of mode amplitude  

 

 

 

 

 

 

 

• Solve each coefficient like an ordinary differential equation 

 

 

 

 

• Common problem is to find the right set of orthonormal function to be efficient 

(fast convergence in total power with number of exited modes). 

Common Numerical Solver I: Finite Mode 
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Precalculated eigenvalue of eigen-function 

Works very efficient for smooth undulators and 

continuous FEL  amplification 



• Common solver for partial differential equations on parallel computers due to 

“local” calculation of the field. 

• Example of 1D free space paraxial equation: 

 

 

• Field is sampled with a grid spacing Dx and an integration step Dz.  

• The field points can be represented as a vector and the differential operation as a 

matrix operation 

• Field solver advances from know solution a(z) to new solution a(z+Dz) 

• But, when is the transverse Laplace operator evaluated? 

 

 

 

 

 

 

 

 

Field Discretization for Finite-Difference 
Methods 
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Fully Explicit Fully Implicit 

Or a linear combination of both equations Laplace Operator L 



• Keep option for explicit/implicit methods open by using linear combination 

 

 

 

 

 

 

 

• Theoretical solution would be to find   but requires square of 

number of grid points to store solution  

 

• Instead the solution is solved directly: 

 Method for tridiagonal matrix for 1D grid and a > 0.5 

 Alternate direct implicit (ADI) method (2D or higher), splitting into sub steps 

with one fully implicit step (a = 1) for each dimension 

 

 

 

 

 

Common Numerical Solver II: Finite Difference 
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• Solving the A(x,y,t,z) on a true 3D grid with a single solver (instead of series of 2D 

grid solver in quasi-time-dependent solver). 

 

• Example: Stanza of finite-difference approach 

 

 

 

 

 

 

 

 

• Solver must also consider topology of the computer cluster to avoid unnecessary 

exchange of information 

• Most likely candidates: 

 Recursive solver, using adaptive multigrid solver 

 Frequency analysis in the “t”-direction 

Advanced Algorithm III – Fully 3D Field solver 
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• In resonance approximation, wavenumber k is well-defined and FEL equations 

can be averaged over one period 

Averaged vs Non-Averaged Code 
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Pros Cons 

• Does not need to resolve 
motion within undulator 
period 

• Faster calculation due to 
larger integration steps 

• Harmonics can be omitted 

• Harmonics are treated as 
independent fields 

• Off-resonance frequencies 
are artificially damped 

• Excludes finite transverse 
oscillation in 3D  



• Assumption: On the scale of the resonant wavelength the electron positions are 

random (white noise) 

 

• Emission is effectively the same for all electrons except for the emission phase. 

The collective phase and amplitude is equivalent to a random walk in complex 

plane. 

 

• Bunching factor: 

 

 

 

 

• Statistic: 

Shot Noise Statistic 
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Problem:  

Number of simulation particles not necessarily same as electrons to be modelled. 

 

Modeling Statistic and Shot Noise 
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f,b 

L 

Solutions: 

1. Assign internal degrees of freedom (phase + 

amplitude) to macro particles, representing a set of 

electrons [Litvinienko] 

4. Resolve each electron. 

3. Place particles in a grid and then add noise to 

position, energy, momenta and charge [McNeil] 

 

2. Place group of particles (beamlets) evenly of L to force 

bunching to zero (quiet start) and then apply noise in 

longitudinal position in a controlled way [Penman, 

Fawley] 

 

Solution 1+2 only works for discrete values of L, while solution 3+4 for continuous values 

Solution 1+2 do not include shot noise in energy (secondary effect), 

Solution 3 does not preserve statistics for long drifts 



Available Computer Resources and 
Complexity in FEL Simulations 
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• Two step algorithm (Leap-frog Algorithm): 

 Advance radiation field (diffraction + emission by electrons) 

 Advance electrons (interaction with field and change in ponderomotive phase) 

 

 

 

 

 

 

• In steady-state simulations: 

 Infinite long bunch with the same properties (no time-dependence) 

 Zero net flow of field and electrons of any slice 

  field and particles are fed back into the same slice  

Core Algorithm – Steady State Simulation 

Field  slips in Field  slips out 

Some fast electrons escape Some slow electrons escape 

Electron Slice (one wavelength) 

Tracking of only on radiation 

field and one electron slice Self-fed Amplifier 



• Steady-State Simulation 

 About 10.000 macro particles in slice (6 dimensions a 8 Byte) 

 Up to 10.000 transverse modes (16 Byte per mode) 

In Memory: about 600 kByte per harmonic 

 

Required Resources 
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• Time-Dependent Simulation (LCLS like) 

 About 100.000 slices 

 Memory Requirement per slice as steady-state simulation 

In Memory: about 60 GByte per harmonic 

 

• Connected Slices due to Slippage(LCLS like) 

 About 2.000 slices 

 Memory Requirement per slice as steady-state simulation 

In Memory: about 1.2 GByte per harmonic 

 



• Requirement: Tracking Ns slices over Nz steps along undulator. 

• Minimum required slices: Nslp= l/luNz (Slippage) 

• Most Simulations: Ns > Nslp 

Quasi-Time-Dependent Simulations 

Along Bunch 
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Propagate Field to Next Slice 

Keep Slice in position 

Feed electrons back into slice 

Model of chained amplifiers 

Simulation can crawl through bunch: 

•Inner loop: undulator 

•Outer loop: bunch 



• Pros: 

 

 Very efficient memory demand (1 Electron Slice and Nslp Radiation Slices) 

 Easy implementation on parallel computers (Ncore Electron Slices, Nslp 

Radiation Slices) 

 Fixed number of macro particles per slice (charge scaling) yields highly 

efficient performance on parallel computer 

 

• Cons: 

 

 No exchange between electron slices (Rigid current profile) 

 Enhanced slippage (e.g. iSASE) blows up memory demand. 

 Pre-calculated collective effects (undulator wakefields) instead of self-

consistent models 

 Crude approximation of longitudinal chirps (no chirp within a slice) 

 Calculation wasted in low current slices 

Pros & Cons of Quasi-Time-dependent 
Simulations 



• Even with mid-size cluster, entire radiation field and beam can kept in memory 

distributed over the nodes. 

 

 

 

 

 

 

 

 

 

• The FEL dynamics with its well defined longitudinal order prefers a 1D topology  

• Minimal exchange of data: 

 Pushing roughly one wavefront slice to preceeding node per step 

 Exchange of particles when sorting is enabled (preferable using fast bubble sort 

algorithm due to limited electron motion) 

• New codes emerging 

Utilizing Clusters 
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Field Grid 

Current Profile 

1          2       3         4               5            6       7       8 Node 



Grand Challenges in FEL 
Simulations 
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• Quasi time-dependent simulations suffer from enhance slippage, exceeding the 

memory on the master node. 

Large Slippages (iSASE, HB-SASE, Mode-
locking) 
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Normalized Power P(s,z)/<P(z)> 

z 
(m

) 

Bunch Length Applied Chicane 

Enhanced Slippage Natural Slippage 

Lots of phase 

dumps 

About 500 Gbyte 

per Run 

Model entire 

beam on 

cluster 

Mode-locked Configuration for SwissFEL-Athos 



Large Harmonic Conversions (EEHG/HGHG) 

Page 20 

Modulator 1 Chicane 1 Modulator 2 Chicane 2 Radiator 

Example: EEHG 

• Carrying high harmonics from the 

beginning is very unpractical 

• Harmonic conversion is done by scaling the 

ponderomotiv phase   n  

 

Problems: 

1. Numeric bandwidth +/-(50/n) % can be 

smaller than FEL bandwidth 

2. Beamlets are strongly distorted but 

cannot be split. 

3. Shotnoise not correct 

Come from 50 wavelengths away  

Resolve each electron, slice and sort 



• Radiation spike above saturation power gets shorter with amplification 

• Spectrum gets broader, violating resonance and slowly-varying amplitude in FEL 

model. 

 

 

Superradiance 

Non-averaged Code SVEA Code 

Use Non-average Code 



• Finding the optimized undulator profile (and phase shifter setting) for best 

performance is prone to have many local maxima 

 

• Problem would be a good candidate for advanced algorithm (e.g. genetic 

algorithm) 

 

• Example: 

 About 20 genes (undulator K-value and phase shifter settings) 

 Population about 100 

 Expected generations: 50 

 Time-dependent run on 128 core custer for one sample: 4h 

 Total time: about 2.3 years 
 

 

Optimization of Time-Dependent Simulations 
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Reduce genes (e.g. predefined taper) 

Optimized for steady-state simulations 

Use actual machine with 50 Hz rep rate  



Problem Solution 

Grid 
Boundaries/ 
Mode Numbers 

Start-up excites many transverse 
modes, while in the high gain regime 
only a few have noticible 
amplitudes., resulting in calculation 
of non-important modes 

Explore absorbing boundaries 
condition or adaptive multigrid 
methods. 

Collective 
effects 

Space charge and wakefields 
must/can be calculated in advance 
because the current profile is kept 
constant 

Having entire beam in memory 
these effects can be modelled 
self-consistently, including 
transient regime and change in 
current profiles 

Broken 
symmetry 

Changing polarizations 8e.g. cross 
undulator) breaks the asumption of 
symmetry to model only one 
polarization plane 

Could be treated as harmonics if 
needed 

Emittance 
coupling to even 
harmonics 

Various mechanism of harmonic 
coupling not included, in particular 
symmetry breaking coupling by 
emittance to even harmonics. 

If «broken symmetry» is 
modelled then this can be 
included as well 

Things, which are still unsatisfying 
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Summary 

 

•  FEL simulations are numerically challenging but solutions (and codes) exist 

 

• Algorithm rather “bread and butter”, not really advanced solver 

 

• Modern cluster able to hold entire information, eliminating some approximation and 

book-keeping. 

 

•  New ideas are still pushing the capability of existing codes 

 

•   


