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 Produced by resonant interaction of a relativistic electron 

beam with EM radiation in an undulator (J. Madey, 1971) 
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 Radiation intensity  N2 

 Tunable, Powerful, Coherent radiation sources 

Free Electron Lasers 
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Three FEL modes 
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Ryan’s talk next 
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 Self Amplified Spontaneous Emission 
  

Saldin et al. (1980) 

Bonifacio, Pellegrini et al. (1984) 
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What a wonderful instability 



Let me be clear Mr. President: it may be ‘noisy’ and its not really ‘free’, but it is a 
high-gain single-pass device for converting electrons into a lot of x rays, and it is 
really quite useful… 

Claudio Pellegrini receives the Fermi Award (2015) 
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• Longitudinal electron motion in combined undulator and 

radiation fields described by pendulum equations 

l1 

 

 

 

for planar undulator 

=1 for helical undulator 

1D FEL Pendulum equation 
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• In the transverse plane, the electrons perform betatron oscillations, 
which can be described in the context of the smooth approximation. 

• In the longitudinal dimension, one obtains the 3D generalization of 
the 1D pendulum equations. 

3D Equation of motion 
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• The e-beam is described in terms of a distribution function 
𝐹 = 𝐹 𝜃, 𝜂, 𝒙, 𝒑; 𝑧  in 6D-phase space. In view of the importance of 
stochastic effects such as shot noise, we use the Klimontovich 
distribution:  

• The interaction between the electron beam and the FEL radiation can 
be described in the framework of the Vlasov-Maxwell equations. 

• The distribution function is governed by the Vlasov equation 

𝑛𝑒: on-axis electron number density 

Vlasov-Maxwell formalism I 

K.-J. Kim, PRL 57, 1871 (1986) 
K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and FELs (Cambridge Press, 2017) 
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• In the linear, exponential-gain regime, a perturbation approach is 
applicable.  This process involves: 
 
 Decomposing the distribution function into a background 

distribution function 𝐹  and a small perturbation δ𝐹 i.e. 
𝐹 = 𝐹 + 𝛿𝐹. We then introduce the Fourier amplitude 𝐹𝜈  

through 𝐹𝜈 = (1/2𝜋)  𝑑𝜃(𝛿𝐹)𝑒−𝑖𝜈𝜃  and δ𝐹 =  𝑑𝜈𝐹𝜈𝑒
𝑖𝜈𝜃. 

 
 Treating 𝐹𝜈 and 𝐸𝜈 as first order (small) quantities.   

• After some manipulation (which involves using the equations of 
motion), we obtain a linearized Vlasov equation: 

Vlasov-Maxwell formalism II 
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• We also use a driven paraxial wave equation for the radiation field:   

extra 3D term due to  
radiation diffraction 

•  In terms of the distribution function amplitude, the paraxial becomes 

• These linearized Vlasov-Maxwell equations accurately describe the 
FEL operation up to the onset of nonlinear, saturation effects. 

current term now includes momentum integration 

Vlasov-Maxwell formalism III 



• We introduce a set of convenient scaled quantities 

• The linearized FEL equations become 

phase derivative 

Scaled equations 
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Pierce-or FEL-parameter 
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• For such a z-independent case, we seek the self-similar, guided 
eigenmodes of the FEL. These are solutions of the form:    

Van Kampen’s normal mode expansion I 

• Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two  
        coupled relations for the growth rate and the mode amplitudes:  

• They are characterized by a constant growth rate 𝜇𝑙 and a z-
independent radiation/density mode profile  𝐴𝑙/𝐹𝑙 (Optical guiding) 

15 
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Van Kampen’s normal mode expansion II 

• Eigenmode equation 

• The matrix operator M is not Hermitian, eigenvalue       can be 
complex and associated eigenvectors are not orthogonal. 

• Eliminate                                                , a dispersion relation emerges  

• Van Kampen’s method construct such an orthogonal set using the 
adjoint eigenvalue equation 
 
 

 such that  

K. M. Case, plasma oscillations, annals of physics 7, 349 (1959) 
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• Using a specific 𝑓0 , we obtain an explicit dispersion relation: 

  𝜎 𝑥 is a quantitative measure of the diffraction effect 
 

• There are four dimensionless parameters that affect the growth rate: 

3D solution 

• Ming Xie and others used a vibrational technique to obtain a fitting 
formula that captures all these effects for FEL designs 

  𝜎 𝑥𝑘 𝛽 is a measure of the emittance effect 

 𝜎 𝜂 represents the energy spread effect  

 Δ𝜈/(2𝜌) is scaled frequency detuning 



Applications to undulator wakefield and tapering 

x-rays e-beam 

• Undulator wakefield is an important source of time-
dependent energy loss 

 

 

 

 

• Compensate the average energy loss by tapering undulator 

• Reverse taper (increasing K) is very useful for certain 
applications 

x-rays e-beam 

no wake with wake 

• Tapered undulator keeps FEL resonance and increase 
power  



FEL with slowly varying beam and undulator parameters 

 E-beam energy c(z), undulator parameter K(z) 

 Initial resonant wavelength 

 Resonant energy 

 Longitudinal motion is described by 

(ponderomotive phase) 

(normalized energy, change only due to FEL) 

(E and  are radiation field and phase) 

19 
• Z. Huang, G. Stupakov, Phys. Rev. ST Accel. Beams 8, 040702 (2005) 



 Well-known technique in QM for slowly-varying potential 

WKB approximation 

 FEL is characterized by : the relative gain bandwidth is a 

few , and radiation field gain length ~ lu/(4) 

 Relative change in beam energy w.r.t resonant energy 

 Apply WKB technique if the relative energy change per 

field gain length is smaller than , i.e., 

 Satisfied for wakefields induced energy change ~ a few  

over saturation distance (~ 10 field gain length)  

Normalized to  
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Modified Maxwell-Vlasov equations 

 Radiation field a() at frequency detune =(-0)/(20) 

 Fourier component of the distribution function f(;) 

satisfies the linearized Vlasov equation following pend. Eqs. 

V(): initial energy distribution 

 In matrix notation 

not small 

source current at frequency  
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0th order solution 

 Seek a solution of the form 

 Complex growth rate =0()-() satisfies same 1-D 

dispersion relation as a constant-parameter FEL if we define 

’() =  - () 

 Eigenvector 

Growth rate Im[0] 

 - 

changes with energy 

 -i0 0 = iM 0 since d0/d is 1st order 
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1st order correction 

 To account for  dependency, introduce corrections 

 Insert into                            

 (1  and 1) << (0  and 0), but not  1 
(’)d’

𝜏

0
 

 To find 1(), use Van Kampen’s adjoint eigenvector 0 
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Comparison w/ simulations 

 Radiation power dependence on  is a gaussian 

 GENESIS simulation of LCLS power vs. ,  

 Power enhancement ~ 2 when energy gain 2 at saturation 

 Power vs.  has RMS       

           FWHM 4 (~4 at saturation) 

2 

4 
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0.2-nC FEL Simulations with Taper 

This study led to abandoning 1-nC LCLS 

P. Emma’s talk at PAC05 

No wake 

Cu wake:  no taper 

Cu wake:  200 kV/m 

Cu wake:  300 kV/m 

best taper: 

1012 photons 

W. Fawley, 

S. Reiche 



Bunching still grows 

Power is suppressed 
Rapid increase  

in afterburner power 

LCLS simulations (J. MacArthur) 

𝐾/√2 



Reverse taper 

 



LCLS 

• J. MacArthur, A. Marinelli, A. Lutman, H. Nuhn, Z. Huang, FEL2015 proceedings 

Reverse taper sensitivity to e-beam energy spread 

• Why did we only observe a factor of 20 contrast ratio (circular 
polarization vs. linear polarization)? 

• Using the above theory, we find the maximum detune (taper) 
depends strongly on relative energy spread 

growth rate 



• Development of FEL theory is one of the most successful beam 

dynamic stories that directly guided X-ray FEL sources. 

 

• Van Kampen’s methods are critical to solve 3D theory FEL 

equations. 

 

• FEL theory can be extended via WKB approximation to slowly 

varying beam and undulator parameters. 

 

• Can be applied to tapered (and reverse-tapered) undulators 

(before saturation) for power enhancement and special operating 

modes.  

Summary 
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