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 Produced by resonant interaction of a relativistic electron 

beam with EM radiation in an undulator (J. Madey, 1971) 
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Three FEL modes 
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Ryan’s talk next 
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 Self Amplified Spontaneous Emission 
  

Saldin et al. (1980) 

Bonifacio, Pellegrini et al. (1984) 
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What a wonderful instability 



Let me be clear Mr. President: it may be ‘noisy’ and its not really ‘free’, but it is a 
high-gain single-pass device for converting electrons into a lot of x rays, and it is 
really quite useful… 

Claudio Pellegrini receives the Fermi Award (2015) 
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• Longitudinal electron motion in combined undulator and 

radiation fields described by pendulum equations 

l1 

 

 

 

for planar undulator 

=1 for helical undulator 

1D FEL Pendulum equation 
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• In the transverse plane, the electrons perform betatron oscillations, 
which can be described in the context of the smooth approximation. 

• In the longitudinal dimension, one obtains the 3D generalization of 
the 1D pendulum equations. 

3D Equation of motion 
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• The e-beam is described in terms of a distribution function 
𝐹 = 𝐹 𝜃, 𝜂, 𝒙, 𝒑; 𝑧  in 6D-phase space. In view of the importance of 
stochastic effects such as shot noise, we use the Klimontovich 
distribution:  

• The interaction between the electron beam and the FEL radiation can 
be described in the framework of the Vlasov-Maxwell equations. 

• The distribution function is governed by the Vlasov equation 

𝑛𝑒: on-axis electron number density 

Vlasov-Maxwell formalism I 

K.-J. Kim, PRL 57, 1871 (1986) 
K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and FELs (Cambridge Press, 2017) 
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• In the linear, exponential-gain regime, a perturbation approach is 
applicable.  This process involves: 
 
 Decomposing the distribution function into a background 

distribution function 𝐹  and a small perturbation δ𝐹 i.e. 
𝐹 = 𝐹 + 𝛿𝐹. We then introduce the Fourier amplitude 𝐹𝜈  

through 𝐹𝜈 = (1/2𝜋)  𝑑𝜃(𝛿𝐹)𝑒−𝑖𝜈𝜃  and δ𝐹 =  𝑑𝜈𝐹𝜈𝑒
𝑖𝜈𝜃. 

 
 Treating 𝐹𝜈 and 𝐸𝜈 as first order (small) quantities.   

• After some manipulation (which involves using the equations of 
motion), we obtain a linearized Vlasov equation: 

Vlasov-Maxwell formalism II 
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• We also use a driven paraxial wave equation for the radiation field:   

extra 3D term due to  
radiation diffraction 

•  In terms of the distribution function amplitude, the paraxial becomes 

• These linearized Vlasov-Maxwell equations accurately describe the 
FEL operation up to the onset of nonlinear, saturation effects. 

current term now includes momentum integration 

Vlasov-Maxwell formalism III 



• We introduce a set of convenient scaled quantities 

• The linearized FEL equations become 

phase derivative 

Scaled equations 
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Pierce-or FEL-parameter 
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• For such a z-independent case, we seek the self-similar, guided 
eigenmodes of the FEL. These are solutions of the form:    

Van Kampen’s normal mode expansion I 

• Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two  
        coupled relations for the growth rate and the mode amplitudes:  

• They are characterized by a constant growth rate 𝜇𝑙 and a z-
independent radiation/density mode profile  𝐴𝑙/𝐹𝑙 (Optical guiding) 

15 
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Van Kampen’s normal mode expansion II 

• Eigenmode equation 

• The matrix operator M is not Hermitian, eigenvalue       can be 
complex and associated eigenvectors are not orthogonal. 

• Eliminate                                                , a dispersion relation emerges  

• Van Kampen’s method construct such an orthogonal set using the 
adjoint eigenvalue equation 
 
 

 such that  

K. M. Case, plasma oscillations, annals of physics 7, 349 (1959) 
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• Using a specific 𝑓0 , we obtain an explicit dispersion relation: 

  𝜎 𝑥 is a quantitative measure of the diffraction effect 
 

• There are four dimensionless parameters that affect the growth rate: 

3D solution 

• Ming Xie and others used a vibrational technique to obtain a fitting 
formula that captures all these effects for FEL designs 

  𝜎 𝑥𝑘 𝛽 is a measure of the emittance effect 

 𝜎 𝜂 represents the energy spread effect  

 Δ𝜈/(2𝜌) is scaled frequency detuning 



Applications to undulator wakefield and tapering 

x-rays e-beam 

• Undulator wakefield is an important source of time-
dependent energy loss 

 

 

 

 

• Compensate the average energy loss by tapering undulator 

• Reverse taper (increasing K) is very useful for certain 
applications 

x-rays e-beam 

no wake with wake 

• Tapered undulator keeps FEL resonance and increase 
power  



FEL with slowly varying beam and undulator parameters 

 E-beam energy c(z), undulator parameter K(z) 

 Initial resonant wavelength 

 Resonant energy 

 Longitudinal motion is described by 

(ponderomotive phase) 

(normalized energy, change only due to FEL) 

(E and  are radiation field and phase) 

19 
• Z. Huang, G. Stupakov, Phys. Rev. ST Accel. Beams 8, 040702 (2005) 



 Well-known technique in QM for slowly-varying potential 

WKB approximation 

 FEL is characterized by : the relative gain bandwidth is a 

few , and radiation field gain length ~ lu/(4) 

 Relative change in beam energy w.r.t resonant energy 

 Apply WKB technique if the relative energy change per 

field gain length is smaller than , i.e., 

 Satisfied for wakefields induced energy change ~ a few  

over saturation distance (~ 10 field gain length)  

Normalized to  
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Modified Maxwell-Vlasov equations 

 Radiation field a() at frequency detune =(-0)/(20) 

 Fourier component of the distribution function f(;) 

satisfies the linearized Vlasov equation following pend. Eqs. 

V(): initial energy distribution 

 In matrix notation 

not small 

source current at frequency  
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0th order solution 

 Seek a solution of the form 

 Complex growth rate =0()-() satisfies same 1-D 

dispersion relation as a constant-parameter FEL if we define 

’() =  - () 

 Eigenvector 

Growth rate Im[0] 

 - 

changes with energy 

 -i0 0 = iM 0 since d0/d is 1st order 
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1st order correction 

 To account for  dependency, introduce corrections 

 Insert into                            

 (1  and 1) << (0  and 0), but not  1 
(’)d’

𝜏

0
 

 To find 1(), use Van Kampen’s adjoint eigenvector 0 
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Comparison w/ simulations 

 Radiation power dependence on  is a gaussian 

 GENESIS simulation of LCLS power vs. ,  

 Power enhancement ~ 2 when energy gain 2 at saturation 

 Power vs.  has RMS       

           FWHM 4 (~4 at saturation) 

2 

4 
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0.2-nC FEL Simulations with Taper 

This study led to abandoning 1-nC LCLS 

P. Emma’s talk at PAC05 

No wake 

Cu wake:  no taper 

Cu wake:  200 kV/m 

Cu wake:  300 kV/m 

best taper: 

1012 photons 

W. Fawley, 

S. Reiche 



Bunching still grows 

Power is suppressed 
Rapid increase  

in afterburner power 

LCLS simulations (J. MacArthur) 

𝐾/√2 



Reverse taper 

 



LCLS 

• J. MacArthur, A. Marinelli, A. Lutman, H. Nuhn, Z. Huang, FEL2015 proceedings 

Reverse taper sensitivity to e-beam energy spread 

• Why did we only observe a factor of 20 contrast ratio (circular 
polarization vs. linear polarization)? 

• Using the above theory, we find the maximum detune (taper) 
depends strongly on relative energy spread 

growth rate 



• Development of FEL theory is one of the most successful beam 

dynamic stories that directly guided X-ray FEL sources. 

 

• Van Kampen’s methods are critical to solve 3D theory FEL 

equations. 

 

• FEL theory can be extended via WKB approximation to slowly 

varying beam and undulator parameters. 

 

• Can be applied to tapered (and reverse-tapered) undulators 

(before saturation) for power enhancement and special operating 

modes.  

Summary 
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