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Abstract

The passage of a charged particle through the field B of a magnetic element may be
described by a symplectic transfer map M. This map is generated by the Hamiltonian H
specifying charged-particle motion. M may be written as a product of Lie transformations,
and the generators for these transformations can be found by integrating a set of differential
equations whose driving terms are the Taylor coefficients arising in the Taylor expansion
of H about a design orbit. The Hamiltonian formulation of charged particle motion,
required to exploit symplectic structure, involves the use of a vector potential A. Therefore
expanding H in a Taylor series requires a Taylor expansion of A. For realistic elements B is
known (using codes such as those available from Vector Fields) only on a three-dimensional
grid. The challenge is to reliably compute high-order Taylor coefficients for A based on
this grid data.

At first sight this appears to be an impossible task. Numerical differentiation of grid
data is well known to be very sensitive to numerical noise: numerical differentiation ampli-
fies noise. And high derivatives are required to compute M to high order. This problem
can be overcome by employing surface methods which involve the use of inverse Laplacian
kernels. Such kernels are smoothing, and this smoothing overcomes the noise associated
with numerical differentiation. Moreover, the Maxwell equations are satisfied exactly, and
analyticity is assured.

One final point is that the optimal termination of fringe fields requires the use of a
gauge at element ends for which A is as small as possible. This minimum gauge is found
to be the Poincaré-Coulomb gauge.

In summary, with the use of surface methods, and the use of the minimum gauge at
element ends, it is now possible for the first time to compute realistic symplectic transfer
maps to high order including all multipole-error and fringe-field effects. These maps can
then be used to realistically predict/evaluate the expected performance of both linear and
circular machines.
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1 Lie Algebraic Preliminaries

1.1 Poisson Brackets

Let the symbol z denote the collection of canonical phase-space variables

z = (z1, z2, · · · z2n) = (q1, · · · qn; p1, · · · pn). (1.1)

Let f(z, t) and g(z, t) be any two (possibly time-dependent) functions of z. Define their
Poisson bracket [f, g] by the rule

[f, g] =
∑
j

(∂f/∂qj)(∂g/∂pj)− (∂f/∂pj)(∂g/∂qj). (1.2)

By this definition there are the fundamental Poisson brackets

[za, zb] = Jab (1.3)

where J is the 2n× 2n matrix

J =

(
0 I
−I 0

)
. (1.4)

Here 2n is the phase-space dimension, and 0 and I denote denote n× n zero and identity
blocks, respectively. The matrix J is sometimes called the Poisson matrix.

Evidently Poisson brackets have the antisymmetry property

[g, f ] = −[f, g]. (1.5)

It can be verified that Poisson brackets also satisfy the Jacobi identity. Let f , g, and h be
any three phase-space functions. Then there is the identity

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (1.6)

Consequently, the Poisson bracket satisfies the requirements for a Lie product. The set
of all phase-space functions forms a Lie algebra with the Poisson bracket being the Lie
product.

1.2 Lie Operators and Lie Transformations

Given any function f(z, t), define an associated differential operator, denoted by : f : and
called a Lie operator, by the rule

: f :=
∑
j

(∂f/∂qj)(∂/∂pj)− (∂f/∂pj)(∂/∂qj). (1.7)
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Then, if g(z, t) is any other function, the action of : f : on g is defined by writing

: f : g =
∑
j

(∂f/∂qj)(∂g/∂pj)− (∂f/∂pj)(∂g/∂qj) = [f, g]. (1.8)

Thus, a Lie operator may be viewed as a Poisson bracket waiting to happen.
In general Lie operators do not commute. However, the commutator {: f :, : g :} of any

two Lie operators : f : and : g : is again a Lie operator. Indeed, as a consequence of the
Jacobi identity, the commutator {: f :, : g :} is given in terms of the Poisson bracket of the
two underlying functions f and g by the relation

{: f :, : g :} =: f :: g : − : g :: f :=: [f, g] : . (1.9)

The relation (1.8) defines the action of : f :. Powers of : f : can be defined by the rules

: f :0 g = g, (1.10)

: f :2 g = [f, [f, g]], etc. (1.11)

Now that powers of : f : have been defined, power series in : f : can also be defined. Of
particular interest is the power series associated with the exponential function by the rule

exp(: f :) = e(:f :) =
∞∑
m=0

: f :m /m!. (1.12)

The operator exp(: f :), called a Lie transformation, has the action

exp(: f :)g = g + [f, g] + (1/2!)[f, [f, g]] + · · · . (1.13)

In this context, : f : is called a Lie generator.

1.3 Symplectic Transfer Maps

Let zin denote the initial condition for a particle as it enters a beam-line or collection of
beam-line elements, and let zfin denote the final condition upon exit. The initial and final
conditions will be related by a transfer map M, and we express this relation by writing

zfin =Mzin. (1.14)

Suppose a small change dzin is made in the initial condition. The result will be an
associated small change dzfin in the final condition. These small changes will be connected
by the relation

dzfin = Mdzin (1.15)
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where M is the Jacobian matrix

Mab = ∂zfin
a /∂zin

b . (1.16)

It can be shown that ifM is the result of integrating Hamilton’s equations of motion, then
its associated Jacobian matrix M will satisfy the condition

MTJM = J. (1.17)

Here MT denotes the transpose of M . A matrix that satisfies (1.17) is said to be sym-
plectic; correspondingly M is called a symplectic map. Note that in general M depends
on zin. However, J does not. Therefore (1.17), since it must hold for all zin, places strong
(nonlinear) restrictions on M.

1.4 Representation of Symplectic Transfer Maps

1.4.1 Taylor Representation

Suppose M has the property that it maps the origin into itself. That is, we assume that
there is a Taylor expansion of the form

zfin
a =

∑
b

Rabz
in
b +

∑
bc

Tabcz
in
b z

in
c +

∑
bcd

Uabcdz
in
b z

in
c z

in
d + · · · . (1.18)

This can always be accomplished by the use of deviation variables. If M is symplectic,
then R must be a symplectic matrix. Moreover, the Taylor coefficients T , U , · · · cannot be
arbitrary, but are constrained by complicated nonlinear relations that follow from the sym-
plectic condition (1.17). Finally, in general the series (1.18) cannot be truncated without
violating the symplectic condition.

1.4.2 Factored Lie Product Representation

However, it can be shown that M can also be written in the Lie product form

M = R exp(: f3 :) exp(: f4 :) · · · (1.19)

where R is the linear symplectic map associated with R, and the fm are homogeneous
polynomials of degree m. Unlike the Taylor coefficients, there are no restrictions on the
fm imposed by the symplectic condition. Any symplectic map is uniquely specified by a
symplectic matrix and a collection of homogeneous polynomials that describe the nonlinear
part of the map, and conversely. Also, the product (1.19) can be truncated at any stage
without violating the symplectic condition. It can be shown that each factor in (1.19) is a
symplectic map, and the product of any number of symplectic maps is also a symplectic
map.
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1.5 Concatenation (Multiplication) of Symplectic Maps

Suppose Mf and Mg are two symplectic maps written in the factorized product forms

Mf = Rf exp(: f3 :) exp(: f4 :) · · · , (1.20)

Mg = Rg exp(: g3 :) exp(: g4 :) · · · , (1.21)

and we wish to find their product Mh, also written in the factorized form

MfMg =Mh = Rh exp(: h3 :) exp(: h4 :) · · · . (1.22)

For example,Mf andMg might be the maps for two successive sections f and g of a beam
line, andMh would then be the map for the beam line consisting of the section f followed
by the section g.

There are standard Lie-algebraic rules, called the Baker-Campbell-Hausdorff formula,
for the manipulation of noncommuting exponents. Using these rules gives, in this context,
the results

Rh = RgRf , (1.23)

h3 = f tr3 + g3, (1.24)

h4 = f tr4 + g4 + [f tr3 , g3]/2. (1.25)

h5 = f tr5 + g5 − [g3, f
tr
4 ] +

1

3
: g3 :2 f tr3 −

1

6
: f tr3 :2 g3, etc. (1.26)

Results of this kind are currently available through h8. Here the f trm , where tr denotes
transformed, are defined by the rule

f trm (z) = fm[(Rg)−1z]. (1.27)

1.6 Map Inversion

The mapM given in the factorized product form (1.19) is said to be in forward factorized
form. Its inverse can be written as

M−1 = · · · exp(− : f4 :) exp(− : f3 :)R−1 (1.28)

where the matrix associated with R−1 is R−1. This reversed factorized product form can
be brought to the standard forward factorized form using the concatenation formulas of
Section 1.5.
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1.7 Computation of M

Let H(z, t) be the Hamiltonian that gives rise toM. In this subsection we will sketch how
M can be computed in terms of H. In particular, we will describe how the R and the fm
appearing in (1.19) can be computed in terms of the components of H.

If deviation variables are employed, H(z, t) will have an expansion of the form

H =

∞∑
m=2

Hm(z, t) (1.29)

where the Hm are homogeneous polynomials of degree m in the variables z.
For computational simplicity we will first choose to writeM in the reversed factorized

product form
M = · · · exp(: f̄4 :) exp(: f̄3 :)R. (1.30)

Results in the standard factorized form (1.19) can then be found from (1.30) using the
concatenation formulas of Section 1.5. Here, as the notation is intended to suggest, the R
appearing in (1.19) turns out to be the same as the R appearing in (1.30), and R is a linear
map whose action is described by a symplectic matrix R. However, the fm are different
from the f̄m, and use of the concatenation formulas is required to find the fm once the f̄m
have been found.

In Lie-algebraic language, it can be shown that M obeys the equation of motion

Ṁ =M : −H : (1.31)

with the initial condition
M(tin) = I. (1.32)

Insertion of the Ansatz (1.30) for M into the equation of motion (1.31), and employing
the decomposition (1.29) for H, yields equations of motion for R and the f̄m.

1.7.1 Computation of R

We begin with the computation of R. Suppose the symmetric matrix S is defined by
writing H2 in the form

H2(z, t) = (1/2)
∑
ab

Sab(t)zazb. (1.33)

Then it can be shown that R obeys the matrix differential equation

Ṙ = JSR (1.34)

with the initial condition
R(tin) = I. (1.35)

We see that R(t) is determined by the quadratic part of the Hamiltonian. Finally, it can be
shown that R(t), the solution to (1.34) with the initial condition (1.35) for any symmetric
matrix S(t), is a symplectic matrix.
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1.7.2 Computation of the f̄m

We next turn to the computation of the f̄m from which the fm can ultimately be found.
Given the Hamiltonian pieces Hm(z, t) with m > 2, define interaction picture Hamiltonian
pieces H int

m (z, t) by the rule
H int
m (z, t) = Hm(Rz, t). (1.36)

Note that in general H int
m (z, t) will be “time dependent” even if Hm is not because R is

time dependent.1

With this background in mind, it can be shown that the f̄m obey the differential
equations

˙̄f3 = −H int
3 , (1.37)

˙̄f4 = −H int
4 + (: f̄3 : /2)(−H int

3 ), (1.38)

˙̄f5 = −H int
5 + : f̄3 : (−H int

4 ) + (1/3) : f̄3 :2 (−H int
3 ), etc, (1.39)

with the initial conditions
f̄m(tin) = 0. (1.40)

Results of this kind are currently available through f̄8.

2 Specification of H and the Use of Surface Methods

For Accelerator Physics applications it is often convenient to take the Cartesian z coor-
dinate to be the independent variable and to treat time as a dependent variable. When
this is done, a Hamiltonian formulation is still possible. Let X and Y be suitably scaled
spatially transverse deviation variables, and let Px and Py be suitably scaled canonically
conjugate deviation momenta. Also, let τ be a suitably scaled time deviation variable. Its
canonically conjugate momentum Pτ will then be the negative of a suitably scaled energy
deviation variable. For simplicity let us also assume that the magnetic field B is static and
that there is no electric field.

In this case the equations of motion for the deviation variables (X,Y, τ, Px, Py, Pτ ), all
of which have been scaled to be dimensionless, are governed by the Hamiltonian H given
by the rule

H(X,Y, τ, Px, Py, Pτ ; z) =

− (1/`){[1− (2Pτ/β0) + P 2
τ − (Px −Asx)2 − (Py −Asy)2]1/2 +Asz + (Pτ/β0)− 1}.

(2.1)

1In Section 2 we will see that in the case of Accelerator Physics a coordinate often plays the role of
the independent variable, and therefore the Hm themselves, particularly in fringe-field regions, generally
depend on the independent variable.
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Here ` is a scale length, β0 is the relativistic β factor for the design orbit, and Asx · · are
the components of a suitably scaled dimensionless vector potential As.

According to (1.29), we must expand H as a sum of homogeneous polynomials. But
now we see that in general there is problem when one desires to use realistic field data.
Expansion of H to high order requires knowledge, to high order, of the X,Y Taylor coef-
ficients for As about the design orbit. But all we know for realistic fields, particularly for
the case of iron dominated magnets, are the values of B on a grid as provided by numerical
field solvers. And, as outlined in the Abstract, numerical differentiation of grid data is well
known to be very sensitive to numerical noise: differentiation amplifies noise.

In the next two sections we will describe how this problem can be overcome by em-
ploying surface methods which involve, in effect, the use of inverse Laplacian kernels. Such
kernels are smoothing, and this smoothing overcomes the noise associated with numerical
differentiation. Moreover, we will see that the Maxwell equations are satisfied exactly.

But first let us make an initial observation. Suppose V is some simply connected volume
bounded by a surface S. Assume also that B is source free (divergence and curl free) in
V . Finally, assume that on S the quantity Bn, the normal component of B, is specified.
Then this information is suficient to specify B everywhere in V .

Why is this so? Since B is assumed curl free in V , within V there must be a potential
ψ such that

B = ∇ψ. (2.2)

And, since B is divergence free, within V the potential ψ must be harmonic,

∇2ψ = 0. (2.3)

Now it follows from (2.2) that on S there must be the relation

n · ∇ψ = n ·B = Bn. (2.4)

Here n is the outward unit normal on S. Taken together (2.3), with the boundary condition
(2.4), comprise the Neumann problem for ψ. It is known to have a unique solution specifying
ψ within V up to a constant. Thus, by (2.2), specification of Bn on S completely determines
B within V . There is, however, one caveat: a consistency condition must be imposed on
the boundary data Bn. Since B is divergence free in V , there must be the result

0 =

∫
V
d3r ∇ ·B =

∫
S
B · dS′ =

∫
S
dS′ Bn, (2.5)

the integral of Bn over the surface S must vanish.

3 Surface Methods for Straight Beam-Line Elements

We have seen, at the end of Section 2, that in principle a knowledge of the normal compo-
nent of B on a bounding surface S determines B within the bounded volume V . In practice
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however, explicit calculations of this kind are difficult to implement for general volumes V .
Fortunately, there are two cases for which such calculations are feasible; and these cases
are applicable to straight beam line elements, which include solenoids, quadrupoles, sex-
tuples, etc., and small-amplitude wigglers. These are the cases where S is a cylinder with
circular or elliptical cross section. Figure 1 illustrates the use of a circular cylinder, and
Figure 2 illustrates the use of an elliptical cylinder. The circular cylinder is appropriate for
solenoids, quadrupoles, sextuples, etc. While more complicated because if its employment
of Mathieu functions, the use of elliptical cylinders is advantageous for the case of wigglers
with small gaps and wide pole faces.

Figure 1: A circular cylinder of radius R, centered on the z-axis, fitting within the bore of
a beam-line element, in this case a wiggler, and extending beyond the fringe-field regions
at the ends of the beam-line element.
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Figure 2: An elliptical cylinder, centered on the z-axis, fitting within the bore of a wiggler,
and extending beyond the fringe-field regions at the ends of the wiggler.
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For simplicity, we will discuss in this section only the use of circular cylinders. In this
case, our strategy is illustrated in Figure 3. Specifically, and in summary, we will find that
surface methods have the following virtues:

• Only functions with known (orthonormal) completeness properties and known (opti-
mal) convergence properties are employed.

• The Maxwell equations are exactly satisfied.

• The results are manifestly analytic in all variables.

• The error is globally controlled. Fields that satisfy the Laplace equation (are har-
monic functions) take their extrema on boundaries. Both the exact and computed
fields satisfy the Laplace equation. Therefore their difference, the error field, also
satisfies the Laplace equation, and must take its extrema on the boundary. But
this is precisely where a controlled fit is made. Thus, the error on the boundary is
controlled, and the interior error must be even smaller.

• Because fields take their extrema on boundaries, interior values inferred from surface
data are relatively insensitive to errors/noise in the surface data. Put another way,
the inverse Laplacian (Laplace Green function), which relates interior data to surface
data, is smoothing. It is this smoothing that we seek to exploit. We will find that
the sensitivity to noise in the data decreases rapidly (as some high inverse power of
distance) with increasing distance from the surface, and this property improves the
accuracy of the high-order interior derivatives needed to compute high-order transfer
maps.

3.1 Cylindrical Harmonic Expansions

To continue our discussion, we will need some background on the use of cylindrical harmonic
expansions. They will be used to represent both the scalar and vector potentials. We will
employ cylindrical coordinates ρ, φ, and z with

x = ρ cosφ, (3.1)

y = ρ sinφ. (3.2)

Note, for future use, that (3.1) and (3.2) can be written in the form

x+ iy = ρ exp(iφ), (3.3)

from which it follows that
ρ2` = (x2 + y2)`, (3.4)
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Figure 3: Calculation of realistic design trajectory zd and its associated realistic transfer
map M based on field data provided on a three-dimensional grid for a real beam-line
element. Only a few points on the three-dimensional grid are shown. In this illustration,
data from the grid are interpolated onto the surface of a cylinder with circular cross section,
and these surface data are then processed to compute the design trajectory and the transfer
map. The use of other surfaces is also possible, and may offer various advantages.
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ρm cosmφ = <[(x+ iy)m], (3.5)

ρm sinmφ = =[(x+ iy)m]. (3.6)

We see that even powers of ρ and the combinations ρm cosmφ and ρm sinmφ are analytic
(in fact, polynomial) functions of x and y.

3.1.1 Cylindrical Harmonic Expansion of the Scalar Potential

In view of (2.2) and (2.3) our first goal is to to find, in cylindrical coordinates, the general
ψ that satisfies Laplace’s equation. Begin by recalling that the functions exp(imφ) form
a complete set for the Hilbert space of functions over the interval φ ∈ [0, 2π], and the
functions exp(ikz) form a complete set for the Hilbert space of functions over the interval
z ∈ [−∞,∞]. Therefore any function ψ in the product Hilbert space can bewritten as
a superposition of functions of the form Ωm(k, ρ) exp(ikz) exp(imφ) where the functions
Ωm(k, ρ) are yet to be determined. In cylindrical coordinates the Laplacian has the form

∇2 = (1/ρ)(∂/∂ρ)(ρ∂/∂ρ) + (1/ρ2)(∂2/∂φ2) + ∂2/∂z2. (3.7)

Thus if the product Ωm(k, ρ) exp(ikz) exp(imφ) is to satisfy Laplace’s equation, the func-
tions Ωm(k, ρ) must satisfy the modified Bessel equation,

(1/ρ)(∂/∂ρ)(ρ∂Ωm/∂ρ)− (m2/ρ2)Ωm − k2Ωm = 0. (3.8)

The solutions to this equation (that are regular for small ρ) are the modified Bessel func-
tions Im(kρ). Consequently, in cylindrical coordinates, a general ψ satisfying Laplace’s
equation and analytic in x,y near the z axis has the expansion

ψ(x, y, z) =
∞∑

m=−∞

∫ ∞
−∞

dkGm(k) exp(ikz) exp(imφ)Im(kρ) (3.9)

where the functions Gm(k) are arbitrary.
Our next goal is a Taylor expansion of ψ in the variables x, y with (real) coefficients

that depend on z. This can be achieved by using the Taylor expansions for Im(w),

Im(w) = (1/2)|m|w|m|
∞∑
`=0

w2`/[22``!(`+ |m|)!]. (3.10)

Use of this expansion yields the ultimate result

ψ(x, y, z) = ψ0(x, y, z) +

∞∑
m=1

ψm,s(x, y, z) +

∞∑
m=1

ψm,c(x, y, z). (3.11)

The contents of the individual pieces appearing in (3.11), along with conventional names
for the elements they describe, are listed below:
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Solenoid

ψ0(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`, (3.12)

Normal Multipoles

ψm,s(x, y, z) = sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ

2`+m, (3.13)

Skew Multipoles

ψm,c(x, y, z) = cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ

2`+m. (3.14)

Here we have employed the notation

C
[n]
0 (z) = (∂z)

nC
[0]
0 (z), (3.15)

C [n]
m,c(z) = (∂z)

nC [0]
m,c(z), (3.16)

C [n]
m,s(z) = (∂z)

nC [0]
m,s(z). (3.17)

The functions/coefficients C
[0]
0 (z), C

[0]
m,c(z), and C

[0]
m,s(z), called on-axis gradients, are

related to the Fourier transforms of the functions Gm(k). They are all real if ψ is real,
may be chosen independently, and any such choice produces a harmonic function when

employed in (3.11). Again in the language of multipoles, C
[0]
0 (z) describes a solenoid, the

C
[0]
m,s(z) describe normal multipoles, and the C

[0]
m,c(z) describe skew multipoles. Specifically,

m = 1 for dipoles, m = 2 for quadrupoles, m = 3 for sextuples, etc.2

Finally, we observe that all the terms in (3.12) through (3.14) are sums of quantities of
the form ρ2n, or ρm cos(mφ) or ρm sin(mφ) multiplied by powers of ρ2, with z-dependent

coefficients C
[2`]
0 (z), C

[2`]
m,c(z), and C

[2`]
m,s(z). Thus, in view of (3.4) through (3.6), we have

achieved our goal of finding a Taylor expansion for ψ(x, y, z) in powers of x, y with coeffi-
cients that depend on z.

2Strictly speaking, dipoles are not straight beam-line elements because the design orbit for a dipole is
curved. They are best treated using the methods to be described in Section 4. However, the design orbit in
a small-amplitude wiggler is essentially straight and the field is essentially described by m = 1 terms with
the C

[0]
1,s(z) or C

[0]
1,c(z) terms being oscillatory in z.
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3.1.2 Cylindrical Harmonic Expansion of the Vector Potential

Once cylindrical harmonic expansions, with on-axis gradient coefficients, have been found
for the scalar potential ψ, it is possible to construct analogous expansions for the vector
potential A. They too will involve the same on-axis gradient coefficients. In analogy to
(3.11), the general A is given by the sum

A = A0 +
∞∑
m=1

Am.s +
∞∑
m=1

Am.c. (3.18)

The contents of the individual pieces appearing in (3.18), along again with conventional
names for the elements they describe, are listed below. They are in what we call the
symmetric Coulomb gauge.

Solenoid

A0
x = −(y/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= −(y/2)[C
[1]
0 − (1/8)C

[3]
0 (x2 + y2) + · · · ], (3.19)

A0
y = (x/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= (x/2)[C
[1]
0 − (1/8)C

[3]
0 (x2 + y2) + · · · ], (3.20)

A0
z = 0. (3.21)

Normal Multipoles

Am,sx = (1/2)<[(x+ iy)m+1]

∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)(x2 + y2)`, (3.22)

Am,sy = (1/2)=[(x+ iy)m+1]

∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)(x2 + y2)`, (3.23)

Am,sz = −<[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)(x

2 + y2)`. (3.24)
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Skew Multipoles

Am,cx = −(1/2)=[(x+ iy)m+1]

∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)(x2 + y2)`, (3.25)

Am,cy = (1/2)<[(x+ iy)m+1]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)(x2 + y2)`, (3.26)

Am,cz = =[(x+ iy)m]

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)(x

2 + y2)`. (3.27)

3.2 Determination of the On-Axis Gradients from Surface Data

3.2.1 Theory/Procedure

All three-dimensional electromagnetic codes calculate all three components of the field on
some three-dimensional grid. Also, such data is in principle available from actual field
measurements. In this subsection we will describe how surface methods may be used to
compute the on-axis gradients, and therefore also the vector potential, from field data. The
surface we will employ will be that of a circular cylinder of radius R centered on the z axis.

More specifically, this subsection describes how the m > 0 on-axis gradients can be
determined based on Bn values specified on the cylindrical surface. In principle the m = 0
(solenoid) case can also be treated in this way. But it is probably better to treat the m = 0
case using the values of Bz on the cylindrical surface since the field of a solenoid is primarily
longitudinal.

Suppose the magnetic field B(x, y, z) is interpolated onto the surface ρ = R using values
at the grid points near the surface. See Figure 3. Next, from the values on the surface,
compute Bρ(x, y, z) = Bρ(R,φ, z), the component of B(x, y, z) normal to the surface. We
will now see how to compute the on-axis gradients from a knowledge of Bρ(R,φ, z).

From this known function form the functions B̃α
ρ (R,m, z), with α = s or c, by the rules

B̃s
ρ(R,m, z) = (1/π)

∫ 2π

0
dφ sin(mφ)Bρ(R,φ, z), (3.28)

B̃c
ρ(R,m, z) = (1/π)

∫ 2π

0
dφ cos(mφ)Bρ(R,φ, z). (3.29)

Next form the functions ˜̃Bα
ρ (R,m, k) by the rule

˜̃Bα
ρ (R,m, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃α
ρ (R,m, z). (3.30)

Note that the quantities B̃α
ρ (R,m, z) are real. Correspondingly, we see from (3.30) that

the real part of ˜̃Bα
ρ (R,m, k) is even in k and the imaginary part is odd in k.

16



With these definitions in hand, we are ready to state the final results. It can be shown
that, for m > 0, the on-axis gradients are given by the relations

C [n]
m,α(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] ˜̃Bα
ρ (R,m, k) exp(ikz). (3.31)

We have found the on-axis gradients in terms of grid-point values of B(x, y, z) in the
vicinity of the surface ρ = R.

3.2.2 Smoothing

In the presence of noise we would expect that the quantities ˜̃Bα
ρ (R,m, k) would fall off less

rapidly with increasing m and with increasing |k| than would otherwise be the case. Also,
we observe that the kn+m−1 factor in the integrand of (3.31) accentuates this possible high
|k| noise. As stated earlier, differentiation amplifies noise.

We will now see that this possible spurious large m and large |k| behavior is exponen-
tially damped by the factor I ′(kR) appearing in the denominator on the right side of (3.31).
Moreover, the greater the value of R, the greater the damping/smoothing. It is therefore
desirable to choose as large a value for R as is physically and mathematically possible.

We begin by observing that

Im(−w) = (−1)mIm(w). (3.32)

Moreover, the large w and large m behaviors of Im(w) are as follows:

• For fixed m and large |w|,

|Im(w)| ' (1/
√

2π|w|) exp(|w|) as |w| → ∞. (3.33)

• For fixed |w| and large m,

|Im(w)| ' (1/
√

2πm)[(e|w|)/(2m)]m

' (1/2)m[
√

2πm(m/e)m]−1|w|m

' (1/2)m(1/m!)|w|m as m→∞. (3.34)

Here we have used the Stirling large m approximation

m! '
√

2πm(m/e)m, (3.35)

which is already quite accurate for m ≥ 2.3 Presumably, and as can be checked numerically,
the asymptotic behavior of I ′m(w) is similar.

3Note that the final result in (3.34) also follows from retaining only the ` = 0 term in (3.10).
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In our case
|w| = |k|R, (3.36)

and it follows from (3.33), under our assumption about I ′m(w), that

|1/I ′m(kR)| ' (
√

2π|k|R) exp(−|k|R) as |k| → ∞. (3.37)

We see that this exponential damping, which is larger the larger the value of R, guarantees
the convergence of the integral (3.31) for all n and m, and suppresses whatever high |k|
behavior might be present in the ˜̃Bα

ρ (R,m, k) due to noise in the grid-point data values.
What about the large m behavior? In this case, looking at (3.31), we see that, as well

as the result (3.34), we must also take into account the [(1/2)m(1/m!)] factor appearing in
front of the integral. It follows, again under our assumption about I ′m(w), that

[(1/2)m(1/m!)]|1/I ′m(kR)| ' [(1/2)m(1/m!)][(1/2)m(1/m!)]−1(|k|R)−m

' (|k|R)−m

' exp[−m log(|k|R)] as m→∞. (3.38)

We see that exponential damping in m is also to be expected.

3.2.3 Numerical Implementation, Benchmarking, and Smoothing Tests

Numerical Implementation

How are the various integrals appearing in Subsection 3.2.1 to be be evaluated numerically?
Carry out the following steps:

1. Select, as illustrated in Figure 1, a circular cylinder of radius R and length L that fits
within the bore of the beam-line element and extends beyond the fringe-field region
at the ends of the element. Assume the element is longitudinally centered about
z = 0. Construct a cylindrical grid of Nφ × Nz points by selecting points on the
cylinder equally spaced in φ and also equally spaced in z.

2. We assume there is also a three-dimensional rectangular grid, associated with the
electromagnetic solver, on which the values of B(x, y, z) have been found by the
solver. We call this grid the solver grid. For each cylindrical grid point interpolate
B(x, y, z) values at nearby solver grid points, using for example cubic interpolation,
to obtain associated cylindrical grid-point values B(R,φj , zk). See Figure 3.

3. From the values B(R,φj , zk) construct associated values of Bρ(R,φj , zk).

4. Approximate the angular Fourier transforms (3.28) and (3.29) by simple summation.
For example, make the approximation

B̃s
ρ(R,m, zk) ' (1/π)(1/Nφ)

Nφ∑
j=1

sin(mφj)Bρ(R,φj , zk). (3.39)
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According to discrete angular Fourier transform theory, this approximation gives
excellent results provided the actual Fourier coefficients fall off sufficiently rapidly
for large m, which can be shown to be the case for fields of physical interest.

5. Use cubic splines and the Nz values B̃α
ρ (R,m, zk) to produce differentiable functions

dB̃α
ρ (R,m, z).

6. Approximate the integrals (3.30) to obtain approximate values d ˜̃Bα
ρ (R,m, k`) by mak-

ing the definitions

˜̃Bα
ρ (R,m, k`) ' d ˜̃Bα

ρ (R,m, kl) = [1/(2π)]

∫ L/2

−L/2
dz exp(−ik`z) dB̃α

ρ (R,m, z). (3.40)

Here we have also set up an equally-spaced grid in k space with Nk points and ends
±K. Moreover, the integrals on the right side of (3.40) are to be performed an-
alytically, which is possible for spline fits. Indeed, it is possible to construct fast
spline-based Fourier transform routines. The use of spline-based Fourier transforms
eliminates aliasing Nyquist sidebands. Finally, the value of L is to be chosen suffi-
ciently large for the fringe-field values at the element ends to be sufficiently small,
thereby assuring good convergence.

7. Use the Nk values d ˜̃Bα
ρ (R,m, kl) to produce the Nk values Ĉ

[n]
m,α(k`) defined by the

relations
Ĉ [n]
m,α(k`) = [kn+m−1

` /I ′m(k`R)] d ˜̃Bα
ρ (R,m, k`). (3.41)

Use cubic splines and the Nk values Ĉ
[n]
m,α(k`) to produce the differentiable functions

dĈ
[n]
m,α(k).

8. Finally, approximate the integrals (3.31) by writing

C [n]
m,α(z) ' in(1/2)m(1/m!)

∫ K

−K
dk dĈ [n]

m,α(k) exp(ikz). (3.42)

The integrals on the right of (3.42) are to be evaluated using spline-based Fourier
transform routines. The value of K is to be chosen sufficiently large for the factor
[1/I ′m(kR)] to provide adequate convergence.

Benchmarking

There are least five ways to test/benchmark the procedures just described:

(a) There are magnetic charge configurations for which both B(x, y, z) and the C
[n]
m,α(z) can

be computed analytically. One of the simplest is that of a magnetic monopole doublet.
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A cylindrical grid can then be set up and the values Bρ(R,φj , zk) can be evaluated
analytically. Alternatively, a rectangular (solver) grid can also be set up and simulated
values of B(x, y, z) at the rectangular grid points can be set up analytically. Following
steps 2 and 3, these values can then be used to set up the values Bρ(R,φj , zk). Either

way, following steps 4 through 8, compute the C
[n]
m,α(z) numerically, and compare these

numerical results with those obtained analytically.

(b) Use the C
[n]
m,α(z) computed numerically as in (a) to form the scalar potential ψ(x, y, z)

specified by (3.11). From this ψ, compute B(x, y, z) using (2.2) at interior (to the
cylinder) points. Alternatively, compute B at interior points using

B = ∇×A (3.43)

with A(x, y, z) given by (3.18). Compare the fields B(x, y, z) thus found numerically
with the interior fields computed analytically as in (a).

(c) Use the C
[n]
m,α(z) computed both analytically and numerically as in (a) to compute

associated mapsM by integrating, in each instance, the equations in Subsections 1.7.1
and 1.7.2. Two maps, M and M′, can be conveniently compared by forming the
productM−1M′ and examining how close this resulting map is to the identity map I.

(d) There are current distributions for which both B(x, y, z) and the Taylor coefficients
for A(x, y, z) can be computed numerically. Lambertson type quadrupoles provide
an example. Follow steps 1 through 8 as in (a) to compute A(x, y, z) using (3.18),
and compare the resulting A(x, y, z) with that found numerically from the current
distribution. To make this comparison the two vector potentials must be brought to
the same gauge, say the Poincaré-Coulomb gauge, if they are not already in a common
gauge. See Subsection 3.3.

(e) Use a field solver to find the fields on some solver grid for some beam-line element of

interest. Execute steps 1 through 8. Use the C
[n]
m,α(z) computed numerically to form

the scalar potential ψ(x, y, z) specified by (3.11). From this ψ, compute B(x, y, z)
using (2.2) at interior solver grid points. Alternatively, use (3.43) to compute B.
Compare these so-obtained B values with those provided by the solver itself at the
same interior points. This comparison also tests how “Maxwellian” the B(x, y, z)
solver values actually are. (Note that the surface method uses only solver field values
in the vicinity of the cylinder ρ = R.)

It has been found in practice that when performed, providing Nφ, Nz, Nk, L, and K are
sufficiently large, any of the above tests is passed to many significant figures. At this point
one last remark is called for. In our calculations we have used for S only the curved part of
the cylinder, and have ignored any possible ez ·B contributions from end caps. In principle,
they should also be included, and they can be if desired. However, if L is sufficiently large,
B is so small at the ends of the cylinder that possible end-cap contributions are negligible.
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Smoothing Tests

There are at least two ways to test how sensitive surface methods are to noise in the field
values at solver grid points:

• Use a field solver to find the fields on some solver grid for some beam-line element

of interest. Execute steps 1 through 8 to find the associated C
[n]
m,α(z). To model the

effect of noise, modify the fields at the solver grid points in some small and random
way. For example, at each solver grid point one might make the replacement

B(x, y, z)→ B(x, y, z) + |B(x, y, z)|ε(x, y, z)n(x, y, z). (3.44)

Here the n(x, y, z) are unit vectors to be chosen randomly at each solver grid point,
and at each solver grid point ε(x, y, z) is to be chosen randomly from a small inter-
val, say ε(x, y, z) ∈ [−.01, .01]. Use the modified fields to find associated modified

C
[n]
m,α(z). Repeat this operation for several random number seeds. Examine how the

so generated ensemble of modified C
[n]
m,α(z) functions compares to the C

[n]
m,α(z) func-

tions computed in the absence of noise. If desired, compute also the associated maps
M, and examine how they compare.

• Examine how sensitive the C
[n]
m,α(z) functions, and the associated interior B values

given by (2.2) with ψ given by (3.11), are to the value of B(x, y, z) at any given
solver grid point. Do this by setting all solver grid point field values to zero save for
one, which is taken to be a randomly chosen unit vector. Let z∗ be the value of z for
the solver grid point at which the field is taken to be nonzero. It is expected that
the contribution of any solver grid point field value should fall off with distance from
the location of the solver grid point. For this reason, arrange to have z∗ ≈ 0.

When the first test has been performed for feasible values of the radius R, it has been
found that a 1% error in the grid point field values produces an associated ≈ 1% error in the

C
[n]
m,α(z) and in M. Consequently, in the cases tested, it has been verified that smoothing

does indeed compensate for the differentiation-associated amplification of numerical noise.
With regard to the second test, analytic calculations suggest that the effect of a local

disturbance in the scalar potential (on the cylindrical surface ρ = R) of the form

∆ψ(R,φ.z) = δ(φ)δ(z) (3.45)

should fall off like exp[−π|z|/(2R)] as |z| → ∞. Similar results should hold for the fall off
with distance of the contribution made by any solver grid point field value.
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3.3 Use of Minimum Vector Potential for End-Field Terminations

3.3.1 Need for Termination Approximation

The symplectic transfer mapM relating win and wfin at the entry of the leading fringe-field
region and exit of the trailing fringe-field region is independent of the choice of gauge for
the vector potential A provided A vanishes at the entry of the leading fringe-field region
and at the exit of the trailing fringe-field region.4 If the vector potential does not vanish
at these effective element ends, the mapM is gauge dependent and therefore not uniquely
defined. In practice, A does not vanish exactly, or perhaps not even approximately, at
these points either due to the way in which it was calculated or because B itself does not
exactly vanish at these points. (In general for real beam-line elements B vanishes only at
infinity.) For practical calculations, in the approximation of individually isolated beam-line
elements, it is necessary to terminate A, in some well-defined way, at these points.

3.3.2 Symplecticity and the Termination Approximation Imply Discontinu-
ities in the Mechanical Momenta

Moreover, the canonical and mechanical momenta are related by the rules

P can
x −Asx = Pmech

x , (3.46)

P can
y −Asy = Pmech

y . (3.47)

Let us consider, for example, what the matching conditions should be before entry and
after entry into a leading fringe-field region. Introduce, for example for the X coordinate
before and after entry, the symbols Xben and Xaen. Then it is natural to require for the
spatial coordinates the conditions

Xaen = Xben, and similarly for the Y and τ coordinates. (3.48)

What about the momentum coordinates? In analogy to (3.48), we demand the conditions

P canaen
x = P canben

x , and similarly for the P can
y and Pτ momenta. (3.49)

Note that, taken together, the relations (3.48) and (3.49) comprise a symplectic map re-
lating before and after conditions, namely the identity map.

But, before entry, we wish to make the assumption/approximation that Asben
x and Asben

y

vanish. It follows from (3.46) and (3.47) that there must be the relations

P canben
x = Pmechben

x , (3.50)

4Here we use the symbol w = (X,Y, τ, Px, Py, Pτ ) to denote phase-space variables because now we wish
to use the symbol z to denote the longitudinal Cartesian variable, which, as discussed earlier, we employ
as the independent variable
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P canben
y = Pmechben

y . (3.51)

Also, (3.46) and (3.47) have the after entry counterparts

P canaen
x −Asaen

x = Pmechaen
x , (3.52)

P canaen
y −Asaen

y = Pmechaen
y . (3.53)

From (3.50) through (3.53) we see that the matching relations (3.49) require the relations

Pmechaen
x = P canaen

x −Asaen
x = P canben

x −Asaen
x = Pmechben

x −Asaen
x , (3.54)

Pmechaen
y = P canaen

y −Asaen
y = P canben

y −Asaen
y = Pmechben

y −Asaen
y . (3.55)

Continuity in the canonical variables, as required for symplecticity, and the approximations
made in terminating the vector potential, imply an unavoidable entry discontinuity in the
mechanical momenta Pmech

x and Pmech
y . A similar discontinuity occurs upon exiting a

trailing fringe-field region.

3.3.3 Use of Minimum Vector Potential to Minimize Discontinuities

While, as we have seen, the approximations implied by termination introduce disconti-
nuities in the mechanical momenta, these discontinuities can be minimized by choosing a
gauge for which Asaen is as small as possible consistent with the requirement that

∇×Asaen = Bsaen. (3.56)

The gauge that meets this criterion is the Poincaré-Coulomb gauge. Let AsaenPC be the
vector potential in this gauge. In the vicinity of the entry point on the design orbit it
satisfies the conditions

∇×AsaenPC = Bsaen, (3.57)

∇ ·AsaenPC = 0, (3.58)

r′ ·AsaenPC = 0, (3.59)

and is unique. Here r′ is a local position vector whose origin is the entry point on the
design orbit.

We also refer to AsaenPC as the minimum vector potential that satisfies (3.56). It is
minimal in the following senses:

• It vanishes at the entry point on the design orbit. Therefore, on the design orbit,
there is no discontinuity in the mechanical momentum.
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• It is proportional to the magnetic field Bsaen in the vicinity of the entry point on
the design orbit, and therefore is small if |Bsaen| is small, as we would hope is the
case. More specifically, suppose that AsaenPC is expanded in the form

AsaenPC =
∞∑
d=0

AsaenPC
d , (3.60)

and that similarly Bsaen is expanded in the form

Bsaen =

∞∑
d=0

Bsaen
d . (3.61)

Here the vectors AsaenPC
d and Bsaen

d are homogeneous of degree d in the components
of r′. Then there are the relations

AsaenPC
0 = 0, (3.62)

AsaenPC
d = −[1/(d+ 1)][r′ ×Bsaen

d−1 ] for d = 1, 2, · · · . (3.63)

• Suppose that any vector potential Asaen that satisfies (3.56) is written in the form

Asaen =

∞∑
d=0

Asaen
d . (3.64)

Then setting Asaen
d = AsaenPC

d minimizes the integrals

||Asaen
d ||2 =

∫
dΩ Asaen

d ·Asaen
d (3.65)

where
∫
dΩ denotes integration over solid angle.

3.3.4 Gauge Transformations

Need for Changing Gauges

Although use of the Poincaré-Coulomb gauge is optimal at entry to and exit from fringe-
field regions, its use is not convenient in the region after entry and before exit because
AsaenPC is not simply expressible in terms of on-axis gradients.5 This seeming problem
can be solved by changing, after entry, from the Poincaré-Coulomb gauge to the symmetric

5The the relations that specify AsaenPC in terms of the on-axis gradients generally involve Taylor
expansions of the on-axis gradients. The only exception is the symmetric Coulomb gauge vector potential
for a solenoid. As can be verified from (3.19) through (3.21), it is also in the Poincaré-Coulomb gauge. The
symmetric Coulomb gauge and the Poincaré-Coulomb gauge are the same for a solenoid.
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Coulomb gauge and, before exit, changing back from the symmetric Coulomb gauge to the
Poincaré-Coulomb gauge. Thus the transfer map describing the effect of the region after
entry and before exit, which we will call MSC , is to be computed using the the vector
potential in the symmetric Coulomb gauge. Moreover, we will see that the two gauge
transformations just specified at entry and at exit can be described by two symplectic
maps which we will call Men and Mex. The full map M describing the relation between
the initial conditions just before entry and the final conditions just after exit can then be
written in the form

M =MenMSCMex. (3.66)

Note that we could have also used some other convenient gauge for the vector potential
in the region after entry and before exit. In this case,Men andMex would also have been
different. But the full map, when computed by the relation analogous to (3.66), would be
unchanged. Thus, when the uniquely defined Poincaré-Coulomb gauge vector potentials
are used at entry and exit, the full map M is, in fact, gauge independent.

Gauge Transformations are Symplectic Maps

What remains to be described is how to compute the mapsMen andMex. We will discuss
the general problem of changing gauges at various points during the course of integrating
a trajectory and computing an associated transfer map about that trajectory.

Suppose the gauge is to be changed at the point z = zc. (Recall that we are using z as
the independent variable.) Let Xb, Y b, and τ b denote the coordinate functions before the
change, and let Xa, Y a, and τa denote the coordinate functions after the change. Also,
let Asb(Xb, Y b; z) and Asa(Xa, Y a; z) be the vector potentials before (z < zc) and after
(z > zc) the change point zc. Finally, let P canbx , P canby , P canbτ be the canonical momentum
functions before the change, and let P canax , P canay , P canaτ be the canonical momentum func-

tions after the change. In terms of these quantities, the before and after Hamiltonians Hb

and Ha are given as follows:

Before, for z < zc,

Hb = −(1/`)×
{[1− (2P canbτ /β0) + (P canbτ )2 − (P canbx −Asbx )2 − (P canby −Asby )2]1/2

+Asbz + (P canbτ /β0)− 1}.
(3.67)
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After, for z > zc,

Ha = −(1/`)×
{[1− (2P canaτ /β0) + (P canaτ )2 − (P canax −Asax )2 − (P canay −Asay )2]1/2

+Asaz + (P canaτ /β0)− 1}.
(3.68)

What should be the matching relations between the phase-space quantities before and
after? Since the choice of gauge should have no physical effect, there is the immediate
requirement that the coordinate functions be continuous:

Xa(z) = Xb(z) when z = zc,

Y a(z) = Y b(z) when z = zc,

τa(z) = τ b(z) when z = zc. (3.69)

For the same reason, we require that the velocities, and hence the mechanical momenta,
be continuous. From (3.46), for example, we see that this requirement is equivalent to the
matching relation

P canax −Asax = P canbx −Asbx when z = zc, (3.70)

which can be rewritten in the form

P canax = P canbx + (Asax −Asbx ) when z = zc. (3.71)

Similarly, there is the matching relation

P canay = P canby + (Asay −Asby ) when z = zc. (3.72)

Finally, the total energy cannot change under a gauge transformation, and therefore there
is the matching relation

P canaτ = P canbτ when z = zc. (3.73)

We assume there is some common overlap region where both Asb and Asa are defined.
Since they both give rise to the same magnetic field, there is the relation

∇× (Asa −Asb) = 0. (3.74)

It follows that there is a gauge function χ such that

Asa −Asb = ∇χ. (3.75)

Note that, if spatial Taylor expansions about some spatial point on the design orbit are
known for both Asb and Asa, as is the case for our applications, then it is straight forward
to find an associated Taylor expansion for χ.
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With the use of (3.75) the relations (3.71) and (3.72) can be rewritten in the form

P canay = P canby + (∂χ/∂X) when z = zc,

P canay = P canby + (∂χ/∂Y ) when z = zc. (3.76)

There is one last step. Let T c be the symplectic transformation map defined by the relation

T c = exp(: χ :). (3.77)

With the aid of this map it is easily verified that the relations (3.69) and (3.71) through
(3.73) can be rewritten in the form

Xa = exp(: χ :)Xb = T cXb with z = zc,

Y a = exp(: χ :)Y b = T cY b with z = zc,

τa = exp(: χ :)τ b = T cτ b with z = zc; (3.78)

P canax = exp(: χ :)P canbx = T cP canbx with z = zc,

P canay = exp(: χ :)P canby = T cP canby with z = zc,

P canaτ = exp(: χ :)P canbτ = T cP canbτ with z = zc. (3.79)

We have determined that a change in gauge amounts to making a symplectic transforma-
tion.

4 Surface Methods for Curved Beam-Line Elements

Surface methods based on the use of cylinders are appropriate for straight beam-line el-
ements. However, cylinders cannot be employed for elements with large sagitta, such as
dipoles, where no straight cylinder would fit within the aperture. For such cases more
complicated surfaces are required. For example, Figure 4 shows a bent box with straight
end legs. Its surface could be used to treat a dipole with large sagitta. In this case, the
bent part of the box would lie within the body of the dipole, and the straight end legs
would enclose the fringe-field regions.

But now there is a complication: The cylinder methods succeeded because Laplace’s
equation is separable in circular and elliptical cylinder coordinates. Consequently, we were
able to find a kernel that related the interior vector potential to the normal component of
the surface magnetic field. However, there is no bent coordinate system with straight ends
for which Laplace’s equation is separable.

This problem can in principle be overcome if both the normal and tangential components
of the magnetic field are known on the surface.6 Alternatively and equivalently, it can in

6This approach, including the use of Helmholtz decomposition and Dirac magnetic monopoles, was
pioneered by Peter Walstrom.
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Figure 4: A bent box with straight end legs.

principle be overcome if both the normal component of the magnetic field and the scalar
potential for the magnetic field are known on the surface. Such data are in fact provided
on a grid by some three-dimensional field solvers, and these data can be interpolated onto
the surface. The purpose of this section is to describe how this can be accomplished.

4.1 Mathematical Tools

4.1.1 Helmholtz Decomposition

Suppose V is some simply connected volume in three-dimensional space bounded by a
surface S, and suppose F (r) is some three-dimensional vector field defined in V . Then,
according to a theorem of Helmholtz, there are scalar and vector potentials φ(r) and A(r)
such that

F (r) = −∇φ(r) +∇×A(r) for r ∈ V. (4.1)

Specifically, let Let G(r, r′) be the function

G(r, r′) = 1/|r − r′|. (4.2)

Then, the scalar and vector potentials are given in terms of F (r), with r ∈ V , by the
relations

φ(r) = −[1/(4π)]

∫
S
dS′ n′ · F (r′)G(r, r′) + [1/(4π)]

∫
V
d3r′ G(r, r′)∇′ · F (r′),

(4.3)
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A(r) = −[1/(4π)]

∫
S
dS′ [n′ ×G(r, r′)F (r′)] + [1/(4π)]

∫
V
d3r′ G(r, r′)∇′ × F (r′).

(4.4)

Here n′ is the outward normal to S at the point r′. We emphasize, as is evident from
(4.1), (4.3), and (4.4), that for r ∈ V the vector field F is completely specified in terms of
the divergence and curl of F within V and the values of F on the bounding surface S. No
information is required outside of V .

We will apply this result to the case for which F is the magnetic field B. Suppose
that B(r) is source free when r is within V , as will be true for the magnetic field in an
evacuated beam pipe. In that case there will be the relations

∇ · F (r) = 0 for r ∈ V (4.5)

and
∇× F (r) = 0 for r ∈ V (4.6)

so that only the surface terms appear in (4.3) and (4.4). With F replaced by B, they then
become

φn(r) = −[1/(4π)]

∫
S
dS′ n′ ·B(r′)G(r, r′), (4.7)

At(r) = −[1/(4π)]

∫
S
dS′ [n′ ×B(r′)]G(r, r′). (4.8)

Correspondingly, (4.1) takes the form

B(r) = −∇φn(r) +∇×At(r) for r ∈ V. (4.9)

Here we have added the superscripts n and t to emphasize that φn(r) and At(r) depend,
respectively, only on the normal and tangential components of B on S.

We also take the opportunity at this point to note that G(r, r′) as given by (4.2), and
for fixed r′, is an analytic function of the components of r for r 6= r′. It follows from the
representations (4.7) and (4.8), under very mild assumptions on the surface behavior of
B(r), boundedness and continuity will do, that φn(r) and At(r) are analytic functions of
the components of r for r within V . Correspondingly, from (4.9), B(r) must then also be
analytic for r within V .

4.1.2 Use of Dirac Magnetic Monopoles

For a Hamiltonian treatment of trajectories, we need a vector potential A(r) such that

B(r) = ∇×A(r). (4.10)
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As it stands, (4.9) is not of this form due to the term −∇φn(r). What we need is an
associated vector potential term An(r) with the property

∇×An(r) = −∇φn(r). (4.11)

Then (4.10) will be achieved with

A = An + At. (4.12)

We will see that the desired vector potential term An can be found with the use of Dirac
magnetic monopole vector potentials.

Inspection of φn(r), as given by (4.7), shows that it appears to arise from a distribution
of magnetic monopoles described by a magnetic charge surface density spread over the
surface S with the surface charge density given by

Bn(r′) = n′ ·B(r′). (4.13)

Therefore, it should be possible to find an equivalent vector potential based on the vector
potential for a magnetic monopole.

This is indeed the case. It can be shown that a suitable An is given by the relation

An(r) =

∫
S
dS′ Bn(r′)Gn(r; r′,m′) (4.14)

where the kernel Gn is defined by the rule

Gn(r; r′,m′) = {m′(r′)× (r − r′)}/{4π|r − r′|[|r − r′| −m′(r′) · (r − r′)]}. (4.15)

The construction of Gn is based on the use of magnetic monopoles situated at the points
r′ ∈ S with Dirac strings that extend to infinity along straight lines in the directions m′.
In evaluating the integral (4.14) it necessary to specify m′(r′) as r′ varies over S. There
is considerable freedom in doing so, and different choices simply result in different gauges
for An(r). There is only one major consideration: As described below, no string should
intersect the volume V . For many geometries a convenient choice is to require that m′(r′)
be normal to and point outward from S,

m′(r′) = n′(r′). (4.16)

Other choices may also be convenient and useful.
At this point we can take pleasure in observing that Gn(r; r′,m′), and consequently

An(r), have several desirable properties: First, as long as the Dirac strings for r′ ∈ S
do not intersect V , the functions Gn(r; r′,m′), for every r′ ∈ S, are analytic in r for all
r ∈ V . It follows from (4.14), under mild conditions on Bn(r′) for r′ ∈ S, that An(r) is

30



analytic in V . Second, since the kernel Gn(r; r′,m′) is essentially the vector potential for
a Dirac magnetic monopole, it can be shown to have, for r ∈ V , the properties

∇ · [Gn(r; r′,m′)] = 0, (4.17)

∇× [∇×Gn(r; r′,m′)] = 0. (4.18)

It follows from (4.14), again under mild conditions on Bn(r′), that An(r) has these same
properties,

∇ · [An(r)] = 0, (4.19)

∇× [∇×An(r)] = 0. (4.20)

In practical applications, the surface values Bn(r′) will only be known approximately, and
the integrals (4.14) may be evaluated numerically with limited precision. It is comforting
to know that, nevertheless, the resulting An(r) will be analytic in V and will satisfy the
relations (4.19) and (4.20) exactly no matter what errors are present in the surface values
Bn(r′) and no matter how poorly the integrals (4.14) are evaluated. All that matters is
that the kernel Gn be evaluated to high precision.

4.1.3 Use of the Scalar Potential ψ

What can be said about the properties of At(r) as given by (4.8)? It can be shown to
be analytic in V and to satisfy properties analogous to (4.19) and (4.20) provided (4.8) is
evaluated exactly. As is the case for (4.14), we would like to have an integral representation
for At that has these desired properties no matter how badly the integrals are evaluated.
This can be accomplished with the aid of a scalar potential.

Since, by assumption, B(r′) is curl free for r′ ∈ V , there exists a scalar potential ψ(r′)
such that

B(r′) = +∇′ψ(r′). (4.21)

[Note, by convention, we have used a minus sign in (4.9) and a plus sign in (4.21). See also
(2.2).] Next we observe that (4.8) involves the tangential component of B(r′) on S. Under
the assumption that B(r′) is curl free, knowledge of the tangential component of B(r′)
on S is equivalent to a knowledge of ψ on S. It should therefore be possible to transform
(4.8) to an expression involving ψ on S.

This is indeed possible. It can be shown, with the aid of (4.21), that (4.9) can be
transformed to become

At(r) =

∫
S
dS′ ψ(r′)Gt(r, r′) (4.22)

where
Gt(r, r′) = [n′(r′)× (r − r′)]/[4π|r − r′|3]. (4.23)

At this point we should verify that we have achieved our desired goals. First, it is
evident from (4.23) that Gt(r, r′) is analytic in the components of r for r ∈ V and r′ ∈ S.
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Therefore, from the representation (4.22), we see that, under mild conditions on ψ(r′),
At(r) will be analytic in V . Second, it can be verified, for r within V and r′ ∈ S, that Gt

has the properties

∇ ·Gt(r, r′) = 0, (4.24)

∇× [∇×Gt(r, r′)] = 0. (4.25)

Note that these relations are analogous to the relations (4.17) and (4.18) for Gn. It follows,
by the same reasoning used in the case of Gn and An, that At satisfies relations analogous
to (4.19) and (4.20), and these relations hold exactly even in the presence of errors in the
surface values ψ(r′) and no matter how poorly the integrals (4.22) are evaluated. Similar
to to the case of Gn, all that matters is that the kernel Gt be evaluated to high precision.

4.1.4 Final Discussion

Let us put together what we have learned about analyticity and “exactness”. Look at
(4.10) and (4.12). Since An(r) and At(r) are both analytic in V , A(r) will be analytic
in V . Correspondingly, by (4.10), B(r) will be analytic in V . And since (4.17), (4.18),
(4.24), and (4.25) hold, analogous results will hold for A(r),

∇ · [A(r)] = 0, (4.26)

∇× [∇×A(r)] = 0. (4.27)

Moreover, analyticity and the relations (4.26) and (4.27) will still hold exactly even in the
presence of errors in the surface values Bn and ψ, and no matter how poorly the relevant
integrals are evaluated. Finally, in view of (4.16), the Maxwell equation

∇ ·B = 0 (4.28)

will be satisfied exactly. And, in view of (4.16) and (4.27), the second Maxwell equation

∇×B = 0 (4.29)

will also be satisfied exactly.
We finally note, as a consequence of (4.26) and (4.27) and analogous relations for An

and At, that there are the relations

∇2A = ∇2An = ∇2At = 0. (4.30)

All the Cartesian components of A, An, and At are harmonic functions.
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4.2 Procedure

We will now illustrate how the mathematical results of Subsection 4.1 can be applied. For
simplicity, we will restrict our attention to the case of a dipole (which may be a combined-
function dipole) and the use of the surface illustrated in Figure 4.

4.2.1 Selection of Hamiltonian and Scaled Variables

Even though the design orbit in a dipole is curved, it and the transfer map about it
are usually most easily calculated using Cartesian coordinates with z as the independent
variable. In this subsection we will describe the Hamiltonian for this purpose, first for
unscaled variables and then for scaled dimensionless variables.

Selection of Hamiltonian

When z is taken to be the independent variable, the time t becomes a dependent variable
and the Hamiltonian K for particle motion takes the form

K = −[p2
t /c

2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2 − qAz. (4.31)

Here pt is the canonical momentum conjugate to t.
Let β and γ be the usual relativistic factors defined by

β = v/c, (4.32)

γ = (1− β2)−1/2, (4.33)

where v is the particle velocity. Then the magnitude of the mechanical momentum is given
by the relation

p = γmv = γβmc, (4.34)

and the quantity pt has the value

pt = −(m2c4 + p2c2)1/2 = −γmc2. (4.35)

Since K is independent of t, the quantities pt and p will be constants of motion. Finally,
let p0 be the momentum for the design orbit.

Scaled Dimensionless Variables

At this point it is useful to introduce dimensionless/scaled variables by the rules

x̂ = x/`, (4.36)

ŷ = y/`, (4.37)
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τ = ct/`, (4.38)

p̂x = px/p
0, (4.39)

p̂y = py/p
0, (4.40)

pτ = pt/(p
0c). (4.41)

Here ` is a convenient scale length.
The dimensionless variables satisfy the Poisson bracket rules

[x̂, p̂x] = [ŷ, p̂y] = [τ, pτ ] = 1/(`p0). (4.42)

From now on we will redefine their Poisson brackets so that conjugate dimensionless vari-
ables have the usual unity Poisson brackets. This is permissible providing the Hamiltonian
K is replaced by a properly scaled new Hamiltonian H given by the relation

H = −[1/(`p0)]{[(p0c)2p2
τ/c

2 −m2c2 − (p0p̂x − qAx)2 − (p0)2p̂2
y]

1/2 + qAz}

= −(1/`){p2
τ − (mc/p0)2 − (p̂x −Ax)2 − (p̂x −Ax)2]1/2 +Az}

(4.43)

where
Ax(x̂, ŷ, z) = (q/p0)Ax(`x̂, `ŷ, z), (4.44)

Ay(x̂, ŷ, z) = (q/p0)Ay(`x̂, `ŷ, z), (4.45)

Az(x̂, ŷ, z) = (q/p0)Az(`x̂, `ŷ, z). (4.46)

4.2.2 Interpolation and Evaluation of Integrals for A

How are the various integrals appearing in Section 4.1 to be be evaluated numerically?
Carry out the following steps:

1. Suppose the surface S is subdivided into flat and curved portions in such a way
that the the flat portions (such as the surfaces of the straight end legs) consist of
rectangles. Next map the curved portions (such as the top, bottom, and sides of the
shaded portions of the surface in Figure 4) into rectangles.

2. Select cubature points on all these rectangles. Then map these points back into S to
form a set of grid points on S, which we call surface grid points.

3. We assume there is also a three-dimensional rectangular grid, associated with the
electromagnetic solver, on which the values of B(x, y, z) and ψ(x, y, z) have been
found by the solver. We again call this grid the solver grid. For each surface grid
point interpolate B(x, y, z) and ψ(x, y, z) values at nearby solver grid points, using
for example cubic interpolation, to obtain associated surface grid-point values.
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4. From the surface grid-point values B construct associated values of Bn.

5. When required for any point r ∈ V , obtain the values An(r) and At(r) by evalu-
ating the integrals (4.14) and (4.22) using rectangular cubature formulas for all the
rectangles of item 2 above. In the case of curved elements in S, take into account
the Jacobian associated with mapping them into rectangles. If various derivatives of
A(r) [and hence of An(r) and At(r)] are required with respect to the components
of r, evaluate the associated derivatives of Gn and Gt analytically and use these re-
sults before employing the cubature formulas. That is, differentiate (4.14) and (4.22)
under the integral sign.

4.2.3 Calculation of Design Orbit

The calculation of the design orbit typically involves a fitting process. Let zen and zex

denote the values of z at entry and exit. Then, for various values of the initial conditions,
including pτ , and for various dipole strengths, the equations of motion generated by H
must be integrated over the interval z ∈ [zen, zex] until a suitable design orbit is found.7

Note that these differential equations will depend on A and its first-order derivatives with
respect to x̂ and ŷ. By suitable it is meant, for example, that the design orbit should
pass through the good-field region of the dipole, have the desired bend angle, and have the
desired entry and exit angles.

4.2.4 Calculation of Map

Introduce deviation variables about the design orbit and expand the Hamiltonian in these
variables to find the homogeneous polynomials H2, H3, · · · . So doing will require homoge-
neous polynomial expansions (also about the design orbit) of A(r) [and hence of An(r)
and At(r)]. Produce these polynomial expansions by (analytically) making homogeneous
polynomial expansions (again about the design orbit) of the kernels Gn and Gt before
employing the cubature formulas. With these results in hand, numerically integrate the
map equations of Subsection 1.7.2 to ultimately determine what we will call MBB, the
map obtained using the Bent Box vector potential.

4.2.5 End-Field Terminations

Recall Figure 4. Suppose the straight end legs, which enclose the fringe-field regions, are
long enough so that the magnetic field B is sufficiently small at entry and upon exit. It
is found, upon calculating A with the use of (4.12), (4.14), and (4.22), that A may still
be sizable at the ends. In this case use of the end-field termination procedure described in
Section 3.3 is essential.

7Sometimes it is more convenient to begin integrations at the center of the dipole and then work outwards.
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Let Mben→aex be the symplectic map that relates the canonical coordinates (in Carte-
sian variables and in the Poincaré-Coulomb gauge) after exit to those before entry. Also,
as in Subsection 3.3.4, let the two gauge transformations at entry and at exit be described
by the symplectic maps Men and Mex. With the aid of these two maps, the full map
Mben→aex describing the relation between the initial conditions just before entry and the
final conditions just after exit can then be written in the form

Mben→aex =MenMBBMex. (4.47)

4.2.6 Reference-Plane/Pole-Face Rotations

There is still one last step to be made. By design, a dipole produces a bent design orbit.
When Cartesian variables/coordinates are used, the entry and exit reference planes are
planes of constant z. We would like the incoming/entry reference plane to be normal
to the incoming design orbit and the outgoing/exit reference plane to be normal to the
outgoing design orbit. We will call these two reference planes the standard reference planes.

The relation between canonical coordinates with respect to planes of constant z and the
standard reference planes can be described by two symplectic maps, denoted asMproten and
Mprotex, which rotate the reference plane at entry and at exit. (Rotation of the reference
plane is also sometimes referred to as pole-face rotation.) See, for example, Figure 5.

x
x̄

z

ψ
y- and ȳ-axes point

out of the page

Figure 5: The map Mproten describing the relation between the standard x̄, ȳ en-
try/incoming reference plane and an x, y plane of constant z.

There is a well-defined procedure for computing these maps, including reference-plane
rotation in the presence of a (perhaps residual) magnetic field. With the aid of these
maps the net map M that relates incoming and outgoing coordinates, with respect to the
standard reference planes, is given by the product

M =MprotenMben→aexMprotex. (4.48)
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Upon combining (4.47) and (4.48) we obtain the final product result

M =MprotenMenMBBMexMprotex. (4.49)

4.3 Benchmarking and Smoothing Tests

Benchmarking

There are at least two ways to test/benchmark the accuracy of the procedures outlined in
Section 4.2:

(a) There are magnetic charge configurations for which both B(x, y, z) and ψ(x, y, z) as
well as an associated vector potential can be computed analytically. One of the simplest
is that of a magnetic monopole doublet. [In that case the vector potential could be that
for two magnetic monopoles of opposite sign with associated strings running to infinity.
Call this vector potential Ammd(x, y, z) to indicate that it is the vector potential of a
magnetic monopole doublet.]

After selecting a spacing between the monopoles in the doublet and a design energy, a
design orbit can be integrated through the B field in such a way that it lies in a plane
perpendicular to the straight line joining the monopoles and passes directly between
the poles of the monopole doublet. Subsequently, the strength of the monopoles in the
doublet could be adjusted to achieve some desired bend angle. Finally, with a design
orbit in hand, one could set up a surrounding bent box with legs.

Now that the parameters for the monopole doublet have been specified, set up a rect-
angular three-dimensional grid (say with equal spacings in all three Cartesian coordi-
nates) and compute the values of Bsv(x, y, z) and ψsv(x, y, z) at the grid points. Here
we have introduced the superscript sv because we wish to view these values as solver
values.

Since the parameters for the bent box with legs have also been specified, and thereby
the surface S, set up a surface grid as described in steps 1 and 2 in Subsection 4.2.1.
Execute steps 3 and 4 in Subsection 4.2.1 to obtain a set of Bn and ψ values on the
surface grid points

Execute step 5 in Subsection 4.2.1 to obtain Abbv(x, y, z) and its derivatives at any
desired point interior to S. Here we have introduced the superscript bbv to emphasize
that bent-box values are being used.

At the interior solver grid points compute Bbbv(x, y, z) using Abbv(x, y, z) in (3.43).
Compare Bbbv(x, y, z) evaluated at the interior solver grid points with the solver val-
ues for Bsv(x, y, z) at these points. [Note that most interior values of B(x, y, z) and
ψ(x, y, z) played no role in the calculation of Abbv(x, y, z) since interpolation onto the
surface grid involved only solver points very close to the surface grid points.] Provided
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the solver and surface grids are sufficiently fine, when this comparison is made excellent
agreement through many significant figures is found between interior solver grid-point
values of Bbbv and Bsv.

The benchmark test so far has compared magnetic fields. One can extend this test
to also compare maps. Let Mexact be the exact map computed using the magnetic
monopole doublet vector potential Ammd(x, y, z) and let Mbbv be the map computed
using the vector potential Abbv(x, y, z). In general these maps will differ because, while
Ammd(x, y, z) and Abbv(x, y, z) produce essentially the same magnetic field as described
above, they differ by a gauge transformation. However, suppose both these maps are
transformed, analogous to what was done in (4.47), to bring them to maps for which
the initial and final vector potentials are in the Poincaré-Coulomb gauge. When this
is done, excellent agreement is found between the two transformed maps.

(b) Use a field solver to find the fields Bsv(x, y, z) and ψsv(x, y, z) on some solver grid
for some curved beam-line element of interest. Following the steps outlined in item
(a) above, compute Abbv(x, y, z) and its first derivatives at any interior point. From
these first derivatives compute Bbbv(x, y, z) at any interior point using (3.43). Com-
pare interior solver grid-point values of Bbbv and Bsv. This comparison also tests
how “Maxwellian” the Bsv(x, y, z) solver values actually are. Provided the solver and
surface grids are sufficiently fine, when this comparison is made excellent agreement
through many significant figures is found between interior solver grid-point values of
Bbbv and Bsv.

Note that when simply comparing fields, it is not really necessary to set up a design
orbit and select a corresponding bent box with straight end legs. The use of any box,
bent or straight, can be tested as long as the box fits within the solver grid and its
ends are long enough to extend into essentially field-free regions.

Smoothing Tests

Note that, according to (4.30), the components of A(x, y, z) are guaranteed to be harmonic
functions. Let Atrue(x, y, z) be the result of evaluating the surface integrals (4.14) and
(4.22) using very careful integration and high-quality field data. Also, let Aapprox(x, y, z)
be the result of evaluating the surface integrals (4.14) and (4.22) in some approximate
fashion and employing only approximately accurate field data. The difference between
these two results is a measure of the error produced as a result of these approximations,

Aerror(x, y, z) = Aapprox(x, y, z)−Atrue(x, y, z). (4.50)

Since the difference of two harmonic functions is again a harmonic function, the components
of Aerror(x, y, z) will be harmonic functions. Moreover, since harmonic functions take their
extrema on boundaries, we expect that the magnitude of Aerror(x, y, z) will decrease with
distance from S.
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To see how this expectation is realized in practice, there are at least two ways to test
how sensitive surface methods are to noise in the field values at solver grid points:

• Use a field solver to find the fields on some solver grid for some beam-line element
of interest. Following the steps outlined in item (a) above, compute Abbv(x, y, z) and
its derivatives through some fixed order at any interior point. To model the effect of
noise, modify the fields at the solver grid points in some small and random way. For
example, at each solver grid point one might make the replacements

B(x, y, z)→ B(x, y, z) + |B(x, y, z)|εB(x, y, z)n(x, y, z), (4.51)

ψ(x, y, z)→ ψ(x, y, z) + εψ(x, y, z)ψ(x, y, z). (4.52)

Here the n(x, y, z) are unit vectors to be chosen randomly at each solver grid point,
and at each solver grid point εB(x, y, z) and εψ(x, y, z) are to be chosen randomly
from small intervals, say εB(x, y, z) ∈ [−.01, .01] and εψ(x, y, z) ∈ [−.01, .01]. Use the
modified fields to find associated modified Abbv(x, y, z) and its derivatives. Repeat
this operation for several random number seeds. Examine how the so generated en-
semble of modified Abbv(x, y, z) and its derivatives compares to the Abbv(x, y, z) and
its derivatives computed in the absence of noise. If desired, compute also the associ-
ated maps M, including end-field termination effects following (4.47), and examine
how they compare.

• Examine how sensitive the Abbv(x, y, z) values and their derivatives through some
fixed order at any interior point, and the associated interior B values given by (4.10),
are to the values of B(x, y, z) and ψ(x, y, z) at any given solver grid point. Do this
by setting all solver grid point field values to zero save for one, for which B is taken
to be a randomly chosen unit vector and for which, say, ψ = ±1. Let z∗ be the value
of z for the solver grid point at which the field is taken to be nonzero. It is expected
that the contribution of any solver grid point field value should fall off with distance
from the location of the solver grid point. For this reason, arrange to have z∗ ≈ 0.
(Here we assume that the coordinate system has been chosen so that the beam-line
element under study is centered about z = 0.)

5 Closing Summary

We have described the use of surface methods for both straight and curved beam-line
elements, and the use of the minimum gauge at element ends. These surface methods begin
with three-dimensional field data on a grid provided by some magnetic field solver, and
result in a design orbit and the symplectic transfer map about that orbit. The Maxwell
equations are satisfied exactly and analyticity is assured. We have also described how
these methods, because they exploit the properties of harmonic functions, are expected
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to be relatively insensitive to numerical noise, and we have described methods for testing
this expectation. Based on these methods, it is now possible for the first time to compute
realistic symplectic transfer maps to high order including all multipole-error and fringe-
field effects. These maps can then be used to realistically predict/evaluate the expected
performance of both linear and circular machines.
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