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“It is difficult, if not impossible, to conceive a real engineering problem in optics that does not 

contain some element of uncertainty requiring statistical analysis...” [J.W. Goodman, 

Statistical Optics] 

 

The same situation for Free-Electron Lasers  

High-gain amplifier can be described in a deterministic way 

The initial conditions inherently include “elements of uncertainty requiring statistical analysis” 

An external seed laser can be described as a classical deterministic field 

An energy modulation induced by modulators can also be considered deterministic 

Deterministic density modulation is also possible… 

…But the shot-noise in the electron beams is always present and is very fundamental 

►In some cases it represents the main signal (SASE) 

►In others it is detrimental (seeded FELs) 

A statistical Optics treatment of FELs must be based on 

►A statistical analysis of shot-noise 

►A model of the FEL process 
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Shot-noise as stochastic signal 
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Shot-noise description in relativistic electron beams from 

the LINAC 

Particle distribution – discreteness of electric charge: 

 

 

Ne - number of electrons per bunch (1nC ~ 6e9 electrons)  

𝑡𝑝, 𝑟 𝑝 
- random variables: arrival times and position at the entrance of the undulator (z=0) 

Origin of randomness: photoemission at the cathode 

Semiclassical theory based on 

►𝑃 1; ∆𝑡, ∆𝐴 = 𝛼∆𝑡 ∆𝐴 𝐼 𝑥, 𝑦; 𝑡  

• Probability of 1 photoevent in ∆𝑡 ≪ 𝑐𝑜ℎ. 𝑡𝑖𝑚𝑒, ∆𝐴 ≪ 𝑐𝑜ℎ. 𝑎𝑟𝑒𝑎 

• photocathode laser intensity 𝐼 𝑥, 𝑦; 𝑡  

►𝑃 𝑛 > 1; ∆𝑡, ∆𝐴  negligible 

►Number of photoevents in ∆𝑡1 and ∆𝑡2  are statistically independent 
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It results in Poisson space-time impulse process with probability of finding K events between t 

and t+t in the area A given by 

 

 

►𝐾  is the average number of photoevents 

 

 

► h defines the quantum efficiency and 

 

 

 

is the integrated intensity  

More in detail, the assumptions for the semiclassical theory are based on electrons as wave-

functions evolving according to the Schroedinger equation [see e.g. Mandel and Wolf, Optical 

Coherence and quantum optics] 

 

 

 

►m is the electron mass, 𝑉(𝑟 ) the atomic Coulomb potential, 𝐸𝑐 = 𝐸0cos (𝜔𝑡 − 𝑘𝑦)𝑧  the 

incident field (classical, deterministic); here the dipole approximation has been used 

► …and a calculation of the transition probability yields our starting assumptions 

Semiclassical theory is in agreement with fully quantum 

  

 

),(),()(
2

),( 2
2

trtrErerV
mt

tr
i c




 















7 Statistical Optics and Free Electron Lasers Theory Gianluca Geloni, UCLA, Los Angeles, January 25th, 2017 

In principle, quantum uncertainty may play a role during radiation emission in terms of: 

Quantum recoil  

►Negligible for a large ratio between the FEL bandwidth and the energy of a photon relative 

to the electron energy.  

►This refers to the so-called quantum FEL parameter 𝜌 =
2𝜋𝜌𝛾𝑚𝑐2

ℎ𝜔𝑟

≪ 1 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑐𝑎𝑠𝑒 

►Usually quantum recoil negligible for present projects.  

►FEL in the quantum regime proposed and studied elsewhere by many [e.g. Bonifacio, 

Pellegrini, Piovella, Robb, Schiavi, Schroeder…]   

Quantum diffusion 

►Always present: it induces energy spread in the electron beam [Saldin, Schneidmiller, 

Yurkov NIM A 381, 545 (1996)]: 

 

  

 

►Limits the shortest wavelength achievable 

Recent work [see Anisimov, Quantum nature of electrons in classical FELs, FEL2015]  warn 

that effects due to the quantum nature of single electrons (Free-space dispersion of electron 

wavepackets propagating along the undulator+quantum average) may yield to larger-than-

previously-believed quantum effects for HXR; and especially for harmonic lasing. 

 

 Here we neglect these effects. 
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Under these assumptions we deal with a classical current 

We stick to a classical description of the e.m. field… 

…and classical Statistical Optics is our language 

Summing up, shot-noise is a space-time random Poissonian process and current density at the 

entrance of the undulator given by 

 

 

Usually, 𝑁𝑒 → ∞ is invoked to treat the process as Gaussian. 

 For a 1D current in the frequency domain 
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Usually verified. E.g. 
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Phases uniformly distributed in (0, 2) 

Arrival times are statistically independent of each other (discussed before) 
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For Ne→∞ I r and I i follow Gaussian distributions… But 𝐼  𝑟 and 𝐼  𝑖  are actually jointly Gaussian, that 

is 

 

Then, 𝐼   can be shown to follow the Rayleigh distribution  

 

 

and using the transformation                                                       we obtain 

 

 

 

with                         that is the (usual) negative exponential distribution 

And in the time domain 

 

 













 


2

22

2 2
exp

2

1
),(


ir

ir

II
IIP
















2

2

2 2
exp)(



II
IP

     IP
IId

Id
IPIP

2

1
2

2

2




















2

2

2

2

)(

)(
exp

)(

1
))((








I

I

I
IP

22

2)(  I


















2

2

2

2

)(

)(
exp

)(

1
))((

tI

tI

tI
tIP



11 Statistical Optics and Free Electron Lasers Theory Gianluca Geloni, UCLA, Los Angeles, January 25th, 2017 

 

 

 

 

Concerning the current density 

 

 

We also have 

 

 

 

Any integral of the current density (in any domain!) then follows the Gamma distribution (with 

variance equal to the relative dispersion: more later) 

Shot-noise can be treated as a space-time Gaussian process 
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Deterministic part: 

FEL amplification 
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As discussed before, the FEL amplifier can be described in a deterministic way 

One way to describe the full particle distribution is to use the Klimontovich distribution 

 

Here ne is the max volume density of electrons and “standard” variables are already introduced in 

 the longitudinal direction:                     and 

The continuity equation holds :  

Consider only  interaction of a single electron with collective fields from the beam 

This means that we are actually invoking a Vlasov equation.  
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Helical undulator, with transverse coordinates as parameters 

 

with                                                                                𝜃𝑠 =
𝐾

𝛾
 

Solution in the linear regime uses the particle distribution                                                       

background  and               a small (linear regime) perturbation 

Given the transverse  profile function S with S(0)=1 and r0 the typical transverse beam size the 

current density is 

 

Vlasov equation must be solved together with Maxwell equations 

 

Expansion in azimuthal harmonics 

Assume given starting density modulation as initial condition  

 

 

 

 

(Here and below I follow:  Saldin, Schneidmiller, Yurkov, Opt. Comm. 186, 2000) 
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The SASE case.  

FEL amplifier and stochastic 

process 
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Gaussian process. And a linearly filtered Gaussian random process is also a Gaussian process. 

Therefore in the linear regime the field inherits the statistical properties of the current 

In particular, the intensity in the time 𝐼 𝑟 , 𝑡 ~ 𝐸(𝑟 , 𝑡) 2 or frequency domain 𝐼 𝑟 ,𝜔 ~ 𝐸(𝑟 , 𝜔) 2 

(fixed z)  follows a negative exponential distribution as well-known 

 

 

And any integral of I follows a Gamma distribution. For example given                              or  

                                       or 
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M is then interpreted as the average number of modes 

The meaning of M depends on the definition of the integral. 

                              is the total energy in the pulse, then M is the total number of modes 

                              is the power, then M is the number of transverse modes 

                              is the energy density at given position. Then M is the number of longitudinal 

modes 

And obviously considering                                       one obtains M as the number of longitudinal 

modes through a monochromator. 

Degree of transverse and longitudinal coherence is inverse mode number 

Peak Brightness is defined (we will comment on this definition later!) in terms of longitudinal and  

transverse modes as 
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Any integral of I follows a Gamma distribution (seen before)...  

…Yet longitudinal and transverse modes are treated very differently by the amplification process. 

Transversely, different self-reproducing modes have different gains 

The well-known ‘mode-guiding’ mechanism takes place and only one mode tends to survive  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Saldin, Schneidmiller and Yurkov, Opt. Comm 186 (2000) 185] 
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Observation  

When only one mode tends to survive one expects good transverse coherence 

This is correct. However the presence of many longitudinal modes limits the max degree 

achievable due to interplay between longitudinal and transverse modes: transverse modes 

depend on frequency 
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[Saldin, Schneidmiller and Yurkov, New Journal of Physics 12, 2010] 

Behaviour of power, coherence (long. & transv.) and brightness  

Linear/Nonlinear&saturation 

Linear regime: what discussed above holds 

Saturation: the statistical properties of shot-noise are transformed by the non-linearity  

of the FEL filter 
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Correlation functions and 

figures of merit 
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A statistical study of radiation properties is better done with the help of correlation functions. For 

instance, in the time-domain (at fixed z) 

 

And equivalently in the frequency domain 

 

The knowledge of all order correlation functions is needed to fully characterize the stochastic 

process (see Goodman).  

In the case of a Gaussian process (FEL in the linear regime) the moment theorem applies 

 

This means that the basic quantity to study in these cases is 

 

Or equivalently the same applies in other domains for instance 

 

If we are in the nonlinear regime it still makes sense to study these functions, but they do 

not fully characterize the process 
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Longitudinal diagnostics 

Given a statistical measurement of the spectral correlation can we get the photon pulse duration? 

 

 

 

 

Based in weighted spectral second order correlation function 

  

 

 

 

(Single-shot spectrum assuming given  

Line for the spectrometer) 
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Use a model for the amplification process to derive an analytical expression for G2 

Fit the experimentally measured G2 with the analytical expression to derive the pulse duration 

It works nicely! 

The model for  G2 is based on 

 

 

 

 

 

It works also after the linear regime, but this reasoning is strictly ok in the linear regime 

 

 



25 Statistical Optics and Free Electron Lasers Theory Gianluca Geloni, UCLA, Los Angeles, January 25th, 2017 

 

 

If the inverse bunch duration is small compared to the FEL bandwidth  quasi-stationarity is a 

good approximation  
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In this way one fixes r = 0 and can study longitudinal coherence at fixed transverse position in 

the frequency domain using 

 

Or in the time domain using 

 

Dependence on fixed position is still there, because there is no quasi-homogeneity in general 

(quasi-homogeneity is as quasi-stationarity in the spatial domain) 

 

Study of transverse coherence is done instead by studying (slow dependence on  if quasi-

stationary)                          at  =0     

 

Or by studying (slow dependence on time if quasi-stationary)                         at t=0 
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Brightness 
In Radiometry (based on geometrical optics) the concept of Radiance is used 

Radiance is Spectral photon flux per unit area per unit projection angle is the photon flux 

density in phase space 

When Liouville holds (non - dissipative case) the density of system points near a given point 

evolving through phase - space is constant with time 

 

 

 

 

 

 

 

 

 

 

 

Then the Brightness is the maximum flux density in phase - space, and is the theoretical max 

concentration of photon flux density delivered by an ideal optical imaging system 
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Brightness 

Beyond geometrical optics, one uses the concept of Wigner distribution (Kwang-Je Kim was the 

first to apply this approach to SR & FELs, see Bazarov PRSTAB 15 050703 (2012) for a review) 

Start with cross-spectral density  

 

It can be seen as the analogue of a density matrix  

Wigner distribution is the FT of the cross-spectral density 
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Brightness 
The W distribution can obviously be used to express the degree of transverse coherence in an 

equivalent way as done with the cross-spectral density           

 

 

 

The W distribution can also be used to extend the notion of Brightness in a very natural way 

 

Compare with the previous definition: 

The latter can be written in terms of integrals of Wigner function 

 

 

And does not include information on wavefront properties, which is instead included in 

 …though for FELs, the fundamental mode has typically a ‘nice’ wavefront 
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Brightness 

Note that also here we are using the transverse W function 

 

This might be generalized using the full correlation function 

 

And then 

 

 

We can stick to the previous definition of Brightness  
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