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Electric Charge in the Field of a Magnetic Pole

• Magnetic pole – “end” of a semi-infinite solenoid

• In 1896, Birkeland reported studies of cathode rays in a 

Crookes tube when a strong, straight electromagnet was 

placed outside and to the left.

• The nature of cathode rays was not yet understood
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Kristian Birkeland

• Birkeland’s scientific efforts are honored on the 200-

kroner Norwegian banknote.

– In 1896 his major interest was Aurora Borealis.

• He was one of Poincare’s students in 1892
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Magnetic monopole

• The nature of cathode rays was not understood in 1896, 

which were “discovered” to be electrons by J.J. Thomson in 

1897 (in experiments with Crookes tubes and magnets). 

• In 1896, before the Thomson’s discovery, Poincare has 

suggested that Birkeland’s experiment can be explained by 

“cathode rays being charges moving in the field of a magnetic 

monopole”

– He wrote a brilliant paper in 1896, proving that charge motion in 

the field of magnetic monopole is fully integrable (but 

unbounded).
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Motion is on the cone surface
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Aurora Borealis
• Beginning in 1904, a younger colleague, C. Størmer, was inspired 

by Birkeland to make extensive modeling of the trajectories of 

electrons in the Earth’s magnetic field, approximated as that of a 

magnetic dipole.

– Størmer studied under Darboux and Poincare in 1898-1900
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Størmer and Birkeland in 1910



Two magnetic monopoles

• One can imagine that the motion of an electric charge 

between two magnetic monopoles (of opposite polarity) 

would be integrable, but it is not.

– Only approximate “adiabatic” integrals exist, when poles are far 

apart (as compared to the Larmour radius)

– This is the principle of a magnetic “bottle” trap; also, the 

principle of “weak focusing in accelerators”.

• Non-integrability in this case is somewhat surprising because 

the motion in the field of two Coulomb centers is integrable.

– This has been know since Euler and was Poincare’s starting 

point for the 3-body problem quest.
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Particle motion in static magnetic fields

• For accelerators, there are no useful exactly integrable

systems for axially symmetric magnetic fields in vacuum:

• Until 1959, all circular accelerators relied on approximate 

(adiabatic) integrability.

– These are the so-called weakly-focusing accelerators

– Required large magnets and vacuum chambers to confine 

particles;
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Weak focusing

• The magnetic fields can be approximated by the field 

of two magnetic monopoles of opposite polarity
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The race for highest beam energy

– Cosmotron (BNL, 1953-66): 3.3 GeV

• Produced “cosmic rays” in the lab

• Diam: 22.5 m, 2,000 ton

– Bevatron (Berkeley, 1954): 6.3 GeV

• Discovery of antiprotons 

and antineutrons: 1955

• Magnet: 10,000 ton

– Synchrophasatron (Dubna,1957): 10 GeV

• Diam: 60 m, 36,000 ton

• Highest beam energy until 1959



Strong Focusing
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CERN Proton Synchrotron

• In Nov 1959 a 28-GeV Proton Synchrotron started to 

operate at CERN

– 3 times longer than the Synchrophasatron but its 

magnets (together) are 10 times smaller (by weight)

– Since then, all accelerators have strong focusing
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Strong focusing
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 Focusing fields must satisfy Maxwell equations in vacuum

 For stationary fields: focusing in one plane while defocusing in another

 quadrupole: 

 However, alternating quadrupoles

results in effective focusing in both planes

( , , ) 0x y z 

2 2( , )x y x y  

Specifics of accelerator focusing:



The accelerator Hamiltonian

• After some canonical transformations and in a small-angle 

approximation
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This Hamiltonian is separable!
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Strong Focusing – Our Standard Approach Since 1952
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A simple periodic focusing channel (FODO)

• Thin alternating lenses and drift spaces

• Let’s launch a particle with initial conditions x and x’

L

F

L

D

L

F

L

D

L

F

L

D

L

F

…Equivalent to:

particle
(x, x')

s

L
D

D



S.  Nagaitsev, 

Jan 23, 2017

17

Simplest accelerator elements

• A drift space:  L – length

• A thin focusing lens:

• A thin defocusing lens: 
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Particle stability in a simple channel

Particle motion is stable only for certain L and F

When the motion is stable, it is periodic.
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Phase space trajectories
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F = 0.49, L = 1

7 periods,
unstable traject.
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When this simple focusing channel is stable, it is stable for ALL initial conditions !
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Courant-Snyder invariant
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Action-angle variables

• We can further remove the s-dependence by 

transforming the time variable, s.
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The accelerator Hamiltonian

• The time (s) dependence can be transformed out , but only 

after separating the Hamiltonian into the “x” and “y” parts.

• New ‘time” variable:                              
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Non-linear focusing

• It became obvious very early on (~1960), that the use of 

nonlinear focusing elements in accelerators is necessary and 

some nonlinearities are unavoidable (magnet aberrations, 

space-charge forces, beam-beam forces)

– Sexupoles appeared in 1960s for chromaticity corrections

– Octupoles were installed in CERN PS in 1959 but not used until 

1968. For example, the LHC has ~350 octupoles for Landau 

damping.

• It was also understood at the same time, that nonlinear 

focusing elements have both beneficial and detrimental 

effects, such as:

– They drive nonlinear resonances (resulting in particle losses) 

and decrease the dynamic aperture (also particle losses).
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Example: electron storage ring light sources

• Low beam emittance (size) is vital to light sources

– Requires Strong Focusing

– Strong Focusing leads to strong chromatic aberrations

– To correct Chromatic Aberrations special nonlinear magnets 

(sextupoles) are added
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dynamic aperture
limitations lead 
to reduced beam
lifetime
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Report at 
HEAC 1971

Example: Landau damping

• Landau damping – the beam’s “immune system”.  It is related to the spread of 

betatron oscillation frequencies.  The larger the spread, the more stable the 

beam is against collective instabilities.

– The spread is achieved by adding special magnets -- octupoles

• External damping (feed-back) system – presently the most commonly used 

mechanism to keep the beam stable.
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Most accelerators rely on both
 LHC:

 Has a transverse feedback system

 Has 336 Landau Damping Octupoles

• Octupoles (an 8-pole magnet):

– Potential: 

– Results in a cubic nonlinearity (in force)

4 4 2 2( , ) 6x y x y x y   



Let’s add a cubic nonlinearity…
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The result of this nonlinearity:

• Betatron oscillations are no longer isochronous:

– The frequency depends on particle amplitude (initial conditions)

• Stability depends on initial conditions

– Regular trajectories for small amplitudes

– Resonant islands (for larger amplitudes)

– Chaos and loss of stability (for even larger amplitudes)



Example: beam-beam effects
• Beams are made of relativistic charged particles and 

represent an electromagnetic potential for other 

charges

• Typically:

 0.001% (or less) of particles collide

 99.999% (or more) of particles are distorted
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Beam-beam effects

• One of most important limitations of all past, present and 

future colliders
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Beam-beam Force

Luminosity

beam-beam



Challenges of modern accelerators 

(the LHC case)

• LHC: 27 km, 7 TeV per beam

– The total energy stored in the magnets is HUGE: 10 GJ (2,400 

kilograms of TNT)

– The total energy carried by the two beams reaches 700 MJ 

(173 kilograms of TNT)

– Loss of only one ten-millionth part (10−7) of the beam is 

sufficient to quench a superconducting magnet

• LHC vacuum chamber diameter : ~40 mm

• LHC average rms beam size (at 7 TeV): 0.14 mm

• LHC average rms beam angle spread: 2 µrad

– Very large ratio of forward to transverse momentum

• LHC typical cycle duration: 10 hrs = 4x108 revolutions

• Kinetic energy of a typical semi truck at 60 mph: ~7 MJ
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What keeps particles stable in an accelerator?

• Particles are confined (focused) by

static magnetic fields in vacuum.

– Magnetic fields conserve the total energy

• An ideal focusing system in all modern 

accelerators is nearly integrable

– There exist 3 conserved quantities (integrals of

motion); the integrals are “simple” – polynomial in

momentum.

– The particle motion is confined by these integrals.
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Summary so far

• Chaotic and unstable particle motion appears even in 

simplest examples of accelerator focusing systems 

with nonlinearities

– The nonlinearity shifts the particle betatron frequency to 

a resonance (nωx + mωy = k)

– The same nonlinearity introduces a time-dependent 

resonant kick to a resonant particle, making it unstable.

• The nonlinearity is both the driving term and the source of 

resonances simultaneously



Integrability in Accelerators

• All present machines are designed to be integrable: 

drifts, quadrupoles, dipoles-- can all be accommodated 

in the Courant-Snyder invariants.

– These are all examples of linear systems (equivalent to 

a harmonic oscillator)

• The addition of nonlinear focusing elements to 

accelerators breaks the integrability, …but this 

additions are necessary and unavoidable in all modern 

machines – for chromatic corrections, Landau 

damping, strong beam-beam effects, space-charge, 

etc
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KAM theory

• Developed by Kolmogorov, Arnold, 

Moser (1954-63).

• Explains why we can operate 

accelerators away from resonances.

• The KAM theory states that if the 

system is subjected to a weak nonlinear perturbation, some 

of periodic orbits survive, while others are destroyed. The 

ones that survive are those that have “sufficiently irrational” 

frequencies (this is known as the non-resonance condition). 

• Does not explain how to get rid of resonances

– Obviously, for accelerators, making ALL nonlinearities to be 

ZERO would reduce (or eliminate) resonances

– However, nonlinearities are necessary and unavoidable.
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Nonlinear Integrable Systems

• Are there “magic” nonlinearities with zero resonance 

strength? 

• The answer is – yes (we call them “integrable”)

• Need two integrals of motion for transverse focusing (a 2-d 

system)

– Strong focusing is a linear integrable system; two integrals of 

motion are the Courant-Snyder invariants

• There many integrable dynamical systems, but we know only 

a handful suitable for accelerators

• What we are looking for is a non-linear equivalent to Courant-

Snyder invariants, for example
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Specifics of accelerator focusing

• The transverse focusing system is effectively time-dependent

– In a linear system (strong focusing), the time dependence can 

be transformed away by introducing a new “time” variable (the 

betatron phase advance). Thus, we have the Courant-Snyder 

invariant.

• The focusing elements we use in accelerator must satisfy:

– The Laplace equation (for static fields in vacuum)

– The Poisson equation (for devices based on charge 

distributions, such as electron lenses or beam-beam 

interaction)
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Non-linear elements
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Accelerator research areas, 

where integrability would help
• Single particle dynamics:

1. How to make the dynamical aperture larger? (light sources, 

colliders)

2. How to make the tune spread larger? (Landau damping in 

high-intensity rings)

3. How to reduce beam halo?

• Multi-particle dynamics:

1. How to reduce detrimental beam-beam effects?

2. How to compensate space-charge effects?

3. How to suppress instabilities?

4. How to reduce beam halo?
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Integrable nonlinearities

• So, far we were able to find 2 classes of nonlinear accelerator-

suitable systems;

1. Systems, where we are able to remove the time dependence, 

thus making it effectively autonomous.

– This requires for the “time” variable to be the same in x and y. 

And then we can find some simple examples of autonomous 

“useful” integrable systems.

– We know only a handful of examples in 4D

2. Systems, that are discrete integrable nonlinear mappings

– This class originates from Edwin McMillan (the McMillan 

mapping).

– We know only one example in 4D.
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Topics for this workshop

1. Some nonlinear integrable systems are better than others.  

Which ones are most suitable for accelerators? 

– Nekhoroshev’s theory may be important here

2. We need more examples of accelerator-suitable 4D 

integrable mappings.

3. How to “correct” the existing nonlinearities in a ring to 

improve integrability? 

4. How to compensate a distributed nonlinear force from space 

charge of the beam itself with a localized nonlinear element?
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• Nekhoroshev’s theory: a step beyond KAM

• Introduced the concept of “steepness”.

– The steep Hamiltonians are most stable

– A linear Hamiltonian is not steep
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Example 1

• Conceptually, we (at Fermilab) know now how to make a 

focusing system (with quadrupoles and thin octupoles), which 

results in the following 2D integrable nonlinear Hamiltonian

• This concept we found is highly impractical but very important 

as it may serve as a model for modeling studies. 
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Example 2

• A nonlinear partially-integrable focusing system with one 

integral of motion. Can be implemented in practice (with 

octupoles).  This is one of the systems we are planning to 

test at Fermilab.

• A Henon-Heiles type system
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Implementation
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1 Start with a round axially-symmetric linear lattice (FOFO) 

with the element of periodicity consisting of

a. Drift L

b. Axially-symmetric

focusing block “T-insert”

with phase advance n×

2 Add special nonlinear potential V(x,y,s) in the drift such that
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Octupoles

• While the dynamic aperture is 

limited, the attainable tune spread 

is large ~0.03 – compare to 0.001 

created by LHC octupoles
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Example 3 (Phys. Rev. Accel. Beams 13, 084002)

• An integrable nonlinear system with a special Darboux

potential (separable in elliptic coordinates).
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• A single 2-m long nonlinear lens creates a tune spread of ~0.25.

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0
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1.0

νx
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1.8-m long magnet to be delivered in 2016
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Example 4: McMillan mapping

• In 1967 E. McMillan published a paper

• Final report in 1971.  This is what later became known as 

the “McMillan mapping”:
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If A = B = 0 one obtains the Courant-Snyder invariant



McMillan 1D mapping
• At small x:

Linear matrix:                    Bare tune:

• At large x:

Linear matrix:                  Tune: 0.25
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McMillan mapping in 2d

• We were unable to extend this mapping into 2d with magnets 

(Laplace equation).

• We have a solution on how to realize such a lens with a 

charge column (Poisson equation).
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McMillan electron lens
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Electron lens current density:
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FMA analysis

The tune spread of ~0.2 
is achievable



Enter the IOTA ring at Fermilab
• We have several innovative ideas for Research:

– Integrable Nonlinear Optics

– Space Charge Compensation

• To test them, we are building the Integrable Optics Test

Accelerator (IOTA)
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IOTA Ring
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150 MeV e- injector line

2.5 MeV RFQ

p beam line



IOTA Layout
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IOTA Layout
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IOTA Layout
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IOTA Layout



Summary
We (at Fermilab and UChicago) have a very exciting 

research program centered around nonlinear beam 

dynamics

1. Nonlinear Integrable Optics 

2. Space Charge Compensation

• Inviting math collaborators to join us in advancing the 

accelerator focusing for the next generation machines.
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Topics for this workshop

1. Some nonlinear integrable systems are better than others.  

Which ones are most suitable for accelerators? 

– Nekhoroshev’s theory may be important here

2. We need more examples of accelerator-suitable 4D 

integrable mappings.

3. How to “correct” the existing nonlinearities in a ring to 

improve integrability? 

4. How to compensate a distributed nonlinear force from space 

charge of the beam itself with a localized nonlinear element?
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