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LOW DEGREES-OF-FREEDOM HAMILTONIAN SYSTEMS

» The simplest Hamiltonian systems with nontrivial (chaotic)
dynamics are the well-understood 1-1/2 degrees-of-freedom
systems

P
H(q7p7 t) = % +¢(q7 t)‘

» A canonical example is a charged particle in 1-d in a

time-dependent external electrostatic field

Chaotic motion in a two-waves field

¢ =cos(kx —w, t) +cos(k,x — w, t)

» When the spatial dimensionality increases, d = 2, 3, this
single particle problem complicates but relatively speaking
(i.e., compared with what comes next) is a tractable problem.



VERY LARGE NUMBER OF DEGREES-OF-FREEDOM

» A canonical example is the (extremely difficult) N-body
problem in which each particle interacts with each other, e.g.

N
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» The main motivation underlying mean-field models is to find a
tractable description of intermediate complexity between the
N-body problem and the dynamics in an external field.
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» Among the key problems we would like to study is chaos and
integrability in very large d.o.f. systems.



MEAN-FIELD MODELS

» Like in the external field problem, in the mean-field
description all the particles “see” the same field
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» But, like in the N-body problem there is a coupling between
the particles that feeds-back onto the mean-field
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THE SINGLE WAVE MODEL

» The mean-field model of interest here is the so-called
Single-Wave-Model (SWM) which is a Hamiltonian system

consisting of an ensemble of N-particles in one-dimension
dx; OH du;j  OH

dt — du;’ dt — Ox’

with a single-wave potential Hamiltonian

N 2
H(apit) =3 |5~ alt)e™ — o' (e
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> In this model the mean-field coupling determines the time
evolution of the single-wave potential amplitude from

where U and 'y, k=1, 2, ... N are constants.



THE SINGLE WAVE MODEL

> Writing
a=+VJe "

the SWM can be equivalently written as an ensemble of N
globally coupled “pendulums”

d2Xj \/‘ .
F:_2 Jcos(xj—H), j=1...N

» Where the mean-field coupling determines the time evolution
of the amplitude J and the phase 6 from

dJ 2‘F2rk sin (xx — 0)
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THE SINGLE WAVE MODEL:
N + 1 HAMILTONIAN FORMULATION

> Defining
a— \ﬁe_ie, Pk = Fkyk,

the SWM can be equivalently written as an N + 1,
particles-+field, Hamiltonian system

Do _OH - dpe _ OH
dt _apk7 dt an’
o _om o

dat  0J’ da 09’

in which (xk, px) are the canonical coordinates of the N
particles, (0, J) are the canonical coordinates of the
mean-field, and

1 p;

H= Z 2—|_7—ZFj\ﬁcos(xj—6) - UJ.



THE SINGLE WAVE MODEL: N — oo LIMIT

> In the N — oo limit
(xj, uj) — single particle PDF f(x, u)

» Where f satisfies the Liouville equation

of | Of 990f _

ot " Yox T axav
with the single-wave potential
¢ = a(t)e™ + a*(t)e ™

» The time evolution of the potential amplitude is given by the
mean-field coupling

da ) 1 27 0o
E"Ua_’ﬂ ; dx/ooduf(x,u,t).



THE SINGLE WAVE MODEL: THE ORIGINS

» As many cool ideas, the origins of the SWM go back to
plasma physics!
» It was originally postulated and physically motivated (but not

actually derived) in the study of the resonant wave-particle
interaction in the beam-plasma instability

2
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THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

» In [dCN, Phys. Plasmas, 5, 3886 (1998)] the SWM was
systematically derived as a a generic weakly nonlinear
description of marginally stable Vlasov-Poisson type
Hamiltonian systems of the from

of df 990 (fh+f) — /OON
o U ax oy — 0 CGlkelkt) =~ oof(k’u)du

where fy is a general marginally stable equilibrium, f is a small
localized resonant perturbation, and G(k) is the Fourier
transform of a general self-consistent coupling.

» The SWM is universal in the sense that it is independent of f
(provided it is marginally stable), independent of the
perturbation (provided is small and localized) and most
importantly independent of G(k).

> In the Vlasov-Poisson case G(k) = —k? = F [92].



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Some examples of marginally stable systemS'
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THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

The weakly nonlinear theory provides a systematic derivation
of the previously stated SWM:

of  Of 0pOf N 4 ) ami
O rus P 0, p=at)eh + (1)e

d 1 27 0o
d—‘:—an:ig : dx/_ooduf(x,u,t).

and the corresponding discrete particle formulation

ka duk 8¢ da . i _
—_— = _——— _ = = — r Xk .
de ko dt ox’ g Y NZ ke

as a universal model for marginal stable systems.

Most importantly, going beyond the original formulation, the
theory extends the SWM to f > 0 (clumps) and f < 0 (holes).
In the discrete case this corresponds to ', > 0 and ', < 0.
[dCN, Phys. Plasmas, 5 (1998); dCN, CHAQS, 10 (2000)]



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Matched asymptotic expansion
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THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Self-consistent potential
Poisson equation:  G[nk.(1— eA)] ¢p(n,1)= — f du f(nu' 1) - sf dv fi(n,v.1)
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THE SINGLE WAVE MODEL IN FLUIDS MECHANICS

> In the limit of strong shear, vorticity perturbation, f, can be
described by the Vlasov-Poisson type system

g':+ygi+gf g; Gk, ) = —/Oo Flk,y, t)dy
where G(k) = 2k coth k and ¢ = —y?/2 + ¢(x, t) is the fluid
velocity stream-function. [Balmforth, dCN, Young, JFM, 333
(1997)].

» From here, application of the previously described
weakly-nonlinear theory leads to a SWM description of vortex
dynamics in strong, marginally stable shear flow flows.
[Churilov and Shukhman, Geophys. Astrophys. Fluid. Dyn.
38 (1987); dCN, Phys. Plasmas, 5 (1998); dCN, CHAOS, 10
(2000)].

» For extensions of the single wave model for more general

marginal stable perturbations in the context of shear flow
dynamics see [Balmforth, Piccolo, JFM 2001]



THE SINGLE WAVE MODEL IN STATISTICAL MECHANICS

d?x; . .
F;(J = ia(t)e™ —ia"(t)e "™, E —ila= Z Mee X,

» Neglecting the term da/dt, and assuming
U=-2/e, My =1 k=1 ...N,

the SWM model reduces to the Hamiltonian Mean Field
Model [Antoni,Ruffo, 1995] used in the statistical mechanics
of systems with long-range interactions

d?x;
de‘,:—*ZS”] —Xk

» This close connection allows the application of ideas and
methods from plasma physics to statistical mechanics,
including Landau damping, kinetic instabilities, BGK modes,
etc. [dCN, Chapter in “Dynamics and thermodynamics of
systems with Long-range interactions”. Lecture Notes in
Physics, Springer Vol. 602 (2002).]



THE SWM AND SELF-CONSISTENT CHAOS

Integrable motion in a one-wave field

¢ =cos(kx —w, 1)
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Chaotic motion in a two-waves field @)D

¢ =cos(kx —w, 1) +cos(k,x - w, )

How does this well-understood picture change when we
take into account self-consistency?

The SWM provides a tractable, powerful dynamical system of
the right level of complexity to address this as well as many
other Hamiltonian problems with many-degrees-of freedom.



THE SWM AND SELF-CONSISTENT CHAOS

» Among the first papers to study self-consistent chaos from the
point of view of dynamical systems in the SWM:
Tennyson, Meiss and Morrison, Physica D 1994,

iy

[
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> “The system relaxes into a time asymptotic periodic state
where only few collective degrees of freedom are active”.
“Self-consistency seems to effectively reduce the number of
degrees of freedom”. This motivates the concept of
macro-particle.



COHERENT STRUCTURES AND SELF-CONSISTENT CHAOS

» The quasi-coherent macro particle oscillations in the
beam-plasma instability are closely related to exact non-linear
solutions known as BGK (Bernestein-Greene-Kruskal) modes
and to the exact integrability of the N =1 SWM.

» Motivated by this, in [DdCN, M.C. Firpo: CHAOQS, 12,
496-507, (2002)], we studied the formation of more general
coherent structures, different to the BGK modes.

> In particular we studied rotating dipole structures

“ r,>0

clump

X

hole .

I‘j<0

» The starting point was the study of the integrability of the
N = 2 Single Wave Model.



INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

* For N=2 the SWM has 3-degrees of freedom
* Accordingly, full integrability requires 3 constants of motion
* However, we only have 2: the Energy and the Momentum

2|’1

e

=1

pf -2 Fjﬁ cos(x; —0)}

* In general the N=2 problem is NOT integrable
* However, symmetric Hole-Clump states have an additional
symmetry which allows integrability in this special case.
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Hole-clump symmetry
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INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

X,=—-X,=X

a=a I,=-T,=T

U=—U,=u

Hole-clump symmetry

reduce the system to 3 ODEs

dx

—=u

dt

d

—u=—2asinx

dt

d—a=2Fsinx

dt
2l / o 2|
P RAE;
-2 -2

Momentum conservation

P=2Tu+d

Reduces the system to a
1-D Hamiltonian system

dx 9H dA  JH

it JA dv ax
3
H=aA—?+cosx
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INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

Remarkably, the reduced, integrable Hamiltonian system is a

non-twist Hamiltonian system!

& _JH aa _

dt JdA dr
3

H=0A-—+cosx

Separatrix reconnection
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INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

Some examples of symmetric hole-clump integrable orbits
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THE SINGLE WAVE MODEL

Numerical simulation of the finite-NV single wave

DIPOLE COHERENT STRUCTURES IN

model
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DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave model
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DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave model

Self-consistent periodic evolution
of wave mean field
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DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Time periodic mean field
Coherent rotating dipole
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ROTATING DIPOLE COHERENT STRUCTURES AND
SELF-CONSISTENT CHAQOS

Rotating coherent _ |
dipole =

I~

Coherence
maintained by
@ KAM surfaces

Poincare section
of time periodic
self-consistent
mean-field




DIPOLE ROTATION AND SELF-CONSISTENT CHAOS

Parametric instability in Poincare section
for test particle in dipole field Particle mean field
resonance

w2

a(t) = 7[1-2,scos,9z +K ]

x(t) = o[ esin Qt +K |

Stability of the origin
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ASYMMETRIC DIPOLE STATE
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e D. del-Castillo-Negrete, Plasma Physics and Controlled Fusion 47, 1-11
(2005).
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RELAXATION TOWARDS ROTATING DIPOLE STATE
(a)




dxj _ 12 n+l n n+l
o =Y j=12,....N X, =Xt
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STANDARD MEAN FIELD MAP
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e D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).




STANDARD MEAN FIELD MAP

y
0 .0

Xy 5 Y, ) Particles
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BEAM-PLASMA INSTABILITY AND COHERENT STRUCTURE
FORMATION IN THE STANDARD MEAN-FIELD MAP

Qn= 01 - On
8 ¢

e D. del-Castillo-Negrete: CHAQS, 10, 75, (2000).



COMPARISON BETWEEN MAP AND CONTINUOUS SWM
Meam Field Map Continuous SWM

(a)




MORE RECENT SIMUALTIONS
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D. Martinez-del-Rio, D. del-Castillo-Negrete, A. Olvera and R. Calleja
Qualitative Theory of Dynamical Systems, 14 313-335 (2016).



NONTWIST MEAN FIELD MAP
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e L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22
013137 (2012).



NONTWIST MEAN FIELD MAP
Period-one coherent structures
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NONTWIST MEAN FIELD MAP
Period-two coherent structures
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation
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NONTWIST MEAN FIELD MAP
Self-consistent separatrix reconnection in the mean-field map
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NONTWIST MEAN FIELD MAP
Self-consistent suppression of diffusion
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NONTWIST MEAN FIELD MAP

Self-consistent suppression of diffusion
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NONTWIST MEAN FIELD MAP

Self-consistent transition to global chaos
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NONTWIST MEAN FIELD MAP

Self-consistent transport across shearless barrier

1 t—
87)/27 DQL(t) = Z K+O[tanh e

(©)

00 200 100 o 100
0 w5 = - B
B0 250 20 150 -0 -50 o
x10° ()
6
4l
2
o 5 Sy
350 400 30 -300 -250 -200 -150 -100 50 0
x10° (©)
4

300 200 100 o
y

800 -600 400 200 o
y

200 400



NONTWIST MEAN FIELD MAP

Self-consistent intermittent transport near criticality
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