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LOW DEGREES-OF-FREEDOM HAMILTONIAN SYSTEMS

I The simplest Hamiltonian systems with nontrivial (chaotic)
dynamics are the well-understood 1-1/2 degrees-of-freedom
systems

H(q, p, t) =
p2

2m
+ φ(q, t) .

I A canonical example is a charged particle in 1-d in a
time-dependent external electrostatic field

SELF-CONSISTENT CHAOTIC TRANSPORT
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φ = cos(k1x −ω1 t) + cos(k2x − ω2 t)
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How(does(this(well1understood(picture(change(when(we((
take(into(account(self1consistency?(
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I When the spatial dimensionality increases, d = 2 , 3, this
single particle problem complicates but relatively speaking
(i.e., compared with what comes next) is a tractable problem.



VERY LARGE NUMBER OF DEGREES-OF-FREEDOM

I A canonical example is the (extremely difficult) N-body
problem in which each particle interacts with each other, e.g.

H(qi , pi , t) =
N∑

i=1

p2i
2mi

+
∑

i<j

φ(|qi − qj |) .

I The main motivation underlying mean-field models is to find a
tractable description of intermediate complexity between the
N-body problem and the dynamics in an external field.
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I Among the key problems we would like to study is chaos and
integrability in very large d.o.f. systems.



MEAN-FIELD MODELS

I Like in the external field problem, in the mean-field
description all the particles “see” the same field

H(qi , pi , t) =
N∑

i=1

p2i
2mi

+
∑

i

φ(qi ;λ) .

I But, like in the N-body problem there is a coupling between
the particles that feeds-back onto the mean-field

λ = D (q1, q2, . . . qN) .
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THE SINGLE WAVE MODEL

I The mean-field model of interest here is the so-called
Single-Wave-Model (SWM) which is a Hamiltonian system
consisting of an ensemble of N-particles in one-dimension

dxj
dt

=
∂H

∂uj
,

duj
dt

= −∂H
∂xj

,

with a single-wave potential Hamiltonian

H(qi , pi , t) =
N∑

k=1

[
u2k
2
− a(t)e ixk − a∗(t)e−ixk

]
.

I In this model the mean-field coupling determines the time
evolution of the single-wave potential amplitude from

da

dt
− iUa =

i

N

N∑

k=1

Γke
−ixk .

where U and Γk , k = 1, 2, . . .N are constants.



THE SINGLE WAVE MODEL

I Writing
a =
√
Je−iθ

the SWM can be equivalently written as an ensemble of N
globally coupled “pendulums”

d2xj
dt2

= −2
√
J cos(xj − θ) , j = 1, . . .N

I Where the mean-field coupling determines the time evolution
of the amplitude J and the phase θ from

dJ

dt
=

2
√
J

N

N∑

k=1

Γk sin (xk − θ)

dθ

dt
= −U − 1

N
√
J

N∑

k=1

Γk cos (xk − θ)



THE SINGLE WAVE MODEL:
N + 1 HAMILTONIAN FORMULATION

I Defining
a =
√
Je−iθ , pk = Γkyk ,

the SWM can be equivalently written as an N + 1,
particles+field, Hamiltonian system

dxk
dt

=
∂H
∂pk

,
dpk
dt

= −∂H
∂xk

,

dθ

dt
=
∂H
∂J

,
dJ

dt
= −∂H

∂θ
,

in which (xk , pk) are the canonical coordinates of the N
particles, (θ, J) are the canonical coordinates of the
mean-field, and

H =
N∑

j=1

[
1

2Γj

p2j
2
− 2Γj

√
J cos(xj − θ)

]
− UJ .



THE SINGLE WAVE MODEL: N →∞ LIMIT

I In the N →∞ limit

(xj , uj) → single particle PDF f (x , u)

I Where f satisfies the Liouville equation

∂f

∂t
+ u

∂f

∂x
− ∂φ

∂x

∂f

∂v
= 0 ,

with the single-wave potential

φ = a(t)e ix + a∗(t)e−ix

I The time evolution of the potential amplitude is given by the
mean-field coupling

da

dt
− iUa = i

1

2π

∫ 2π

0
dx

∫ ∞

−∞
du f (x , u, t) .



THE SINGLE WAVE MODEL: THE ORIGINS

I As many cool ideas, the origins of the SWM go back to
plasma physics!

I It was originally postulated and physically motivated (but not
actually derived) in the study of the resonant wave-particle
interaction in the beam-plasma instability
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the0beam0plasma0instability0

The0beam(plasma0instability0

u
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u0
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THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

I In [dCN, Phys. Plasmas, 5, 3886 (1998)] the SWM was
systematically derived as a a generic weakly nonlinear
description of marginally stable Vlasov-Poisson type
Hamiltonian systems of the from

∂f

∂t
+u

∂f

∂x
+
∂φ

∂x

∂ (f0 + f )

∂v
= 0 , G (k)φ̃(k , t) = −

∫ ∞

−∞
f̃ (k , u)du

where f0 is a general marginally stable equilibrium, f is a small
localized resonant perturbation, and G (k) is the Fourier
transform of a general self-consistent coupling.

I The SWM is universal in the sense that it is independent of f0
(provided it is marginally stable), independent of the
perturbation (provided is small and localized) and most
importantly independent of G (k).

I In the Vlasov-Poisson case G (k) = −k2 = F
[
∂2x
]
.



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Some examples of marginally stable systems:
(a) Beam plasma; (b) Bump-on-tail; (c) Two streams

100 D. del-Custillo-Negrete /Ph.ysics Letters A 241 (1998) 99-104 

&-F + U&F + 4, (Fo+F)&@=O, 
00 

-I p(k,u,T)du, G(k) &k,T) = - 

(I) 

(2) 

where the tilde denotes Fourier transform, G(k) = k’, 
and F( X, u, T) is the departure from the equilibrium 
Fe(u). 

Recently, it has been shown that the two- 
dimensional Euler equation describing the dynamics 
of localized vorticity perturbations in shear flow, 
can be reduced to the vorticity defect equation [4] 
which is the same as Eqs. ( 1) and (2) with G(k) = 
2kcoth k, if one identifies (X, u) with the (n, y), f 
with the vorticity, and q!~ with the streamfunction. 
Because of this, plasma physics concepts like Landau 
damping, and BGK modes, and techniques like the 
Nyquist method, have an analogue in fluid dynamics 
[4]. In particular, the reduced equation derived here, 
describes the nonlinear evolution of vorticity pertur- 
bations in marginally stable shear flows. Also, the 
reduced equation bears similarities with models used 
to study globally coupled oscillators. 

The key assumption we make is that the equilibrium 
is linearly stable and that it has a stationary inflection 
point at u = CO, that is F;(Q) = F:(Q) = 0. From 
linear theory [5] it is known that F;(Q) = 0 implies 
the existence of a neutral mode with wave number 
ko (which we will assume to be different from zero) 
given by the dispersion relation D( ko, co) = 0, where 

D(k,c) E G(k) - 
cc F; .I - du . 

11 - c 
(3) 

We consider a domain periodic in X, and of size L M 
2n-/ko. Using the Nyquist method, it can be shown that 
the condition L Z=S 2n-/ko, together with the stationary 
inflection point condition, 

F;(co) = F;(co) = 0, 

implies that the system is marginally stable [ 61. That 
is, that the equilibrium FO (u; ,u) is stable for ,u = ,uuc, 
but it is unstable for ,u = ,uu, +Sp, where p is a control 
parameter, and 6~ CC 1. Some examples of marginally 
stable equilibria for which ko # 0, are shown in Fig. 1. 

Cc) F. 

f M co ” 

Fig. 1. Examples of marginally stable equilibria. Panels (a). (b), 
and (c) show the equilibria, &I, used in the beam-plama. the 
bump-on-tail, and the two-stream instability problems respectively. 
The reduced Vlasov-Poisson equation ( 18)-( 20) describes the 
nonlinear evolution of a perturbation, f, localized around the 
stationary inflection point at co. 

2. Derivation 

Our goal is to derive from ( 1) and (2) a self- 
consistent equation for perturbations localized around 
the stationary inflection point, as those shown in Fig. 1. 
To do this we look for solutions of the form 

F=~~f(x,u,t), Q=~~+(~J), (4) 

where 1 > E > 0, x E (27r/L) (X - COT), t E 
(25-/L) ET. and L = 27r( 1 + EA)/kg. The construc- 
tion in (4) represents a slowly varying, small per- 
turbation, propagating on the background Fo( u) . The 
scaling in (4) corresponds to the trapping scaling [ l- 
31 according to which E N y2, where y is the growth 
rate of the instability, and E is the amplitude of the 
electric field after the linear instability has saturated. 
However, contrary to what is typically assumed, we 
consider the more general situation in which there is 
an O(E) detuning between the domain length, L, and 
the wavelength, 2rr/ko, of the linear mode. The pa- 
rameter A determines if L is larger (A > 0), smaller 
(A < O), or equal (A = 0) to 2r/ko. 

In terms of the variable x, the domain has period 27r, 
and we write 4(x, t) = C, $(n, t)einx. Substituting 
(4) into (1) and (2) we get 

l 4.f + (u - co) &f + (F; + c2&f) 13x4 = 0,  

(5) 
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is the place where the speed of a disturbance matches the
speed of the background shear flow. At the critical layer the
Rayleigh equation governing the inviscid linear dynamics of
a shear flow is singular and a vast literature has been devoted
to understand how nonlinearity, time dependence, and vis-
cosity regularize the dynamics in the critical layer, see for
example, Refs. 13–17, and references therein.

In Sec. II, we discuss marginal stability and introduce
the weakly nonlinear scaling. The derivation of the reduced
system using matched asymptotic expansions is presented in
Sec. III. In Sec. IV, we study the linear theory; we derive the
dispersion relation, use the Nyquist method to find necessary
and sufficient conditions for instability, and discuss the ini-
tial value problem of stable perturbations that show transient
growth and do not Landau damp. In Sec. V, we construct the
analog of the Bernstein–Greene–Kruskal ~BGK! modes18
for the reduced system, and present direct numerical simula-
tions showing the growth and saturation of instabilities, tran-
sient growth of stable perturbations, and marginal stability
relaxation. In Sec. VI, we discuss some analogies between
plasmas physics and shear flow dynamics, and in Sec. VII,
we present the conclusions.

II. MARGINAL STABILITY AND WEAKLY NONLINEAR
SCALING

In the absence of collisions, the linear stability of the
equilibrium electron distribution F0(u) in Eq. ~1! is deter-
mined by the zeros of the dispersion function,

D
~

k ,c !512
1
k2 E2`

` F08
u2c du50, ~3!

where k is the wave number, and c5cr1ici . If there is a k
with cifi0, F0 is linearly unstable. When ci50, the integral
in ~3! is in general singular.19 However, if the equilibrium
has an extremum, F08(c0)50, there can be regular solutions
of ~3! with c5c0 , and wave number k0 ; these solutions are
called neutral modes, or class 1c modes.20 If the extremum
is a stationary inflection point, F08(c!)5F09(c!)50, then F0
is marginally stable, and the neutral mode (c! ,k!) is called
inflection point mode.21,22 By marginally stable we mean that
F0 is linearly stable, but F01dF0 is linearly unstable, where
dF0 is a small perturbation of F0 . We assume that collisions
are small and that they do not affect the collisionless linear
instability threshold. That is, we assume that the marginal
stability of the equilibrium is independent of dissipation.
However, we do take into account the effect of collisions in
the weakly nonlinear theory because as the instability grows
and saturates small scale structures in velocity space are gen-
erated in the electron distribution function. In this respect,
the problem we are considering is different from that dis-
cussed in Ref. 23.

To illustrate the previous ideas consider the following
one-parameter family of equilibria:

F05
2
3p

122qu12u2

~

11u2!2 . ~4!

As shown in Fig. 1, when q.1 ~dotted–dashed curve!, F0
has two extrema straddling u51. When q51 ~solid curve!,

the two extrema collide and create a stationary inflection
point at c!51. The stationary inflection point disappears
when q,1 ~dashed curve!. The dispersion relation ~3! of F0
in ~4! is

3k2
~

c1i !323c14q2i50, ~5!

where ci>0. Figure 2 shows the stability diagram of F0(u)
as function of the parameter q according to ~5!. When q
,1, there is only one extremum and as expected F0 is stable.
The solid curve in Fig. 2 is the stability boundary, and cor-
responds to the neutrally stable (ci50) modes. That is, for
q.1 there are two neutral modes and a band of unstable
modes between them. These unstable modes exist because of
the adverse gradient in F0 around u51. As q decreases, the

FIG. 1. Examples of perturbations on a marginally stable equilibrium. The
solid curve shows the marginally stable equilibrium F0(u) in Eq. ~4! with
q51, which has a stationary inflection point at u51. The dashed curve
shows F0 with q50.85. Because q,1, the is no inflection point and the
perturbed equilibrium is stable. The dot–dashed curve shows F0 with q
51.25. In this case the perturbation splits the inflection point into two ex-
trema, and the perturbed equilibrium is unstable. The box highlights the
region where the adverse gradient is localized.

FIG. 2. Stability diagram of F0(u) in Eq. ~4!. The curve is the stability
boundary and corresponds to the neutrally stable modes for which ci50. For
q.1, the equilibrium is unstable, and for q,1 the equilibrium is stable. The
star ‘‘!’’ at q51 denotes the marginally stable state.
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two neutral modes get closer and at q51 they coalesce into
the inflection point mode (c! ,k!)5(1,1/A6). The tip of the
stability boundary, q51, is the marginally stable state and it
corresponds to the appearance of the stationary inflection
point in F0 at u5c!51.

As shown in Fig. 1 the destabilization of F0 is caused by
perturbations that turn the locally flat region around the sta-
tionary inflection point into a region of adverse gradient. A
generic perturbation will change F0 globally. However, for
weakly nonlinear instability one of the key issues is how the
stationary inflection point is locally perturbed. Accordingly,
as a first step we will restrict attention to localized perturba-
tions around the stationary inflection point. That is, we will
assume that

F0~u !5F!~

u !1e

2
dF!S u2c!

e

D , ~6!

where F! is a marginal stable equilibrium @e.g., F0(u ,q
51) of Eq. ~4!# and, as shown in Fig. 3, dF! is a perturba-
tion localized around the stationary inflection point c! . The
effect of nonlocalized perturbations is interesting; in Sec.
III D we comment how such more general perturbations
modify the single-wave model.

To motivate the scaling used in the weakly nonlinear
theory consider the dispersion relation in the vicinity of the
marginal stable state (c! ,k!). Substituting q511e , c5c!

1dc , and k5k!1dk , into ~5! we obtain to leading order,

3dc12A6dk52
~

11i !e , ~7!

where e is a small parameter determining the distance from
the stability boundary. According to ~7!, the growth rate dci
scales as e, and therefore to construct the weakly nonlinear
theory, we introduce the slow time variable

t[
~

2p/L !eT , ~8!

where L is the spatial length of the system. Also, since dk
;e , we assume that the wavelength of the perturbation, k
52p/L , is

k5k!~

12eL!, ~9!

where the parameter L measures the difference between the
domain length, L, and the wavelength, 2p/k! , of the inflec-
tion point mode. In the stability diagram of Fig. 2, L deter-
mines the point on the stability boundary where the weakly
nonlinear expansion is done; when L.0 (L,0) the expan-
sion is below ~above! the marginally stable state, and when
L50 the expansion is exactly at the marginally stable state,
i.e., at the tip of the stability boundary. We will restrict at-
tention to points close to the tip of the stability boundary.
However, the weakly nonlinear theory can be done expand-
ing at any point on the stability boundary; in Sec. III D we
comment how such more general expansion modifies the
single-wave model.

Motivated by the trapping scaling proposed in Ref. 2,
according to which the amplitude of the electrostatic poten-
tial after the instability has saturated is of order dci

2 , we
scale F and F as

F5e

2 f
~

x ,u ,t !, F5e

2
f

~

x ,t !. ~10!

Also, we do a Galilean transformation to a reference frame
moving at the speed of the inflection point mode

x[

~

2p/L !~

X2c!T !, ~11!

and introduce the scaled collision frequency

m5
bu0

2L
2pe

3 . ~12!

As it will be explained in Sec. III A, the scaling b;e

3 is
chosen so that collisions become important in the region
where the instability grows and saturates, i.e., in the inner
region depicted in Fig. 3. In terms of the variable x, the
domain has period 2p, and f and f can be expanded as a
Fourier series,

f

~

x ,t !5
(

n52`

`

f̃

~

n ,t !einx, f
~

x ,u ,t !

5
(

n52`

`

f̃
~

n ,u ,t !einx. ~13!

Substituting ~8!–~13! into ~1! and ~2! we get

e] t f1~

u2c!!]x f1~

F081e

2
]u f !]xf

5e

3
m]u@~u/u0

2
! f1]u f # , ~14!

G
@

nk!~

12eL!#

f̃

~

n ,t !52E
2`

`

f̃
~

k ,u ,t !du , ~15!

where F0 is of the form ~6! and, as said before, G(k)[k2.
These last two scaled equations are the starting point of the
weakly nonlinear theory discussed in the following section.

FIG. 3. Sketch of a localized perturbation dF! on a marginally stable equi-
librium F! . The matched asymptotic expansion presented in Sec. III re-
duces the Vlasov–Poisson equation ~1!–~2! to the single wave model ~36!–
~37! that describes the nonlinear evolution of the electron distribution in the
inner, O(e), region. In the outer, 1@e , region the plasma responds linearly.
The shaded area represents the region of asymptotic matching of the inner
and outer solutions.
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THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

I The weakly nonlinear theory provides a systematic derivation
of the previously stated SWM:

∂f

∂t
+ u

∂f

∂x
− ∂φ

∂x

∂f

∂v
= 0 , φ = a(t)e ix + a∗(t)e−ix

da

dt
− iUa = i

1

2π

∫ 2π

0
dx

∫ ∞

−∞
du f (x , u, t) .

and the corresponding discrete particle formulation

dxk
dt

= uk ,
duk
dt

= −∂φ
∂x

,
da

dt
− iU =

i

N

N∑

k=1

Γke
−ixk .

as a universal model for marginal stable systems.
I Most importantly, going beyond the original formulation, the

theory extends the SWM to f > 0 (clumps) and f < 0 (holes).
In the discrete case this corresponds to Γk > 0 and Γk < 0.
[dCN, Phys. Plasmas, 5 (1998); dCN, CHAOS, 10 (2000)]



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Matched asymptotic expansion

ε∂ t f + (u − c*)∂ x f + ( ʹ F 0 + ε2∂u f ) ∂ xφ = 0

G[nk* (1− εΛ)] ˜ φ (n, t) = − d ʹ u ˜ f (n, ʹ u , t)
−∞

∞

∫

• Inner region

∂t f0
i + v∂x f0

i + ∂ v f0
i ∂ xφ0 = 0

v = u − c*
ε

f (x,v, t) = f0
i −δF* + ε f1

i + .....

• Outer region ˜ f o (n, u, t) = ˜ f 0
o + ε ˜ f 1

o + .....

˜ f 0
o (n, u, t) = −

ʹ F *
u − c*

˜ φ 0 (n, t) ˜ f 1
o (n, u, t) = −

i
n

ʹ F *
(u − c* )2 ∂ t

˜ φ 0 −
ʹ F *

u − c*

˜ φ 1

φ(x, t) = φ0 + ε φ1 + .....



THE SINGLE WAVE MODEL:
DERIVATION AND GENERALIZATION

Self-consistent potential

Poisson equation:

G[nk* ] ˜ φ 0 (n, t) = − du ˜ f 0
o(n, ʹ u ,t)∫

G[nk* (1− εΛ)] ˜ φ (n, t) = − du ˜ f o(n, ʹ u ,t)∫ − ε dv ˜ f i(n, v,t)∫

G[nk* ] ˜ φ 1(n, t) − n k* Λ ʹ G [nk* ] ˜ φ 0 (n, t) = − du ˜ f 1
o(n,u, t)∫ + ε dv ˜ f 0

i(n, v, t)∫

• O(1):

˜ f 0
o (n, u, t) = −

ʹ F *
u − c*

˜ φ 0 (n, t)
φ0 (x, t) = a(t) e

ix + a*(t) e−ix

• O(ε):

˜ f 1
o (n, u, t) = −

i
n

ʹ F *
(u − c* )2 ∂ t

˜ φ 0 −
ʹ F *

u − c*

˜ φ 1

da
dt

= iU a + i dx∫ e− ix dv f0
i(x,v, t)∫



THE SINGLE WAVE MODEL IN FLUIDS MECHANICS

I In the limit of strong shear, vorticity perturbation, f , can be
described by the Vlasov-Poisson type system

∂f

∂t
+y

∂f

∂x
+
∂φ

∂x

∂f

∂y
= 0 , G (k)φ̃(k, t) = −

∫ ∞

−∞
f̃ (k , y , t)dy

where G (k) = 2k coth k and ψ = −y2/2 + φ(x , t) is the fluid
velocity stream-function. [Balmforth, dCN, Young, JFM, 333
(1997)].

I From here, application of the previously described
weakly-nonlinear theory leads to a SWM description of vortex
dynamics in strong, marginally stable shear flow flows.
[Churilov and Shukhman, Geophys. Astrophys. Fluid. Dyn.
38 (1987); dCN, Phys. Plasmas, 5 (1998); dCN, CHAOS, 10
(2000)].

I For extensions of the single wave model for more general
marginal stable perturbations in the context of shear flow
dynamics see [Balmforth, Piccolo, JFM 2001]



THE SINGLE WAVE MODEL IN STATISTICAL MECHANICS

d2xj
dt2

= ia(t)e ixj − ia∗(t)e−ixj ,
da

dt
− iUa =

i

N

N∑

k=1

Γke
−ixk .

I Neglecting the term da/dt, and assuming

U = −2/ε , Γk = 1 k = 1, . . .N ,

the SWM model reduces to the Hamiltonian Mean Field
Model [Antoni,Ruffo, 1995] used in the statistical mechanics
of systems with long-range interactions

d2xj
dt2

= − ε

N

N∑

k=1

sin (xj − xk)

I This close connection allows the application of ideas and
methods from plasma physics to statistical mechanics,
including Landau damping, kinetic instabilities, BGK modes,
etc. [dCN, Chapter in “Dynamics and thermodynamics of
systems with Long-range interactions”. Lecture Notes in
Physics, Springer Vol. 602 (2002).]



THE SWM AND SELF-CONSISTENT CHAOSSELF-CONSISTENT TRANSPORT

φ = cos(k1x −ω1 t)

φ = cos(k1x −ω1 t) + cos(k2x − ω2 t)

Chao3c(mo3on(in(a(two1waves(field(

Integrable(mo3on(in(a(one1wave(field(

Chao3c(transport(

How(does(this(well1understood(picture(change(when(we((
take(into(account(self1consistency?(

R.T. Pierrehumbert, Geophys. Astrophys. Fluid. Dyn., 58, 285 (1991).
D. del-Castillo-Negrete and P.J. Morrison: Phys. Fluids A, 5, 948 (1993).
J.L. Tennyson, J.D. Meiss, and P.J. Morrison: Phys. D, 71,1, (1994).
J.M. Finn, and D. del-Castillo-Negrete: CHAOS, 11, 4, (2001).

D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).

The SWM provides a tractable, powerful dynamical system of
the right level of complexity to address this as well as many
other Hamiltonian problems with many-degrees-of freedom.



THE SWM AND SELF-CONSISTENT CHAOS

I Among the first papers to study self-consistent chaos from the
point of view of dynamical systems in the SWM:
Tennyson, Meiss and Morrison, Physica D 1994.12 J.L. Tennyson et al. I Self-consistent chaos in the beam-plasma instability 

4. (a) - (b) - 

4. Cc> - (4 - 

Fig. 5. !kquence of beam phase space plots over one bounce period. Note that the macroparticle.bounces coherently in the 
wave, and the wave amplitude and chaotic sea boundaries also oscillate periodically. 

in the same context by Smith and Pereira [ 61, 
who used a simple model for J (7) and 8 (r). 

Here we determine J and 8 numerically, from 
the simulations of Section 3.1, building these 
functions from an average over a number of pe- 
riods of the oscillations. 

A stroboscopic plot of the test particle dynam- 
ics is shown in Fig. 6 for several different val- 
ues of 8. The dots represent the trajectories of 
a number of different test particles. As was also 
noted in [ 6 1, there is a prominent stable island 
in the test particle phase space which oscillates 
exactly out of phase with the potential; much of 
the rest of the phase space is chaotic. Also shown 

in Fig. 6 are the corresponding plots of the beam 
particle phase space-here of course each point 
in the plots represents the position of one of the 
10 000 beam particles. Note that the macropar- 
title clump sits, as near as can be ascertained, 
at the position of the test particle island. This 
verifies an assertion in [ 6 1, where it was merely 
noted that some fraction of the beam particles 
initially stretched across the position of the test 
particle island. 

10 J.L. Tennyson et al. I Self-consistent chaos in the beam-plasma instability 

1.0 

IIN 

0.5 I 
Fig. 2. Plot of )@ ( 7 ) 1 ,  t he  normalized wave amplitude, for 
N= 10000 particles initialized as a cold beam. 

predicted by Eq. (36) with the phase velocity 
ud = R( e 2ni / 3)  = - 0 . 5 .  As the wave grows, the 
beam experiences a growing sinusodal perturba- 
tion, and as can be seen in the density plot of 
Fig. 3, the beam density also varies sinusoidaly. 
Near 7 = 16 the beam curls over as the particles 
begin to oscillate in the wave. Consequently the 
amplitude of the wave reaches a maximum. 

At this stage the beam density, & (r, 7), de- 
velops cusps at the positions where the beam 
curls over, see Fig. 3. Note that though there 
are many spatial harmonics in the beam density, 
the single-wave model does not allow the devel- 
opment of similar harmonics in the potential. 
These would lead to the growth of other waves 

2 

a 
lo4 

1 4 

and undoubtedly greatly change the subsequent 
behavior of the system. 

None-the-less, the subsequent development of 
the OWM dynamics is quite interesting. As the 
beam particles begin to oscillate in the wave, 
their oscillation frequencies depend upon their 
energy, just as for a single particle in a fixed po- 
tential. Thus as the beam begins to rotate about 
the potential minimum, those particles closer 
to the center have larger oscillation frequencies 
than those near the “separatrix”. 

If the wave amplitude were fixed, one would 
see phase mixing of the particles (visualized 
as an ever tighter spiral in the particle phase 
space), and the oscillations in the particle total 
energy would damp away-this is the mecha- 
nism of Landau damping in a large amplitude 
wave discussed by O’Neil [ 171. 

However since 214 = -0.5 and the beam is ini- 
tialized at v = 0, when the beam particles oscil- 
late in the wave, their net momentum also oscil- 
lates. Hence, because of the conservation of to- 
tal momentum, Eq. (33)) the wave momentum, 
J, must also oscillate as well. Therefore the wave 
amplitude is not fixed and each beam particle 
experiences an oscillating potential. As is well 
known, the phase space for a single beam par- 

t 
-R O 5 

-R O 5 
R 

Fig. 3. Plot of the beam density as a function of position. The sinusoidal distortion of the density due to the growing wave 
is shown in (a) at 7  = 12.6. By 7  = 69.3, in (b), about 10 bounces have occurred and the macroparticle has formed, 
represented here by the sharp peak around t; = 0. The remaining, chaotic sea particles have a sinusoidal density variation. 

I “The system relaxes into a time asymptotic periodic state
where only few collective degrees of freedom are active”.
“Self-consistency seems to effectively reduce the number of
degrees of freedom”. This motivates the concept of
macro-particle.



COHERENT STRUCTURES AND SELF-CONSISTENT CHAOS

I The quasi-coherent macro particle oscillations in the
beam-plasma instability are closely related to exact non-linear
solutions known as BGK (Bernestein-Greene-Kruskal) modes
and to the exact integrability of the N = 1 SWM.

I Motivated by this, in [DdCN, M.C. Firpo: CHAOS, 12,
496-507, (2002)], we studied the formation of more general
coherent structures, different to the BGK modes.

I In particular we studied rotating dipole structures

hole%

clump%

x

u Γk > 0

Γ j < 0

I The starting point was the study of the integrability of the
N = 2 Single Wave Model.



INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

a→ a*

hole%

clump%
xk ,uk,a,Γk( )→ −xk, −uk ,a

* ,−Γk( )x

u

H =
1
2Γ j

p j
2 − 2 Γj J cos(xj −θ )

$ 

% & 
' 

( ) j=1

2

∑

•  For%N=2%the%SWM%has%36degrees%of%freedom%%
•  Accordingly,%full%integrability%requires%3%constants%of%moAon%
•  However,%we%only%have%2:%the%Energy%and%the%Momentum%

P = pj
j=1

N

∑ + J

Hole6clump%symmetry%
Γk > 0

Γk < 0

•  In%general%the%N=2%problem%is%NOT%integrable%
•  However,%symmetric%Hole6Clump%states%have%an%addiAonal%

symmetry%which%allows%integrability%in%this%special%case.%



INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

a = a*

dx
dt

= u

du
dt

= − 2a sin x

da
dt

= 2 Γ sin x

x1 = − x2 = x u1 = − u2 = u

Γ1 = − Γ2 = Γ

dx
dτ

=
∂ H
∂ A

dA
dτ

= −
∂ H
∂ x

H = α A −
A3

3
+ cos x

P = 2Γu + a2

Momentum(conserva.on(

Hole1clump(symmetry((
reduce(the(system(to(3(ODEs(( Reduces(the(system(to(a((

11D(Hamiltonian(system(

x

u

Time%periodic%mean%field%
Coherent%N=2%dipole%state%



INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

Remarkably, the reduced, integrable Hamiltonian system is a
non-twist Hamiltonian system!

dx
dτ

=
∂ H
∂ A

dA
dτ

= −
∂ H
∂ x

H = α A −
A3

3
+ cos x

Reduced&non)twist&Hamiltonian&

Separatrix&reconnec6on&

P <
3Γ2

2
" 

# 
$ % 

& 

3/ 2

P >
3Γ2

2
" 

# 
$ % 

& 

3/ 2

Homoclinic&

Heteroclinic&



INTEGRABILITY OF THE N = 2 SINGLE WAVE MODEL

Some examples of symmetric hole-clump integrable orbits
Symmetric)hole-clump)orbits)



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the finite-N single wave modelFrom(N=2(to(N>>1(

• del1Cas3llo1Negrete,(M.C.(Firpo,(CHAOS,(12,(496((2002).(
• D. del-Castillo-Negrete, M.C. Firpo: CHAOS, 12, 496-507, (2002).



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave model
From(N=2(to(N=infinity(

• D. del-Castillo-Negrete, M.C. Firpo: CHAOS, 12, 496-507, (2002).



DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

Numerical simulation of the continuum single wave modelSymmetric trapped dipole!
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DIPOLE COHERENT STRUCTURES IN
THE SINGLE WAVE MODEL

€ 

da
dt

=
i
2π

dx du∫∫ e−ix C(x,u,t)



ROTATING DIPOLE COHERENT STRUCTURES AND
SELF-CONSISTENT CHAOSSelf-consistent chaos and coherent structure!

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

(a) (b)

(c) (d)

Rotating coherent!
dipole!

Poincare section!
of time periodic!
self-consistent!
mean-field!

Coherence !
maintained by 
KAM surfaces!



DIPOLE ROTATION AND SELF-CONSISTENT CHAOS

  
a( t) = ω

2

2
1− 2ε cosΩt + K[ ]

  x(t) =ω
3 ε sin Ωt + K[ ]

Par3cle(mean(field((
resonance(

! ! q (t) = 2 a(t) q

Stability(of(the(origin(

Pc =
5Γ 2

6
" 

# 
$ % 

& 

2 / 3

P > Pc P = Pc

P < Pc



ASYMMETRIC DIPOLE STATE

Asymmetric*un-trapped*dipole*

• D. del-Castillo-Negrete, Plasma Physics and Controlled Fusion 47, 1-11

(2005).



RELAXATION TOWARDS ROTATING DIPOLE STATERelaxa3on(to(dipole(state(



STANDARD MEAN FIELD MAP

dyj
dt2

= −2ρ(t) sin x j −θ(t)[ ]

d
dt

ρ e-iθ( ) + iUρ e-iθ = i Γk e
−ix k

k
∑

d xj
dt

= yj j =1,2, ......N xk
n+1 = xk

n + yk
n+1

yk
n+1 = yk

n −κ n+1 sin xk
n −θn( )

κ n+1 = κ n( )2 + ηn( )2 +ηn

θ n+1 =θ n +
1
κ n+1

∂ηn

∂θ n

ηn = γ j sin xj
n − θ n( )

j=1

N

∑

• del1Cas3llo1Negrete,(CHAOS,(10,(75178((2000).(

Self1consistent(standard(map(
Symplec3c(discre3za3on(ODE(Single(Wave(Model(

par3cles(

mean(
field(

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



STANDARD MEAN FIELD MAPSelf1consistent(standard(map(

Par3cle’s((
“charge”(

xk
0 , yk

0( )

γ k =
τ 3

π
exp

−yk2

2
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' ' 
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) 
* * 

Par3cles(
ini3al(posi3ons(

x(

y(

k =1,2, .......2 ×105

θ 0 = 0 κ 0 = 0.001
Mean(field(
ini3al(condi3on(



BEAM-PLASMA INSTABILITY AND COHERENT STRUCTURE
FORMATION IN THE STANDARD MEAN-FIELD MAP

x(

y(

“Shear(flow(Instability”(leading(to(vortex(forma3on(
(in(the(self1consistent(standard(map(

xk
n+1 = xk

n + yk
n+1

yk
n+1 = yk

n −κ n+1 sin xk
n −θn( )

κ n+1 = κ n( )2 + ηn( )2 +ηn

θ n+1 =θ n +
1
κ n+1

∂ηn

∂θ n

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



COMPARISON BETWEEN MAP AND CONTINUOUS SWM

Meam Field Map Continuous SWM

x(

y(

“Shear(flow(Instability”(leading(to(vortex(forma3on(
(in(the(self1consistent(standard(map(

SHEAR FLOW INSTABILITY AND
COHERENT STRUCTURE FORMATION

Numerical simulation of the reduced, single wave model

da
dt !iUa"i!e!ix"#, $18%

where U is a constant and ! • # is the (x ,y) averaged defined
in $15%.

The single wave model inherits all the conservation laws
of the vorticity defect model and of the Navier–Stokes equa-
tion. In particular, the model conserves the vorticity invari-
ants C("), the momentum P, and the energy, E, where

P"!y"##!a!2, E"!&"##U!a!2. $19%

Writing

a"'$ t %exp"!i# t
d( )$(%$ , $20%

where ) is the instantaneous phase speed, and going back to
the Lagrangian description, we have that according to the
single wave model the trajectories of vorticity elements are
described by the Hamiltonian system in $5% with the effective
self-consistent Hamiltonian $streamfunction% &"!y2/2
#2'(t) cos*x!+(t),, where )"d+/dt . That is, a pendulum-

like Hamiltonian with a time dependent amplitude and phase
determined self-consistently from the mean vorticity distri-
bution.

To illustrate the dynamics of the single wave model,
Eqs. $3%, $17%, and $18% were integrated numerically with U
"!1, -"0.001, and initial conditions

"$x ,y ,t"0 %"e!y2/2 *1!0.2 y cos x, , a$0 %"0. $21%

The domain of the single wave model is the infinite strip
(0,2.)$(!/ ,/) in the (x ,y) plane. The boundary condi-
tions are periodic in x and "�0 as y�%/ . In the numerical
integration the y-integral on the right hand side of Eq. $18%
was truncated into a finite interval (!Y ,Y ) with Y large
enough so that the contributions from (%Y ,%/) become
negligible. According to linear theory,11–13 e!y2/2 is a lin-
early unstable equilibrium. As expected, the perturbation de-
stabilizes the flow and as shown in Fig. 5 the shear layer rolls
up into a vortex. As in the case of the vorticity defect model,
this is the usual scenario observed in numerical simulations
of the Navier–Stokes equation. As shown in Fig. 6 the mag-
nitude and instantaneous phase speed of a(t) grow fast ini-

FIG. 5. Shear flow instability and vortex formation in the single wave model. The four panels show the vorticity at t"2, t"4, t"10, and t"50, obtained
from the numerical integration of Eqs. $3%, $17%, and $18%, for the initial condition $21%. The vorticity contours $solid lines% are not equally spaced; to resolve
the stretching and folding of the vorticity at the separatrix the number of contours in this region has been increased. The gray scale denotes the vorticity values
with white corresponding to ""1 and dark gray corresponding to ""0. Figure 6 shows the streamfunction evolution in this case.

81Chaos, Vol. 10, No. 1, 2000 Chaotic transport in fluids and plasmas

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).

xk
n+1 = xk

n + yk
n+1

yk
n+1 = yk

n −κ n+1 sin xk
n −θn( )

κ n+1 = κ n( )2 + ηn( )2 +ηn

θ n+1 =θ n +
1
κ n+1

∂ηn

∂θ n

tially and at large times saturate in a small amplitude oscil-
latory state. Even though the numerical solutions are
dominated by relatively simple cat’s eye patterns, the La-
grangian trajectories are in general not integrable. The non-
trivial time dependence of a(t) in Fig. 6 typically destroys
the separatrix of the cat’s eyes and gives rise to an hetero-
clinic tangle where the Lagrangian trajectories are chaotic.
The chaotic stretching and folding in the heteroclinic tangle
is evident in Fig. 5!c". If as t→# , a becomes time indepen-
dent then the Lagrangian trajectories will be integrable, but
generically the transient will be chaotic.

It is interesting to consider the point vortex representa-
tion of the single wave model. To this end consider the fol-
lowing discrete vorticity distribution

$!x ,y ,t "!2%&
j!1

N

' j ()x"x j! t "* ()y"y j! t "* , !22"

representing N point vortices with coordinates (xk(t),yk(t)),

and intensities 'k , with k!1,2, . . . ,N . Substituting this ex-
pression in Eqs. !3", !17", and !18" we get the point vortex
single wave model:

dxk
dt !yk ,

dyk
dt !

+,

+xk
, !23"

da
dt "iUa!i &

j!1

N

' j e"ix j, !24"

where according to !17", ,!"yk
2/2#a exp(ixk)#a*

$exp("ixk).
Defining

a!!J e"i-, pk!'k yk , !25"

we can rewrite !23" and !24" as the N#1 degrees of freedom
Hamiltonian system

dxk
dt !

+H
+pk

,
dpk
dt !"

+H
+xk

, !26"

d-

dt !
+H
+J ,

dJ
dt !"

+H
+-
, !27"

with Hamiltonian

H!&
j!1

N ! 12' j
p j
2 "2' j !J cos!x j"-"""UJ . !28"

As we will discuss in Sec. V, the point-vortex single wave
model !26"–!28" has the same mathematical form as the
model proposed in Refs. 33 and 34 for studying the beam-
plasma instability. In particular, the Hamiltonian structure in
Eqs. !26"–!28" was originally derived in the plasma physics
context in Refs. 31 and 32.

It is interesting to compare this model with the usual
point vortex model in two-dimensional fluid dynamics ac-
cording to which the motion of N-point vortices with inten-
sities ' j in an unbounded plane is governed by

dxk
dt !"

1
2% &

j!1

N !

' j
y k"y j
rk j
2 ,

dyk
dt !

1
2% &

j!1

N !

' j
xk"x j
rk j
2 ,

!29"
where rk j

2 !(xk"x j)2#(yk"y j)2, and the prime in the sum
indicates that the self-interaction term, k! j , is not included.6
The main difference between this set of equations and the
single wave point vortex model is that in !29" the right-hand
side of the equations for the kth point vortex depends on the
specific location of all the other N"1 point vortices,
whereas in Eqs. !23" the right hand side of the equations for
the kth point vortex depends only on the mean distribution of
the point vortices as determined by Eq. !24". That is, in the
single wave model the vortex–vortex interaction is approxi-
mated by the interaction of each vortex with a mean field.

The set of equations in !26" form an N degrees of free-
dom Hamiltonian system describing the vorticity degrees of
freedom, i.e., they give the trajectories on the vorticity ele-
ments. On the other hand, Eqs. !27" are a one-degree-of-
freedom Hamiltonian system describing the streamfunction
dynamics which in this case is completely determined by the
two functions J(t) and -(t).

FIG. 6. Evolution of the magnitude, . , and instantaneous phase speed, / ,
of the time dependent amplitude of the single wave model streamfunction in
Eqs. !17" and !20" during shear flow instability and vortex formation. The
results were obtained from the numerical integration of Eqs. !3", !17", and
!18" for the initial condition !21". Figure 5 shows the vorticity evolution in
this case.

82 Chaos, Vol. 10, No. 1, 2000 Diego del-Castillo-Negrete

• D. del-Castillo-Negrete: CHAOS, 10, 75, (2000).



MORE RECENT SIMUALTIONS

3 Coherent structures and transport

The evolution of the self-consistent map in Eqs. (16) has been studied for di↵erent initial
conditions. Figures 2 and 3 show the results of a simulation of N = 13, 440 coupled maps
with initial conditions {(x0

k, y
0
k)} uniformly distributed on the region [0, 2⇡] ⇥ [�0.3, 0.3] in

the (x, y) plane and �k = 3 ⇥ 10�6 for k = 1, . . . N . The initial condition of the mean-field
was 0 = 10�4 and ✓0 = 0, and we assumed ⌦ = 0.

The simulations show that the self-consistent map reproduces the coherent structures
observed in the single wave model (Figure 1). In particular, while a group of particles
exhibit coherent behavior trapped in the center of the cat’s eye, those particles located in
the separatrix exhibit a strong dispersion.

Figure 2: Time evolution of the self-consistent map in Eq. (16) with N = 13440 initial conditions uniformly
distributed in [0, 2⇡] ⇥ [�0.3, 0.3] with 0 = 10�4, �k = 3 ⇥ 10�6, ✓0 = 0 and ⌦ = 0. The frames show the
instantaneous coordinates of the N initial conditions, at n = 2, 6, 12, 20 and 66 in the region [0, 2⇡]⇥[�0.8, 0.8]
of the (x, y) plane. The colors label the y-coordinate of the initial condition, with red denoting y0

k close to
y = 0 and blue further away.

The evolution of the mean field is represented by the variables (n, ✓n), which are shown in
Fig. 3. The behavior of n starts with a fast growth until it achieves a maximum value, after
that, the n oscillates around a mean value ̄ and the amplitude of oscillation is bounded by
�. A similar situation is observed with the behavior of #n+1 = ✓n+1�✓n. Di↵erent types of
dynamics, including cases in which the mean field decays to zero or saturates at a constant
fixed value can be found in Refs. [1, 3] for similar self-consistent maps. Note that in Fig. 3,
n does not reach the critical value c = 0.971635406, which is the value of the parameter 
which corresponds to the destruction of the invariant circle with rotation number equal to the
golden mean1 of the standard map [9, 12]. For any  < c there is no global di↵usion in the
standard map because of the existence of invariant circles, that give rise to barriers in phase
space. The existence or non-existence of global di↵usion in the self-consistent map depends
in a nontrivial way on the dynamics of n. On a more fundamental level, the observed rapid

1The last invariant circle not homotopic to a point. It must be noted that due the choice of scale of the

map, the rotation number is ! = 2⇡�, instead of the golden mean: � =
p

5�1
2 .

7

growth of n for a given initial condition is closely related to the linear stability properties of
the corresponding initial condition in the single wave model. In particular, Ref. [4] presents
the necessary and su�cient conditions for the linear stability (i.e., exponential growth of the
mean field amplitude) of a given initial condition in the context of the continuous, N ! 1
limit. These ideas might help understand the conditions for the growth of n. However, one
must be careful before drawing conclusions as the self-consistent map model discussed here is
obtained by simplifying drastically the single wave model by approximating the continuous
limit when N ! 1.

(a) (b)

Figure 3: Time evolution of the mean-field variables in the self-consistent map in Eq. (16) with initial
conditions taken in a uniform grid in [0, 2⇡] ⇥ [�0.3, 0.3] with N = 13440, 0 = 10�4, �k = 3 ⇥ 10�6, ✓0 = 0
and ⌦ = 0. n is shown in (a) and #n+1 = ✓n+1 � ✓n in (b).

Perhaps contrary to the intuition, it is observed that global di↵usion exists even when
̄ < c. It is also worth mentioning that when the instantaneous coordinates (xn

k , y
n
k ) of each

degree-of-freedom are plotted on the same plane like in Fig. 2, the amplitude and shape of
the cat’s eye structure is in good agreement with the invariant manifolds emanating from
the hyperbolic fixed point of the standard map calculated with a perturbation parameter
equal to the instantaneous value of n+1. This gives rise to the following question: What
is the mechanism that allows the di↵usion across the invariant curves on the self-consistent
map? In Figure 4 we observe the formation, for relatively small times, of the macro particle
coherent structure trapped around the elliptic fixed point, and at the same time we have
the formation of the heteroclinic tangle responsible for the high mixing region around the
separatrix of the cat’s eye.

8

Figure 4: Plot of the projected phase space coordinates (xi, yi) on the (x, y)-plane of a simulation of
the self-consistent map in Eq. (16) in the oscillatory  regimen. Also shown in black is the heteroclinic
tangle generated by the unstable invariant manifold of the hyperbolic fixed point of the standard map with
perturbation parameter equal to n. The initial conditions are the same as those in Fig. 2, except that to
enhance the heteroclinic tangle the higher values 0 = 0.005 and � = 0.0005 were used.

To address this question, and motivated by the observed oscillation of n, we propose
the following non-autonomous map consisting of two copies of the standard map applied
sequentially with alternating values of ,

yn+1 = yn � n sin xn

xn+1 = xn + yn+1

where n =

8
<
:

1 if n is odd

2 if n is even
(19)

Without loss of generality, we will assume that 2 is greater than 1.
To explore the onset of global di↵usion for values of 1 and 2 less than c, we considered

a set of N initial conditions uniformly distributed in the region [0, 2⇡] ⇥ [0, ymax] and the
map is iterated n times, with n less than some given maximal value M . We then found
the number of initial conditions that reached the semi-space y > ymax + 2⇡. In turn, this
means that one orbit could pass through the invariant circles which exist in the standard
map with 1 and 2 less than c. Figure 5 shows the percentage of initial orbits that reached

9
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NONTWIST MEAN FIELD MAP

k = 1, 2, . . .N

xn+1
k = xnk + a

[
1−

(
τ

Γk
pn+1
k

)2
]
,

pn+1
k = pnk − 2τΓk

√
Jn+1 sin (xnk − θn),

θn+1 = θn − Uτ − τ√
Jn+1

N∑

k=1

Γk cos (xnk − θn),

Jn+1 = Jn + 2τ
√
Jn+1

N∑

k=1

Γk sin (xnk − θn), (1)

• L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22

013137 (2012).



NONTWIST MEAN FIELD MAP
Period-one coherent structures
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NONTWIST MEAN FIELD MAP
Period-two coherent structures
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation
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NONTWIST MEAN FIELD MAP
Separatrix reconnection and coherent structure formation
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NONTWIST MEAN FIELD MAP
Self-consistent separatrix reconnection in the mean-field map

0 2 4 6

−2

0

2

y

(a)

0 2 4 6

−2

0

2

(b)

0 2 4 6

−2

0

2

(c)

0 2 4 6

−2

0

2

y

(d)

0 2 4 6

−2

0

2

(e)

0 2 4 6

−2

0

2

(f)

0 2 4 6

−2

0

2

y

(g)

0 2 4 6

−2

0

2

(h)

0 2 4 6

−2

0

2

(i)

0 2 4 6

−2

0

2

x

y

(j)

0 2 4 6

−2

0

2

x

(k)

0 2 4 6

−2

0

2

x

(l)

�n=0.0077

�n=0.0177

�n=0.0626

�n=0.0173

�n=0.0347

�n=0.0579

�n=0.0064

�n=0.0428

�n=0.0247

�n=0.0627

�n=0.0314 �n=0.0580

• L. Carbajal, D. del-Castillo-Negrete, and J. J. Martinell, Chaos, 22

013137 (2012).



NONTWIST MEAN FIELD MAP
Self-consistent suppression of diffusion
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NONTWIST MEAN FIELD MAP

Self-consistent suppression of diffusion

∂ρ

∂t
= DQL(t)

∂2ρ

∂y2
, DQL(t) =

κ20
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NONTWIST MEAN FIELD MAP

Self-consistent transition to global chaos

0 1 2 3 4 5 6 7 8 9 10
x 104

0.65

0.7

0.75

0.8

0.85

0.9
�n

(a)

 

 

0 1 2 3 4 5 6 7 8 9 10
x 104

0

2

4

6

8

Iteration (n)

�n

(b)

�n

Fit

Region I
t < T

Region I
t > T



NONTWIST MEAN FIELD MAP

Self-consistent transport across shearless barrier
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NONTWIST MEAN FIELD MAP

Self-consistent intermittent transport near criticality
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