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Arnold Diffusion

Arnold Diffusion

Arnold diffusion problem (1964): For typical1, integrable2

Hamiltonian systems of n > 2 degrees of freedom, when applying
small, ‘generic’3 perturbations, there are trajectories for which the
action I -variable changes O(1):
Hε(I , φ) = H0(I ) + εH1(I , φ),
(I , φ) ∈ Rn × Td ,
∃ (I (t), φ(t)) s.t. ‖I (T )− I (0)‖ > C for all ε sufficiently small

Energy interpretation: Small forcing applied to a frictionless
mechanical system can produce large energy growth

Optical interpretation: In a periodic optical medium whose index of
refraction is arbitrarily close to 1, there exist rays which change
direction by a prescribed finite angle (Kaloshin and Levi,2008)

1strictly convex and superlinear
2in the sense of Liouville-Arnold
3from an open-dense, or cusp residual set in C r , with r large

Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion January 24, 2017 3 / 21



Arnold Diffusion

Arnold Diffusion

A priori unstable case: the unperturbed Hamiltonian possesses a
differentiable family of invariant tori that have hyperbolic invariant
manifolds

rotator pendulum

Hε(I , φ, p, q, t) =

︷︸︸︷
I 2

2
+

︷ ︸︸ ︷(
1

2
p2 + cos(q)− 1

)
︸ ︷︷ ︸+ εH1(p, q, I , φ, t)︸ ︷︷ ︸

unperturbed perturbation
where (I , φ, p, q, t) ∈ M = R× T× R× T× T
A priori stable case: the phase space of the unperturbed Hamiltonian
is foliated by Lagrangean invariant tori

Hε(I , φ) = H0(I ) + εH1(I , φ)
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Arnold Diffusion

Example

Example

Chain of weakly coupled oscillators
(penduli, rotators) +

-

p

q

φΙ

h

t
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Arnold Diffusion

Example

Example

The coupled standard map
In+1 = In + K sin(θn) + ε sin(θn + φn)
θn+1 = θn + In+1

Jn+1 = Jn +K ′ sin(φn) + ε sin(θn +φn)
φn+1 = φn + Jn+1

K = 0.85, K ′ = 0.5, ε = 10−2

n = 103 and n = 106
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3
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Arnold Diffusion

Arnold Diffusion

Remarks:

diffusion occurs along resonances
only few trajectories diffuse a large
distance
diffusion speed is very slow
there is also symbolic dynamics
(trajectories with prescribed
itineraries)

Upshot:

one can use chaos to control
individual trajectories

Credit: Guzzo, Lega and Froeschele
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Arnold Diffusion

Arnold Diffusion

Issues with some theoretical results:

‘typical’ integrable Hamiltonian system may not be generic
‘generic’ classes of perturbations may be small sets; cannot verify
whether a given perturbation is ‘generic’
perturbation size needs to be very small
non-constructive arguments for diffusion
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Geometric method

Geometric method

The dynamics is organized by invariant manifolds:

there exist one or several normally hyperbolic invariant manifolds
(NHIM)4

there is an inner dynamics, restricted to each NHIM
there is an outer dynamics, along the homoclinic/heteroclinic
intersections of the stable and unstable manifolds of the NHIMs
pseudo-orbits formed by the two-dynamics can be shadowed by true
orbits

4
NHIM:

Φ : M → M, C1-smooth flow
TM = TΛ⊕ Eu ⊕ E s

The exponential expansion (contraction) rates of DΦt on TΛ are dominated by the expansion (contraction) rates of
DΦt on Eu (E s , resp.)
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Geometric method

Geometric method

Advantages:

explicit construction of diffusing trajectories
quantitative information – e.g., diffusion time
deal with general type of integrable Hamiltonians
conditions on generic perturbations are explicit and verifiable by finite
precision calculations in concrete systems
deal with larger size perturbations
deal with perturbations that are not periodic/quasiperiodic – e.g.,
mildly recurrent, random
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Example from celestial mechanics

Spatial circular restricted three-body problem

Analogy between single particle dynamics
and planetary motion

Main goal: use chaos to design zero-cost
trajectories with prescribed itineraries

Motion of satellite in the Sun-Earth system:
H(x , y , z , ẋ , ẏ , ż) =
1
2 (ẋ2 + ẏ2 + ż2)− ω(x , y , z),

ω(x , y , z) = 1
2 (x2 + y2) + 1−µ

r1
+ µ

r2

Equilibria: L1, L2, L3 -
center×center×saddle L4, L5 -
center×center×center

For H = h, near L1 there is a 3-dim’l NHIM
Λ̃ containing many invariant 2-dim’l tori

Construct diffusing orbits that move from
one torus to another in specific ways

E M

r1 r2
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Example from celestial mechanics

Spatial circular restricted three-body problem

Compute a Poincaré surface of section Σ and the first return map
Λ = Λ̃ ∩ Σ — 2-dimensional NHIM
Λ = {(I , φ)} — I out-of-plane amplitude
Inner dynamics — twist map
Outer dynamics — scattering map
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Compute a Poincaré surface of section Σ and the first return map
Λ = Λ̃ ∩ Σ — 2-dimensional NHIM
Λ = {(I , φ)} — I out-of-plane amplitude
Inner dynamics — twist map
Outer dynamics — scattering map

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  1  2  3  4  5  6

I

phi

Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion January 24, 2017 12 / 21



Example from celestial mechanics

Spatial circular restricted three-body problem
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Example from celestial mechanics

Existence of diffusing orbits

Construct sequences of 2-dimensional rectangles that are correctly
aligned by the outer dynamics (scattering map) and alternately with
the inner dynamics (twist map)
Use topology to conclude the existence of shadowing orbits
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Example from celestial mechanics

Spatial circular restricted three-body problem

Example: diffusing orbits (2 jumps)
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A general result in the a priori unstable case

A general result in the a priori unstable case

Example:
Hε(p, q, I , φ, t) =
h0(I ) +

∑n
i=1±Pi (pi , qi ) + εH1(p, q, I , φ, t)

where Pi (pi , qi ) = 1
2p

2
i + Vi (qi ), and

(p, q, I , φ, t) ∈ Rn × Tn × Rd × Td × T1.
Assumptions:

(A1) Vi , h0 and H1 are C r

(A2) Each Vi is 1-periodic in q and has a unique
non-degenerate global maximum at (0, 0);
hence, there is a homoclinic orbit to (0, 0)

(A3) The perturbation H1 satisfies some explicit
non-degeneracy conditions (depending on H1

evaluated along the homoclinic family of the
unperturbed system)

pendulum

rotator
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A general result in the a priori unstable case

A general result in the a priori unstable case

Theorem (M.G.,de la Llave,Seara,2014)

Assuming the conditions A1-A3, there exists
ε0 > 0, and ρ > 0 such that, for each
ε ∈ (0, ε0), there exists a trajectory x(t)
such that

‖I (x(T ))− I (x(0))‖ > ρ for some T > 0.

Note:

we do not require ∂2h0/∂I
2 to be sign

definite or non-degenerate
we allow for non-twist dynamics —
appear in magnetic field lines in
toroidal plasma devices (tokamaks,
stellerators), in transport in
magnetized plasma, and in satellite
dynamics near critical inclination

Credit: del-Castillo-Negrete, Greene, and Morrison
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A general result in the a priori unstable case

Shadowing Lemma for NHIM’s

Shadowing Lemma [M.G.,de la Llave,Seara,2014]

Assume that f : M → M is a C r -map, r ≥ 3, Λ ⊆ M is a normally
hyperbolic invariant manifold, and S : U− → U+ is a scattering map.
Assume:

S area preserving

almost every point in Λ is recurrent for f|Λ

Then, given any orbit {xi}i=0,...,n of the scattering map in Λ, i.e.
xi+1 = S(xi ) for all i = 0, . . . , n − 1, for every ρ > 0 there exist an orbit
zi+1 = f ki (zi ) in M, for some ki > 0, s.t. d(zi , xi ) < ρ for all i = 0, . . . , n

Idea of the proof: Apply Poincaré Recurrence to f to return close to
the xi ’s

Remark: one can use several scattering maps rather than a single one
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A general result in the a priori unstable case

Planar elliptic restricted three-body problem

Planar elliptic restricted three-body
problem: the primaries move on elliptic
orbits of eccentricities ε instead of
circular orbits

Model: motion of Oterma comet in the
Sun-Jupiter system

Hamiltonian
Hε(x, t) = H0(x) + εH1(x, t),
H0 is the Hamiltonian of the PCRTBP

Theorem [Capiński, M.G., de la Llave,
2014]: There exists ε0 > 0 and ρ > 0
such that for each 0 < ε < ε0 there
exists x(t) such that
‖H0(x(T ))− H0(x(0))‖ > ρ

L1
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A general result in the a priori unstable case

Restricted four-body problem

Model: motion of moon/spacecraft
near a Trojan asteroid in the
Sun-Jupiter-(624) Hektor system

Hill approximation – four equilibria
L1, L2, L3, L4

The stable and unstable manifolds
W s,u(λi ), of the periodic orbit λi
around Li , i = 1, 2, intersect both in the
interior region and in the exterior region

Complicated dynamics in the inner
region – possible explanation for the
orbit of Hektor’s moon

The perturbative effect of eccentricity
of Jupiter – Arnold diffusion
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A general result in the a priori stable case

A general result in the a priori stable case

Given:

Hε(I , φ) = H0(I ) + εH1(I , φ),
C 2-Hamiltoninan, (I , φ) ∈ A3 = R3 × T3

H0 strictly convex

Then:

for every O1,O2, . . .On open sets in
‘action space’ R3, h regular value of H0,
s.t. Oj ∩ {H = h} 6= ∅, then for for εH1

cusp residual there exists Φt
ε(x) in

{Hε = h} with I (Φ
tj
ε (x)) ∈ Oj for some tj

H =hε

O

O

O
O

1

2
n-1

n
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A general result in the a priori stable case

A general result in the a priori stable case

Steps:

I. Resonances determine ‘chains of cylinders’ [Marco,2012,2015]
II. Existence of diffusing orbits under certain conditions
[M.G. and Marco,2015]
III. ‘Cusp genericity’ of those conditions [Marco,2015]

Approach for II:

Geometric – goes back to Birkhoff’s theory on connecting orbits;
related approaches
Constructive – diffusing orbits can be found explicitly (via an algorithm)
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