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© Armold Diffusion

© Geometric method
© Example from celestial mechanics
@ A general result in the a priori unstable case

© A general result in the a priori stable case
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Arnold Diffusion

Arn

o Arnold diffusion problem (1964): For typical®, integrable?
Hamiltonian systems of n > 2 degrees of freedom, when applying
small, ‘generic’3 perturbations, there are trajectories for which the
action /-variable changes O(1):

H-(1,¢) = Ho(I) + eHi(1, 9),
(I,¢) € R" x T¢,
3(I(t), o(t)) s.t. ||[I(T)—1(0)]| > C for all & sufficiently small

@ Energy interpretation: Small forcing applied to a frictionless
mechanical system can produce large energy growth

@ Optical interpretation: In a periodic optical medium whose index of
refraction is arbitrarily close to 1, there exist rays which change
direction by a prescribed finite angle (Kaloshin and Levi,2008)

Lstrictly convex and superlinear
%in the sense of Liouville-Arnold
3from an open-dense, or cusp residual set in C", with r large
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Arnold Diffusion

@ A priori unstable case: the unperturbed Hamiltonian possesses a
differentiable family of invariant tori that have hyperbolic invariant
manifolds

rotator pendulum
T ~
H. (/ d)v p,q, t) = E + (5[32 + COS(Q) - 1) +€H1(P, q, Ia¢’ )

unpertu?bed perturbation
where (I,¢,p,q,t) EM=RXTXxRxTxT
@ A priori stable case: the phase space of the unperturbed Hamiltonian
is foliated by Lagrangean invariant tori
H-(1,¢) = Ho(!) + eHa(l, ¢)
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@ Example

o Chain of weakly coupled oscillators
(penduli, rotators)
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Arnold Diffusion

@ Example

e The coupled standard map o
Int1 = In+ Ksin(0,) + esin(6, + ¢n) o
0n+1 = an + In+1
Jny1 = Jn+ K'sin(¢,) +esin(6, + én)
¢n+1 = ¢n + Jn+1 LT
K =0.85 K'=0.5,¢=10"2
n=10% and n = 10°
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Arnold Diffusion

@ Example

e The coupled standard map
Int1 = I+ Ksin(0,) + esin(6, + ¢,) -
0n+1 = an + In+1
Jny1 = Jn+ K'sin(¢,) +esin(6, + én)
¢n+1 = ¢n + Jn+1
K =0.85 K'=0.5,¢=10"2 S
n=10% and n = 10° .
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Arnold Diffusion

e Example

e The coupled standard map
Int1 = In + Ksin(6,) + esin(6, + ¢,)
0n+1 — 9 + In+1
Int1 = Jn+ K'sin(¢,) +e5sin(0, +¢,,)
¢n+1 - ¢n + Jn+1 7
K =0.85 K'=0.5,¢=10"2
n=10%and n = 10°
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Arnold Diffusion

@ Remarks:

e diffusion occurs along resonances

o only few trajectories diffuse a large
distance

e diffusion speed is very slow

e there is also symbolic dynamics
(trajectories with prescribed
itineraries)

@ Upshot:

e one can use chaos to control
individual trajectories
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Arnold Diffusion

@ Issues with some theoretical results:

‘typical’ integrable Hamiltonian system may not be generic
‘generic’ classes of perturbations may be small sets; cannot verify
whether a given perturbation is ‘generic’

e perturbation size needs to be very small

e non-constructive arguments for diffusion
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Geometric method

@ The dynamics is organized by invariant manifolds:

o there exist one or several normally hyperbolic invariant manifolds

(NHIM)*

e there is an inner dynamics, restricted to each NHIM
there is an outer dynamics, along the homoclinic/heteroclinic
intersections of the stable and unstable manifolds of the NHIMs

pseudo-orbits formed by the two-dynamics can be shadowed by true
orbits

4NHIM:

@ ®: M — M, Ctsmooth flow

@ TM=TAG®E"@ ES

@ The exponential expansion (contraction) rates of D! on TA are dominated by the expansion (contraction) rates of
Dot on EY (E®, resp.)

[m] = = =
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Geometric method

@ Advantages:

explicit construction of diffusing trajectories

quantitative information — e.g., diffusion time

deal with general type of integrable Hamiltonians

conditions on generic perturbations are explicit and verifiable by finite
precision calculations in concrete systems

o deal with larger size perturbations
o deal with perturbations that are not periodic/quasiperiodic — e.g.,

mildly recurrent, random
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Example from celestial mechanics
Q

@ Analogy between single particle dynamics
and planetary motion

@ Main goal: use chaos to design zero-cost
trajectories with prescribed itineraries

@ Motion of satellite in the Sun-Earth system:
H(x,y,z,x,y,z) =
%()'(2 + 2+ 2%) —w(x,y, z)
wix,y,2) = 5(P +y?) + L+ L

e Equilibria: Ly, L, L3 -
centerxcenterxsaddle Lg4, Lg -
centerxcenterxcenter

@ For H = h, near Ly there is a 3-dim’'l NHIM
A containing many invariant 2-dim’l tori

@ Construct diffusing orbits that move from
one torus to another in specific ways
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and planetary motion
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@ Motion of satellite in the Sun-Earth system: L4
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Example from celestial mechanics

@ Analogy between single particle dynamics
and planetary motion

@ Main goal: use chaos to design zero-cost
trajectories with prescribed itineraries

@ Motion of satellite in the Sun-Earth system:
H(x,y,z,x,y,z) =
%()'(2 + )./2 + 2.2) - UJ(X,y,Z),
w(x,y,z) =303 +y?) + L4 L

e Equilibria: Ly, L, L3 -
centerxcenterxsaddle Lg4, Lg -
center X center X center

@ For H = h, near Ly there is a 3-dim’'l NHIM
A containing many invariant 2-dim’l tori

Zerovelosiy curve

¥ (adim)

@ Construct diffusing orbits that move from
one torus to another in specific ways
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Example from celestial mechanics

@ Analogy between single particle dynamics
and planetary motion

@ Main goal: use chaos to design zero-cost
trajectories with prescribed itineraries

@ Motion of satellite in the Sun-Earth system:

H(x,y,z,x,y,z) = B

20 47+ 2) —w(xy,2) s Hf

Wiy, 2) = 303 +y?) + 4k [ I ‘
e Equilibria: Ly, Ly, L3 - R T —————

centerxcenterxsaddle Lg4, Lg - ”

centerxcenterxcenter

° Eor H = h, near Ly there is a 3-dim’'l NHIM
A containing many invariant 2-dim’l tori
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Example from celestial mechanics

Compute a Poincaré surface of section X and the first return map

A =ANY — 2-dimensional NHIM

0.03

0.025

0.02

0.015

0.005

N ={(l,$)} — I out-of-plane amplitude
Inner dynamics — twist map
Outer dynamics — scattering map

T

T T T T T T
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T
0.03 |- 1

0.025 - 1

0.02 | 1

0.015 - 1

0.005 > x
b
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 4
0.02 - 4
0.015 4
0.01 - 4
0005 [+ ++ 4+ + ’;. »x.”. e J.»x «xi PN ’;.‘ »x.". e J.z M
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 4
0.02 - 4
0.015 B
0.01 M N b
[ T Tl T
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 4
0.02 - 4
0.015 B
Dkol-XXX! xx x x XXX! xx x x ]
0.005 - x x o x x o x x o x x xx-
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T

0.03 - 1
0.025 - 1
0.02 - 1
T 0015 1
x  x x  x
x x X% x x XX
0.01 Fx x x x x x x x -
x x x x
e SHXEEE A R X BU S W SHXEAE R h WX
x x xx x x xx
x x x x x x x x
0.005 - x x x x -
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T

0.03 - 1
0.025 - 1
0.02 - 1
T 0015 1
x x x x
x x x  x x x x  x
x x x x x x x x
0.01 - x x x x x E
LR XHC A M % K S X B EH % K4
x x xx x x xx
x x x x x x x x
x x x x
0.005 - -
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T

0.03 - 1
0.025 - 1
0.02 - 1
T 0015 - x x -
x x x x
x x x x x x x x
x x x x x x x x
x  x x x  x x
0.01 F++ %+  # X # Hd S+0 H XHE AR F X R W X e
x X ¢ x x *
3 x x x x x x x
x x x x
0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM
o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
0.03 - ) ) ) ) ) ]
0.025 4
0.02 - 4
0.015 o x o e

0.01 [

0.005 -

xx

x

x

xx

x

x

x

x

x

x
L L R T R T
»

o
we
o
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T

0.03 - 1
0.025 - 1
0.02 - 1
x X x  x
_ x x x x
0.015 Fx x x x x x x x -
x x x x x x x
x  x x x X x x
P - e owx - e w a
xx » X% »
001 - x x x x x E
x x x x x x x x
x x x x
0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 4
0.02 - B
0.015 K-x xxx N x * * xx xxx xxx . x " * xx ;
0.01 F x x " xx N R xx * x x * xx . . x e
0.005 4
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@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 B
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I e
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@ Compute a Poincaré surface of section X and the first return map
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o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map
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0.025 B
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T

0.03 |- 1
0.025 1
x  x x  x
0.02 | x x x x -
x x x x x x x x
x x x x x x x
x  x x X x  x x X
+ o + axeey
T 0015 F X% = xx » o
x  x x x x  x x X
x x x x x x x x
x x x x
x X x X
0.01 [ -
0.005 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , —
0.025 - 4
0.02 p¢ xxx xxx xxx
0.015 -x . x xxx N N xxx xx*x-
0.01 B
0.005 - q
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
ool , , , , , —
0.025 - 4
0.02 -x xx x " xx xxx xx x * * x x-i
0.015 pFx x " Xxx xxx * x x * xxx xxx x_
0.01 |- q
0.005 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0025 & x x x x 1
T VO T VUL I SORUPORE SR,
0.015 _X " xxx xxx * * xxx xxx -
0.01 - q
0.005 - 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM
o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
ool , , , , , —
0‘025-xx xx xx xx -
002 prress w .’;.xi......... ,.»(.’i.....n. .’;,xi.......... ",.5*
T 0015 R : x x " * x x * -
0.01 |- 4
0.005 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM
o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
ol , , , , , —
oo " N A
R
sl B -
001 4
0.005 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
vl , , , , , —
0.025 -Kx : x R R x  x N xX! * x . . x X . e
0.02 -x N x " xxx xx x N R x * xxx xxxx»
0.015 4
0.01 - B
0.005 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM
o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
0.03 T T T T T ]
O.OZSfK xx)( x = x xxx xxx x = x o

x
[FHEHEE A+ R R R DR R b SRR PR
%

x x x x x x x
0.02 fx x x x x x x x e

0.015 - 1

0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM
o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
vl , , , , , —
L3 S SRR B AUONE UL ORI .

0.015 - 1

0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

T T T T T T
0.03 - 1

x x x x

x x x x x x x o

x x x x x X x

0.025 [+ -+ - X + # 4% HE R RS W X X R R H
x xx

x x x  x x x x o

x  x x x x  x x x
x x x x

0.02 x  x x  x -

0.015 - 1

0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

0.03 - 1
x  x x X

x x x x x x x A
x x x x x x  x
frart et X x A BORE R CHE x O
0.025 - x x x x %% =

x x x X x x x

xx x x xx x x

x x x x
x x x x

0.02 - -
0.015 - 1
001 - 1
0.005 - 1
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
A = ANT — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map

0.03 Fx x x x B
x x x
x X x x x  x
foss s o & s x W OB S K 4 e x - 08 4
x x x %
0.025 §¢ x x x x x x x o
x x x x
x x x x
0.02 -
T 0015 1
0.01 - 1
0.005 - 1
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Example from celestial mechanics

Compute a Poincaré surface of section ¥ and the first return map
AN =ANX — 2-dimensional NHIM

o A={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
0.025 -)( " );x xxx o ):(x xx! -

0.02 1

0.015 - 1

0.005

T
L
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Example from celestial mechanics

Compute a Poincaré surface of section ¥ and the first return map
AN =ANX — 2-dimensional NHIM
N ={(l,$)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
003 f « ! T xx ox x j ! xx ' x|
0.025 - " " " " B
0.02 - 4
0.015 - 4
0.01 - 4
0.005 1
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Example from celestial mechanics

Compute a Poincaré surface of section ¥ and the first return map
AN =ANX — 2-dimensional NHIM
N ={(l,$)} — I out-of-plane amplitude

@ Inner dynamics — twist map

@ Quter dynamics — scattering map
o0 e v o LR SO T =
0.025 - 4
0.02 - 4
0.015 - 4
0.01 - 4
0.005 4
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Example from celestial mechanics

@ Compute a Poincaré surface of section X and the first return map
AN =ANX — 2-dimensional NHIM
o AN={(/,¢)} — I out-of-plane amplitude
@ Inner dynamics — twist map
@ Quter dynamics — scattering map
0.03 | ) ) ixXI ) j :xxT
0.025
0.02
0.015
0.01
0.005
. . . . . . .
0 1 2 3 4 5 6
oh o < = = z
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Example from celestial mechanics

@ Construct sequences of 2-dimensional rectangles that are correctly
aligned by the outer dynamics (scattering map) and alternately with
the inner dynamics (twist map)

@ Use topology to conclude the existence of shadowing orbits

0018 0.0145
0017 0.014
0016 0.0135
0013
0015 x x 0.0125
0.014 ’ 0o1s
0013 x x  x 0.0115
0012 ; ; ; 0.011
0.011 | \ 0.0105
0.01 [+ % 44+ X A+ 4 o 4 x 0.01
2 3 4 5 6— 8
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Example from celestial mechanics

@ Construct sequences of 2-dimensional rectangles that are correctly
aligned by the outer dynamics (scattering map) and alternately with
the inner dynamics (twist map)

@ Use topology to conclude the existence of shadowing orbits

0018 ; 0.0145

0017 [ 0.014

0.016 [x x x 0.0135
0.013

0.015 . . . . 0.0125

0.014 ’ ‘ 0012

0.013 (#+++ Mttt bt X+ttt et 0.0115

0.012 | 0.011

x x x x
0.011 | \ 0.0105
001 [ x x x x 0.01
2 3 + 5 — 8
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Example from celestial mechanics

@ Construct sequences of 2-dimensional rectangles that are correctly
aligned by the outer dynamics (scattering map) and alternately with
the inner dynamics (twist map)

@ Use topology to conclude the existence of shadowing orbits

0.022 |

0021
002 |

- 0019 | ‘ ‘
0.018 [

0.017
0016 l
0015

0014
0
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Example from celestial mechanics

Example: diffusing orbits (2 jumps)

0.002
0.0015
0.001
0.0005

-0.0005
-0.001
-0.0015
-0.002
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A general result in the a priori unstable case

@ Example: rotator

He(p,q, 1, ¢,t) =

hO(I) + Z;’:]_ :I:Pi(pia ql) + E:Hl(pa q, I7 (b? t)

where P,'(p,', q,-) = %P,z + Vi(CIi), and

(p,q,1,0,t) € R" x T" x RY x T9 x T*.

Assumptions:

(A1) V;, hg and Hy are C*

(A2) Each V; is 1-periodic in g and has a unique pendulum
non-degenerate global maximum at (0, 0); \/\
hence, there is a homoclinic orbit to (0, 0)

(A3) The perturbation H; satisfies some explicit
non-degeneracy conditions (depending on Hj V
evaluated along the homoclinic family of the
unperturbed system)

u]

o)
I
i

it
<
¢
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A general result in the a priori unstable case

Theorem (M.G.,de la Llave,Seara,2014)

Assuming the conditions A1-A3, there exists
€o > 0, and p > 0 such that, for each

e € (0,¢0), there exists a trajectory x(t)
such that

11(x(T)) — 1(x(0))|| > p for some T > 0.

o Note:
o we do not require 9?hy/01? to be sign
definite or non-degenerate 04 w02 0 02 o4
o we allow for non-twist dynamics — Credie sl Negrt, G and Morison

appear in magnetic field lines in
toroidal plasma devices (tokamaks,
stellerators), in transport in
magnetized plasma, and in satellite

dynamics near critical inclination - = =
Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion




A general result in the a priori unstable case
Q

Shadowing Lemma [M.G. de la Llave,Seara,2014]

Assume that f : M — M is a C"-map, r > 3, A C M is a normally
hyperbolic invariant manifold, and S: U~ — U™ is a scattering map.
Assume:

@ S area preserving

@ almost every point in A is recurrent for fj,
Then, given any orbit {x;}i—o, . n of the scattering map in A, i.e.
xiy1 = S(x;) forall i=0,...,n—1, for every p > 0 there exist an orbit
ziv1 = fki(z) in M, for some k; > 0, s.t. d(z,x;) < pforalli=0,...,n

v

o ldea of the proof: Apply Poincaré Recurrence to f to return close to
the x;'s

@ Remark: one can use several scattering maps rather than a single one

Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion January 24, 2017 17 /21



A general result in the a priori unstable case

@ Planar elliptic restricted three-body
problem: the primaries move on elliptic
orbits of eccentricities ¢ instead of
circular orbits

@ Model: motion of Oterma comet in the
Sun-Jupiter system

@ Hamiltonian
H-(x, t) = Ho(x) + eHi(x, t),
Hp is the Hamiltonian of the PCRTBP i

@ Theorem [Capinski, M.G., de la Llave,
2014]: There exists ¢g > 0 and p > 0
such that for each 0 < ¢ < g¢ there
exists x(t) such that

IHo(x(T)) = Ho(x(0))[| > p

Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion January 24, 2017 18 /21



A general result in the a priori unstable case
Restricted four-body p

@ Model: motion of moon/spacecraft
near a Trojan asteroid in the
Sun-Jupiter-(624) Hektor system

o Hill approximation — four equilibria i
L1, L2, L3, L4 '

@ The stable and unstable manifolds
WsH();), of the periodic orbit \;
around L;, i = 1,2, intersect both in the
interior region and in the exterior region

@ Complicated dynamics in the inner
region — possible explanation for the gphar
orbit of Hektor's moon

@ The perturbative effect of eccentricity
of Jupiter — Arnold diffusion
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A general result in the a priori unstable case

Re

@ Model: motion of moon/spacecraft
near a Trojan asteroid in the
Sun-Jupiter-(624) Hektor system

o Hill approximation — four equilibria o2 99905

I—l) L2a L37 L4 os70f ‘ ‘ ‘ ‘
@ The stable and unstable manifolds os68|

W*H4()\;), of the periodic orbit A; 066

around L, i = 1,2, intersect both in the __ |

interior region and in the exterior region

0862} / | :

@ Complicated dynamics in the inner 0492 0494 0496 0498 0500 0502 0.504 0.506

region — possible explanation for the
orbit of Hektor's moon

@ The perturbative effect of eccentricity
of Jupiter — Arnold diffusion
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A general result in the a priori unstable case

Re

@ Model: motion of moon/spacecraft
near a Trojan asteroid in the
Sun-Jupiter-(624) Hektor system

o Hill approximation — four equilibria 086615
Ll’ L2a L37 L4 0.86610
@ The stable and unstable manifolds 056605

W*H4()\;), of the periodic orbit A;
around L;, i = 1,2, intersect both in the
interior region and in the exterior region 08%%

0.86600]

@ Complicated dynamics in the inner 08659
region - pOSSible expla nation for the 0.498900.498950.499000.499050.499100.499150.49920
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A general result in the a priori stable case

@ Given:
° HE(I,¢):H0(I)+€H1(I,¢), o)
C2-Hamiltoninan, (/,¢) € A3 = R3 x T3 ‘
o Hy strictly convex

@ Then:

o for every Oy, O,,... O, open sets in
‘action space’ R3, h regular value of Hp,
s.t. OjN{H = h} # 0, then for for eH; o
cusp residual there exists ®(x) in
{H. = h} with I(®Z(x)) € O for some t;
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A general result in the a priori stable case

o Steps:

o |. Resonances determine ‘chains of cylinders’ [Marco,2012,2015]
o Il. Existence of diffusing orbits under certain conditions

[M.G. and Marco,2015]
o Ill. ‘Cusp genericity' of those conditions [Marco,2015]

@ Approach for Il

o Geometric — goes back to Birkhoff's theory on connecting orbits;
related approaches
o Constructive — diffusing orbits can be found explicitly (via an algorithm)

Marian Gidea (Yeshiva University) Hamiltonian Instability and Diffusion
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