# Application of Hamiltonian Instability and Diffusion

Workshop on 'Beam Dynamics' IPAM, January 23 - 27, 2017

Marian Gidea

Yeshiva University - New York

Collaborators: Jaime Burgos, Maciej Capinski, Amadeu Delshams, Rafael de la Llave, Jean-Pierre Marco, Pau Roldan, Tere Seara

Research partially supported by the NSF and the Alfred P. Sloan foundation



- 1 Arnold Diffusion
- 2 Geometric method
- 3 Example from celestial mechanics
- 4 A general result in the a priori unstable case
- 5 A general result in the a priori stable case

# Arnold Diffusion

- Arnold diffusion problem (1964): For typical<sup>1</sup>, integrable<sup>2</sup> Hamiltonian systems of n > 2 degrees of freedom, when applying small, 'generic'<sup>3</sup> perturbations, there are trajectories for which the action *I*-variable changes O(1): H<sub>ε</sub>(I, φ) = H<sub>0</sub>(I) + εH<sub>1</sub>(I, φ), (I, φ) ∈ ℝ<sup>n</sup> × T<sup>d</sup>, ∃(I(t), φ(t)) s.t. ||I(T) - I(0)|| > C for all ε sufficiently small
- Energy interpretation: Small forcing applied to a frictionless mechanical system can produce large energy growth
- Optical interpretation: In a periodic optical medium whose index of refraction is arbitrarily close to 1, there exist rays which change direction by a prescribed finite angle (Kaloshin and Levi,2008)

<sup>&</sup>lt;sup>1</sup>strictly convex and superlinear

<sup>&</sup>lt;sup>2</sup>in the sense of Liouville-Arnold

<sup>&</sup>lt;sup>3</sup> from an open-dense, or cusp residual set in  $C^r$ , with r large  $a \rightarrow c \equiv c = a$ 

## Arnold Diffusion

• A priori unstable case: the unperturbed Hamiltonian possesses a differentiable family of invariant tori that have hyperbolic invariant manifolds

$$H_{\varepsilon}(I,\phi,p,q,t) = \underbrace{\underbrace{\frac{I^{2}}{2}}_{l} + \underbrace{\left(\frac{1}{2}p^{2} + \cos(q) - 1\right)}_{unperturbed}}_{unperturbed} + \underbrace{\varepsilon H_{1}(p,q,I,\phi,t)}_{perturbation}$$
  
where  $(I,\phi,p,q,t) \in M = \mathbb{R} \times \mathbb{T} \times \mathbb{R} \times \mathbb{T} \times \mathbb{T}$ 

• A priori stable case: the phase space of the unperturbed Hamiltonian is foliated by Lagrangean invariant tori

$$H_{\varepsilon}(I,\phi) = H_0(I) + \varepsilon H_1(I,\phi)$$

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



э

A ►

э

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



< /□ > <

3 🕨 🖌 3

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



< 同 > < 国 > < 国 >

э

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

### • Example

• Chain of weakly coupled oscillators (penduli, rotators)



### • Example • The coupled standard map $I_{n+1} = I_n + K \sin(\theta_n) + \varepsilon \sin(\theta_n + \phi_n)$ $\theta_{n+1} = \theta_n + I_{n+1}$ $J_{n+1} = J_n + K' \sin(\phi_n) + \varepsilon \sin(\theta_n + \phi_n)$ $\phi_{n+1} = \phi_n + J_{n+1}$ $K = 0.85, K' = 0.5, \varepsilon = 10^{-2}$ $n = 10^3$ and $n = 10^6$



### • Example

• The coupled standard map

$$I_{n+1} = I_n + K \sin(\theta_n) + \varepsilon \sin(\theta_n + \phi_n)$$
  

$$\theta_{n+1} = \theta_n + I_{n+1}$$
  

$$J_{n+1} = J_n + K' \sin(\phi_n) + \varepsilon \sin(\theta_n + \phi_n)$$
  

$$\phi_{n+1} = \phi_n + J_{n+1}$$
  

$$K = 0.85, K' = 0.5, \varepsilon = 10^{-2}$$
  

$$n = 10^3 \text{ and } n = 10^6$$



< 同 ▶

# Arnold Diffusion

#### • Remarks:

- diffusion occurs along resonances
- only few trajectories diffuse a large distance
- diffusion speed is very slow
- there is also symbolic dynamics (trajectories with prescribed itineraries)

### • Upshot:

 one can use chaos to control individual trajectories



Credit: Guzzo, Lega and Froeschele

January 24, 2017 7 / 21

## Arnold Diffusion

- Issues with some theoretical results:
  - 'typical' integrable Hamiltonian system may not be generic
  - 'generic' classes of perturbations may be small sets; cannot verify whether a given perturbation is 'generic'
  - perturbation size needs to be very small
  - non-constructive arguments for diffusion

### Geometric method

- The dynamics is organized by invariant manifolds:
  - there exist one or several normally hyperbolic invariant manifolds  $(\rm NHIM)^4$
  - there is an inner dynamics, restricted to each NHIM
  - there is an *outer dynamics*, along the homoclinic/heteroclinic intersections of the stable and unstable manifolds of the NHIMs
  - pseudo-orbits formed by the two-dynamics can be *shadowed* by true orbits

<sup>4</sup>NHIM:

•  $\Phi: M \to M, C^1$ -smooth flow

•  $TM = T\Lambda \oplus E^u \oplus E^s$ 

イロト イポト イラト イラト

The exponential expansion (contraction) rates of DΦ<sup>t</sup> on TΛ are dominated by the expansion (contraction) rates of DΦ<sup>t</sup> on E<sup>u</sup> (E<sup>s</sup>, resp.)

### Geometric method

#### Advantages:

- explicit construction of diffusing trajectories
- quantitative information e.g., diffusion time
- deal with general type of integrable Hamiltonians
- conditions on generic perturbations are *explicit* and *verifiable by finite precision calculations in concrete systems*
- deal with larger size perturbations
- deal with perturbations that are not periodic/quasiperiodic e.g., mildly recurrent, random

- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center
- For H = h, near  $L_1$  there is a 3-dim'l NHIM  $\tilde{\Lambda}$  containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways



January 24, 2017

11 / 21

- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center×center
- For H = h, near  $L_1$  there is a 3-dim'l NHIM  $\tilde{\Lambda}$  containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways





- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center
- For H = h, near L<sub>1</sub> there is a 3-dim'l NHIM
   Λ containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways



- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center×center
- For H = h, near L<sub>1</sub> there is a 3-dim'l NHIM
   Λ containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways



- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center
- For H = h, near L<sub>1</sub> there is a 3-dim'l NHIM
   Λ containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways



- 3

3 × 4 3 ×

- Analogy between single particle dynamics and planetary motion
- Main goal: use chaos to design zero-cost trajectories with prescribed itineraries
- Motion of satellite in the Sun-Earth system:  $H(x, y, z, \dot{x}, \dot{y}, \dot{z}) = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \omega(x, y, z),$   $\omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1-\mu}{r_1} + \frac{\mu}{r_2}$
- Equilibria:  $L_1, L_2, L_3$  center×center×saddle  $L_4, L_5$  center×center



х

- For H = h, near  $L_1$  there is a 3-dim'l NHIM  $\tilde{\Lambda}$  containing many invariant 2-dim'l tori
- Construct diffusing orbits that move from one torus to another in specific ways

January 24, 2017 11 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics *scattering map*



Marian Gidea (Yeshiva University)

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21
- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  *I* out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics scattering map



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics *scattering map*



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

January 24, 2017 12 / 21

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics *scattering map*



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics *scattering map*



Marian Gidea (Yeshiva University)

Hamiltonian Instability and Diffusion

- Compute a Poincaré surface of section  $\Sigma$  and the first return map  $\Lambda=\tilde{\Lambda}\cap\Sigma$  2-dimensional NHIM
- $\Lambda = \{(I, \phi)\}$  I out-of-plane amplitude
- Inner dynamics twist map
- Outer dynamics *scattering map*



Marian Gidea (Yeshiva University)

# Existence of diffusing orbits

- Construct sequences of 2-dimensional rectangles that are correctly aligned by the outer dynamics (scattering map) and alternately with the inner dynamics (twist map)
- Use topology to conclude the existence of shadowing orbits



# Existence of diffusing orbits

- Construct sequences of 2-dimensional rectangles that are correctly aligned by the outer dynamics (scattering map) and alternately with the inner dynamics (twist map)
- Use topology to conclude the existence of shadowing orbits



# Existence of diffusing orbits

- Construct sequences of 2-dimensional rectangles that are correctly aligned by the outer dynamics (scattering map) and alternately with the inner dynamics (twist map)
- Use topology to conclude the existence of shadowing orbits



Example from celestial mechanics

### Spatial circular restricted three-body problem

Example: diffusing orbits (2 jumps)



# A general result in the a priori unstable case

#### • Example:

$$\begin{aligned} & H_{\varepsilon}(p,q,l,\phi,t) = \\ & h_0(l) + \sum_{i=1}^n \pm P_i(p_i,q_i) + \varepsilon H_1(p,q,l,\phi,t) \\ & \text{where } P_i(p_i,q_i) = \frac{1}{2}p_i^2 + V_i(q_i), \text{ and} \\ & (p,q,l,\phi,t) \in \mathbb{R}^n \times \mathbb{T}^n \times \mathbb{R}^d \times \mathbb{T}^d \times \mathbb{T}^1. \\ & \text{Assumptions:} \end{aligned}$$

(A1) 
$$V_i$$
,  $h_0$  and  $H_1$  are  $C^r$ 

- (A2) Each V<sub>i</sub> is 1-periodic in q and has a unique non-degenerate global maximum at (0,0); hence, there is a homoclinic orbit to (0,0)
- (A3) The perturbation  $H_1$  satisfies some explicit non-degeneracy conditions (depending on  $H_1$ evaluated along the homoclinic family of the unperturbed system)





15 / 21

# A general result in the a priori unstable case

### Theorem (M.G., de la Llave, Seara, 2014)

Assuming the conditions A1-A3, there exists  $\varepsilon_0 > 0$ , and  $\rho > 0$  such that, for each  $\varepsilon \in (0, \varepsilon_0)$ , there exists a trajectory x(t) such that

$$||I(x(T)) - I(x(0))|| > \rho$$
 for some  $T > 0$ .

• Note:

- we do not require  $\partial^2 h_0 / \partial I^2$  to be sign definite or non-degenerate
- we allow for non-twist dynamics appear in magnetic field lines in toroidal plasma devices (tokamaks, stellerators), in transport in magnetized plasma, and in satellite dynamics near critical inclination



# Shadowing Lemma for NHIM's

Shadowing Lemma [M.G., de la Llave, Seara, 2014]

Assume that  $f : M \to M$  is a  $C^r$ -map,  $r \ge 3$ ,  $\Lambda \subseteq M$  is a normally hyperbolic invariant manifold, and  $S : U^- \to U^+$  is a scattering map. Assume:

- S area preserving
- almost every point in  $\Lambda$  is recurrent for  $f_{|\Lambda}$

Then, given any orbit  $\{x_i\}_{i=0,...,n}$  of the scattering map in  $\Lambda$ , i.e.  $x_{i+1} = S(x_i)$  for all i = 0, ..., n-1, for every  $\rho > 0$  there exist an orbit  $z_{i+1} = f^{k_i}(z_i)$  in M, for some  $k_i > 0$ , s.t.  $d(z_i, x_i) < \rho$  for all i = 0, ..., n

- Idea of the proof: Apply Poincaré Recurrence to f to return close to the x<sub>i</sub>'s
- Remark: one can use several scattering maps rather than a single one

- 3

- 4 同 6 4 日 6 4 日 6

# Planar elliptic restricted three-body problem

- Planar elliptic restricted three-body problem: the primaries move on elliptic orbits of eccentricities ε instead of circular orbits
- Model: motion of Oterma comet in the Sun-Jupiter system
- Hamiltonian

 $\begin{aligned} & H_{\varepsilon}(\mathbf{x},t) = H_0(\mathbf{x}) + \varepsilon H_1(\mathbf{x},t), \\ & H_0 \text{ is the Hamiltonian of the PCRTBP} \end{aligned}$ 

Theorem [Capiński, M.G., de la Llave, 2014]: There exists ε<sub>0</sub> > 0 and ρ > 0 such that for each 0 < ε < ε<sub>0</sub> there exists x(t) such that ||H<sub>0</sub>(x(T)) - H<sub>0</sub>(x(0))|| > ρ



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds W<sup>s,u</sup>(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around L<sub>i</sub>, i = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds *W<sup>s,u</sup>*(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around *L<sub>i</sub>*, *i* = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds W<sup>s,u</sup>(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around L<sub>i</sub>, i = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



January 24, 2017 19 / 21

- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds *W<sup>s,u</sup>*(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around *L<sub>i</sub>*, *i* = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds *W<sup>s,u</sup>*(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around *L<sub>i</sub>*, *i* = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds W<sup>s,u</sup>(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around L<sub>i</sub>, i = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds *W<sup>s,u</sup>*(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around *L<sub>i</sub>*, *i* = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds *W<sup>s,u</sup>*(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around *L<sub>i</sub>*, *i* = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



- Model: motion of moon/spacecraft near a Trojan asteroid in the Sun-Jupiter-(624) Hektor system
- Hill approximation four equilibria  $L_1, L_2, L_3, L_4$
- The stable and unstable manifolds W<sup>s,u</sup>(λ<sub>i</sub>), of the periodic orbit λ<sub>i</sub> around L<sub>i</sub>, i = 1, 2, intersect both in the interior region and in the exterior region
- Complicated dynamics in the inner region – possible explanation for the orbit of Hektor's moon
- The perturbative effect of eccentricity of Jupiter – Arnold diffusion



# A general result in the a priori stable case

### Given:

- $H_{\varepsilon}(I, \phi) = H_0(I) + \varepsilon H_1(I, \phi),$  $C^2$ -Hamiltoninan,  $(I, \phi) \in \mathbb{A}^3 = \mathbb{R}^3 \times \mathbb{T}^3$
- H<sub>0</sub> strictly convex

• Then:

• for every  $O_1, O_2, \ldots O_n$  open sets in 'action space'  $\mathbb{R}^3$ , h regular value of  $H_0$ , s.t.  $O_j \cap \{H = h\} \neq \emptyset$ , then for for  $\varepsilon H_1$ cusp residual there exists  $\Phi_{\varepsilon}^t(x)$  in  $\{H_{\varepsilon} = h\}$  with  $I(\Phi_{\varepsilon}^{t_j}(x)) \in O_j$  for some  $t_j$ 


## A general result in the a priori stable case

## Steps:

- I. Resonances determine 'chains of cylinders' [Marco,2012,2015]
- II. Existence of diffusing orbits under certain conditions [M.G. and Marco,2015]
- III. 'Cusp genericity' of those conditions [Marco,2015]

## • Approach for II:

- Geometric goes back to Birkhoff's theory on connecting orbits; related approaches
- Constructive diffusing orbits can be found explicitly (via an algorithm)