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Race-track microtons (RTMs)

Schematic view of our RTM model

1: Accelerating structure (AS), 2: Drift space, 3: End magnets,
4: Electron source, and 5: Extraction magnet.
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Race-track microtons (RTMs)

The dynamical variables (φn,En)

We will take as variables the full particle energy E and the
phase φ of the accelerating field (radiofrequency field)
when the particle is at some (arbitrary) fixed point of the
accelerating structure (AS) (for instance the midle point).
φ is usually called the particle phase.
We call (φn,En) the values of these variables at the n-th
turn.
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Race-track microtons (RTMs)

Some simplifications

We assume that the AS has zero lengh: the gain of energy
is given by ∆max cosφ, where:
∆max is the maximum energy gain (∆max = V0e, V0 is the
voltage, e is the elementary charge),
φ is the phase of the particle.
We assume that the injected electrons are already
ultra-relativistic, so that the velocity of the particles in the
beam is equal to the velocity of light c.
The end magnets will be considered as hard-edge dipole
magnets so that the fringe-field effects are not taken into
account.
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Race-track microtons (RTMs)

The evolution of the dynamical variables (φn,En)

Duration of the n-th revolution of the beam:

Tn =
2l + 2πrn

c
=

2l
c

+
2πEn

ec2B
,

l : separation between the magnets (straight section length)
rn is the beam trajectory radius in the end magnets (given by
En = ecBrn, e is the elementary charge, B is the magnetic field
induction in the end magnets, En energy of the beam).
The beam dynamics in the phase-energy variables is governed by the
difference equations

φn+1 = φn + 2πTn/TRF, En+1 = En + ∆max cosφn+1,

TRF: Period of the accelerating electromagnetic field
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Race-track microtons (RTMs)

Resonance conditions

The microtron is designed in such a way that the phase φs of
the ideal sinchronous particle when passes through the AS is
always the same (modulo 2π) at any turn.

We call φs the synchronous phase.

Recall that Tn = T (En) be the duration of the n-th turn.
Fix two positive integers m and k and impose the
resonance conditions on the synchronous trajectory, and
labeled as ’s’.

T1,s

TRF
= m,

Tn+1,s − Tn,s

TRF
= k ,

For simplicity, we will assume that k = 1 in the rest of the talk.
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Race-track microtons (RTMs)

Synchronous trajectory

Then the dynamics of the synchronous trajectory is

φn,s = φs+2πn [m + k(n − 1)] ≡ φs (mod 2π), En,s = Es+n∆s,

so its energy undergoes a constant gain at each turn:

∆s = ∆max cosφs

The synchronous trajectory (φn,s,En,s) is a solution of the
difference equations

φn+1 = φn + 2πTn/TRF, En+1 = En + ∆max cosφn+1,
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Race-track microtons (RTMs)

Main goals

The “real particles” oscillate around the ideal synchronous one.

We want to give an accurate description of the longitudinal
acceptance (region of stability of these oscillations) in terms of
the synchronous phase φs, that will be taken as parameter.

We will obtain:
An analytical description of the acceptance for small values
of φs and for φs near some ressonant values with small
error.
An accurate numerical method which gives the acceptance
for values of φs with physical interest.
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Description of the mathematical problem

Model map

We introduce the variables

ψn = φn − φs, wn = 2πk(En − En,s)/∆s,

that describe the phase and energy deviation of an arbitrary
trajectory from the synchronous one. Then the beam dynamics
is modeled by the map (ψ1,w1) = f (ψ,w), defined by{

ψ1 = ψ + w ,
w1 = w + 2π(cosψ1 − 1)− µ sinψ1,

where µ = 2π tanφs is a parameter, ψ (respectively, w) is the
deviation of the phase (respectively, energy) of an arbitrary
trajectory from the phase (respectively, energy) of the
synchronous trajectory, which corresponds to the fixed point

ps = (ψs,ws) = (0,0).
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Description of the mathematical problem

Stability domain (or Acceptance) A

We will study the size and the shape of the stability domain

A = Aµ = {p ∈ T× R : (wn)n∈Z is bounded} ,

where pn = (ψn,wn) = f n(p). We will also study the size and
the shape of the connected component Dµ ⊂ Aµ containing ps.

Remark

We have experimentally checked that

Aµ ⊂ [−0.45,0.35]× [−0.8,0.8], ∀µ ∈ (0,4.6)
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Description of the mathematical problem

Linear behavior at ps = (0,0)

From the linear part of the map f at the fixed point ps = (0,0) we have
that it is:

Hyperbolic iff µ 6∈ [0,4] (φs 6∈ [0,32.48◦]);

Parabolic iff µ ∈ {0,4} (φs ∈ {0,32.48◦}); and

Elliptic iff µ ∈ (0,4) (φs ∈ (0,32.48◦)), in which case the
eigenvalues of of the linear part of the map f at the fixed point ps
are e±θi, where cos θ = 1− µ/2.

If θ/2π is a rational number we are at a resonance.
First, second, third, and fourth order resonances at:
µ = 0 (φs = 0◦) where θ = 0,
µ = 4 (φs = 32.48◦), where θ = π,
µ = 3 (φs = 25.52◦) where θ = 2π/3
µ = 2 (φs = 17.66◦) where θ = π/2.
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Description of the mathematical problem

Linear behavior at ph = (ψh,wh) = (−2φs,0)

The map has another fix point at ph = (−2φs,0) which is
hyperbolic for any µ > 0.
The eigenvalues of the linear part of the map f at the fixed point
ph are e±h, where cosh h = 1 + µ/2.

Definition

The quantity θ/2π ∈ (0,1/2) is the rotation number of the
elliptic fixed point ps. The quantity h > 0 is the characteristic
exponent of the hyperbolic fixed point ph.
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Description of the mathematical problem

Phase portrait for µ = −0.1 (φs = −0,9◦)
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Description of the mathematical problem

Phase portrait for µ = 0 (φs = 0◦)
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Description of the mathematical problem

Phase portrait for µ = 0.1 (φs = 0,9◦)
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Description of the mathematical problem

Phase portrait for µ = 1 (φs = 9◦)
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Description of the mathematical problem

Phase portrait for µ = 2 (φs = 17.66◦)
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Description of the mathematical problem

Phase portrait for µ = µr ' 2.537706055658 . . .
(φs = 21.9◦)
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Description of the mathematical problem

Phase portrait for µ = 2.9 (φs = 24.77◦)
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Description of the mathematical problem

Phase portrait for µ = 3 (φs = 25.52◦)
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Description of the mathematical problem

Phase portrait for µ = 3.1 (φs = 26.26◦)
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Description of the mathematical problem

Phase portrait for µ = 3.9 (φs = 31.82◦)

-0.4

-0.2

 0

 0.2

 0.4

-0.3 -0.2 -0.1  0  0.1  0.2

-0.4

-0.2

 0

 0.2

 0.4

-0.3 -0.2 -0.1  0  0.1  0.2



Stability of the phase motion

Description of the mathematical problem

Phase portrait for µ = 4 (φs = 32.48◦)
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Description of the mathematical problem

Phase portrait for µ = 4.05 (φs = 32.80◦)
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Local stability of the synchronous trajectory

Local stability: Statement

The linear type and the local stability are related as follows. The
hyperbolic type implies local instability, whereas the elliptic type
is generically locally stable, but local instability may take place
in degenerate cases. The parabolic type is the hardest one, but
it can be studied using results from Levi-Civita and Simó.

Theorem

The synchronous trajectory is locally stable if and only if

µ ∈ (0,4] \ {3}.(φs(0,32.48o] \ {25.52o}
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Local stability of the synchronous trajectory

Local instability at the saddle-center bifurcation: µ = 0
( φs = 0); θ = 0

If µ = 0, the map has the form{
w1 = w − π(ψ + w)2 + O4(ψ,w),
ψ1 = ψ + w .

∂2w1
∂ψ2 (0,0) = −2π 6= 0, one can apply the Levi-Civita criterion

(*).

Hence, the origin is locally unstable.
(*)T. Levi-Civita, Sopra alcuni criteri di instabilità, Annali di Matematica Ser. III, 5 (1901) 221–307.
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Local stability of the synchronous trajectory

Local stability in the elliptic case: generic values

If µ ∈ (0,4) \ {2,3}, as θ 6= π/2,2π/3, then there exists an area
preserving polynomial change of variables which brings f into
its third order Birkhoff normal form

z1 = ei(θ+τ |z|2)z + O(|z|4),

τ is the twist coefficient and can be computed analytically. In
particular, τ = τ(µ) has just one root in (0,4); namely,

µr := 2.537706055658189018165133406 . . .

Therefore, for µ 6= µr Moser Twist Theorem gives the existence
of invariant curves near the origin.

Hence, the origin is locally stable.
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Local stability of the synchronous trajectory

Local stability at µ = µr

If µ = µr, we should compute the five order Birkhoff normal form

z1 = ei(θr+τ1|z|2+τ2|z|4)z + O(|z|6),

where τ1 = 0 and τ2 ∈ R is the second Birkhoff coefficient. This
is cumbersome, so we have numerically checked that

ρ(ψ,0) = θr/2π + ρ2ψ
4 + O(ψ5),

for some ρ2 ≈ −200, which implies that τ2 6= 0, and so the
origin is locally stable. Here, ρ(p) denotes the rotation number
around the elliptic fixed point ps of the point p.

Hence, the origin is locally stable.
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Local stability of the synchronous trajectory

Local stability at the fourth order resonance: µ = 2
(φs = 17.66o)

If µ = 2 we have that θ = π/2,
The change x = ψ + w and y = ψ, puts f in the form(

x1
y1

)
=

(
−y − a(x)

x

)
= Rπ/2

(
x

y + a(x)

)
,

where a(x) = a2x2 + a3x3 + O(x4), with a2 = π, a3 = −1/3.
We know from Simó’s criterion (*) that the origin is locally
unstable if and only if

0 < a3 ≤ a2
2.

Hence, the origin is locally stable.
(*) C. Simó, Stability of degenerate fixed points of analytic area preserving mappings, Astérisque, 98–99, Soc. Math.
France, Paris, 1982.
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Local stability of the synchronous trajectory

Local instability at the third order resonance: µ = 3
(φs = 25,52o)

If µ = 3, we have that θ = 2π/3

(ψ3,w3) = f 3(ψ,w) is near the identity and can be written as:

ψ3 = ψ − ∂G
∂w3

(w3, ψ) and w3 = w +
∂G
∂ψ

(w3, ψ).

with G(w3, ψ) = πψ(ψ + w3)(2ψ + w3) + O4(ψ,w3).
Simó’s criterion states that the origin is locally stable iff
G(w3, ψ) has a strict extremun at the origin.

Hence, the origin is locally unstable.
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Local stability of the synchronous trajectory

Local stability at the second order resonance: µ = 4
(φs = 32,48o)

If µ = 4, we have that θ = π.

The change x = 2ψ + w and y = ψ puts f in the form{
x1 = −x + b(x − y),
y1 = x − y ,

where b(u) = b2u2 + b3u3 + O(u4), with b2 = −π, b3 = 2/3.
There is stability if b2 6= 0, b3 6= 0, and 2b3 + b2

2 > 0.

Hence, the origin is locally stable.
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Local stability of the synchronous trajectory

The border of the acceptance: the "last" invariant
curve around p2

We know that for φs 6= 0 ,25,52o:

The elliptic point ps is surrounded by invariant curves.

Questions:
How to compute these curves?
How to compute the last one?

We provide to different methods to compute the last invariant
curve that will give us the size and shape of Dµ ⊂ Aµ.
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Hamiltonian approximations

First method: interpolation by a Hamiltonian flow

In several cases, the map f (or some power) is near the identity
in suitable variables.

Then, one can interpolate our map f by a Hamiltonian flow.
Given n ∈ N, there exists Hn(ψ,w) such that if we consider the
Hamiltonian system

ψ̇ =
∂Hn

∂w
(ψ,w)

ẇ =
∂Hn

∂ψ
(ψ,w)

the invariant curves of f can be approximated by

Hn(ψ,w) = E , E ∈ R
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Hamiltonian approximations

First method: interpolation by a Hamiltonian flow

Method:
Choose an error en

Look for the Hamiltonian Hn

Look for Emax such that Hn(ψ,w) = Emax gives the last
invariant curve.

This method is very accurate near the resonant values of φs
and gives an analytic formula for the boundary.
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Hamiltonian approximations

Near the saddle-center bifurcation: 0 < µ� 1

The scaling x = ψ/µ and y = w/µ3/2 transforms f into

f̃ = I + µ1/2 f̃1 + O(µ) = φµ
1/2

H̃1
+ O(µ) = φ1

µ1/2H̃1
+ O(µ),

where the limit Hamiltonian is

H̃1(x , y) = (x2 + y2)/2 + πx3/3− 1/6π2.

This Hamiltonian has an elliptic point q̃s = (0,0) and a saddle
point q̃h = (−1/π,0), whose invariant curves coincide giving
rise to a separatrix that encloses a domain of area 6/5π2. Thus,

|Aµ|, |Dµ| = 6µ5/2/5π2 + O(µ3), as µ→ 0+.
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Hamiltonian approximations

Phase portrait of the limit Hamiltonian H̃1
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Hamiltonian approximations

The areas |Aµ|, |Dµ|, and 6µ5/2/5π2 versus µ
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Hamiltonian approximations

Interpolating Hamiltonians for 0 < µ� 1

We can refine the limit Hamiltonian H̃ [1](x , y ;µ) = µ1/2H̃1(x , y)
in order to obtain some approximating Hamiltonians

H̃ [n](x , y ;µ) =
n∑

j=1

µj/2H̃j(x , y),

such that f̃ = φ1
H̃ [n] + O(µ(n+1)/2).

This approximation will be valid for biger values of µ
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Hamiltonian approximations

Invariant curves and level curves of H [4](ψ,w ;µ) for
µ = 1

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.3 -0.2 -0.1  0  0.1  0.2

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.3 -0.2 -0.1  0  0.1  0.2

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.3 -0.2 -0.1  0  0.1  0.2



Stability of the phase motion

Hamiltonian approximations

At the fourth order resonance: µ = 2

If µ = 2 and we perform the change x = ψ + w and y = ψ, then
the map f verifies

f̃ 4 = I + O3(x , y).

We can procced and find a unique Hamiltonian of the form

H̃ [n](x , y) = H̃4(x , y) + · · ·+ H̃n(x , y),

such that f̃ 4 = φ1
H̃ [n] + On(x , y).

We can obtain explicit formulas for H̃ [i]
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Hamiltonian approximations

µ = 2: Invariant curves and level curves of H [6](x , y)
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Hamiltonian approximations

Near the third order resonance: µ ' 3

If µ = 3 + ε with 0 < |ε| � 1, then f is transformed by the
scaling (x , y) = π(ψ,w)/ε into a map f̃ such that

f̃ 3 = φ1
εH̃1

+ O(ε2),

where the limit Hamiltonian is

H̃1(x , y) = 3x2 + 3xy + y2 − 2x3 − 3x2y − xy2 − 1.

This Hamiltonian has one elliptic point: q̃s = (0,0), and three
saddle points: q̃1 = (1,0), q̃2 = (1,−3), and q̃3 = (−2,3),
whose separatrices enclose a triangle of area 9/2. Hence,

|D3+ε| = 9ε2/2π2 + O(ε3), as ε→ 0.
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Hamiltonian approximations

µ = 3 + ε: Phase portrait of the limit Hamiltonian H̃1
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Hamiltonian approximations

The areas |Aµ|, |Dµ|, and 9(µ− 3)2/2π2 versus µ
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Global stability of the synchronous trajectory

Second method: computation of rotation numbers.

We compute the "last" invariant curve for the rest of values of
φs using a different idea.
Given any p = (ψ,w) ∈ A, let ϕn be the “lifted argument” of
f n(p) with respect to the elliptic point ps. If the limit

ρ = ρ(p) :=
1

2π
lim

n→+∞

ϕn − ϕ0

n

exists, then we say that ρ(p) is the rotation number of the point
p under the map f around the elliptic point ps. We note that

lim
p→ps

ρ(p) = θ/2π,

where θ/2π is the rotation number of the elliptic fixed point ps.
There exist algorithms to compute ρ(p) in an efficient way (*).
A. Luque and J. Villanueva, Quasi-periodic frequency analysis using averaging-extrapolation methods, SIAM J.
Appl. Dyn. Sist., 13 (2013) 1–46.
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Global stability of the synchronous trajectory

The rotation number (dynamical consequences)

Rotation numbers allow to distinguish the three main bounded
dynamical behaviors in APMs:

A IC is a closed invariant curve around ps where the
dynamics is conjugated to a rigid rotation. If p is inside a
IC, ρ(p) exists and, generically, is a Diophantine number.
A (m,n)-periodic chain of elliptic islands is an invariant
region with several connected components such that each
of them surrounds a (m,n)-periodic elliptic point. If p is
inside some periodic chain, then ρ(p) = m/n is rational.
A chaotic sea is the region between two adjacent ICs
without the stable elliptic islands. If p is inside a chaotic
sea, then ρ(p) generically does not exist.
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Stability regions for µ = 2.037 and µ = 2.038. Chaotics seas,
Invariant Curves,elliptic islands,
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Stability region for µ = 1.539.
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Stability region for µ = 2.853.
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Areas |Aµ| and |Dµ| versus µ
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Birth and escape of the main elliptic islands: n < 10
(m,n) Birth at Escape at µ? with
(1,9) µ• ≈ 0.468 0.859 < µ? < 0.860
(1,8) µ• = 2−

√
2 ' 0.586 0.948 < µ? < 0.949

(1,7) µ• ≈ 0.753 1.071 < µ? < 1.072
(1,6) µ• = 1 1.251 < µ? < 1.252
(1,5) µ• = 1

2(5−
√

5) ' 1.382 1.539 < µ? < 1.540
(2,9) µ• ≈ 1.653 1.835 < µ? < 1.836
(1,4) µ• = 2 2.037 < µ? < 2.038
(2,7) µ• ≈ 2.445 2.526 < µ? < 2.527
(1,3) µ• = 3 2.853 < µ? < 2.854
(3,8) µ• = 2 +

√
2 ' 3.414 3.589 < µ? < 3.590

(2,5) µ• = 1
2(5 +

√
5) ' 3.618 3.735 < µ? < 3.736

(3,7) µ• ≈ 3.802 3.942 < µ? < 3.943
(4,9) µ• ≈ 3.879 4.023 < µ? < 4.024
(1,2) µ• = 4 4.080 < µ? < 4.081
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The sections with the symmetry lines

We gather the sections of the stability domain with the
symmetry line Fix(r0) = {(ψ,w) : w = 0} into the
two-dimensional set:

S0 = {(µ, ψ) ∈ (0,+∞)× T : (ψ,0) ∈ Aµ} ,

in order to visualize their evolution in the parameter µ.
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Two “empirical” rules used in particle accelerators and
a “practical comment”

1 Values of φs for which an accelerator can operate are contained
in the interval of linear stability of the synchronous trajectory
(0,32.5◦).
True except for the value φS := arctan(3/2π) ≈ 25.5◦, that
corresponds to the third order resonance.

2 The optimal values of φs are close to the middle point of such
interval.
True: The acceptance area reaches its maximal value |A| ≈ 0.17
at µ ≈ 1.912, which roughly corresponds to φs ≈ 16.9◦

In this work we deal with perpetual stability, although only 2 · 107

turns were considered in our numerical computations of A.
The number of turns made by each particle is typically of just a few
tens in real RTMs, 90 in the RTM machine of the MAMI complex at
the Institute for Nuclear Physics in Mainz.
R. E. Rand, Recirculating Electron Accelerators, Harwood Academic Publishers, 1984.
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Two ideas

1 Invariant curves of hyperbolic points (or PO) as
approximate boundaries of stability domains. The area of
the lobes between such invariant curves is equal to the flux
through certain closed curves composed by arcs of
invariant curves. These lobes have an exponentially small
area for analytic close-to-the identity maps (Fontich-Simó).
This will hapen near the resonant values.

2 Invariant curves as topological obstruction to the existence
of RICs. If the unstable invariant curve of some periodic
orbit intersects the stable invariant curve of another, then
there can be no RICs between both periodic orbits (Olvera,
Simó).



Stability of the phase motion

On the invariant curves of some hyperbolic points

First idea: Singular splitting for 0 < µ� 1

If 0 < µ� 1, then the map f is approximated, after a
rescaling, by the µ1/2-time flow of the limit Hamiltonian

H̃1(x , y) = (x2 + y2)/2 + πx3/3− 1/6π2.

This Hamiltonian has the homoclinic solution

x0(t) =
3

2π cosh2(t/2)
− 1
π
, y0(t) =

3 sinh(t/2)

2π cosh3(t/2)
,

which is analytic in a complex strip of width d0 = π.
Fontich-Simó: The splitting of the separatrices is O(e−c/h)
for any 0 < c < 2π2, where h is the characteristic exponent
of the hyperbolic fixed point ph.
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Stability domain for µ = 0.859
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The lobe for µ = 0.859, with area A ≈ 3.8082× 10−5
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Asymptotic formula of the splitting for 0 < µ� 1

Let A be the area of the lobe delimited by the part of the
separatrices between the two primary homoclinic points on
the symmetry lines.
Our numerical experiments strongly suggest that there
exist some asymptotic coefficients a0,a1,a2, . . . such that

A � e−2π2/h
∑
n≥0

anh2n, (h→ 0).

a0 ≈ 1.42098502709189813726617259727× 105.
a1 = 0.
It can be proved as in (*)

(*) Exponentially small splitting of separatrices in the perturbed McMillan map P. Martín, D. Sauzin, T. M. Seara.
DCDS 31(2): 301-371, 2011
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First idea: Singular splitting for µ ≈ 3

If µ = 3 + ε with 0 < |ε| � 1, then the map f 3 is
approximated, after a rescaling, by the ε-time flow of the
limit Hamiltonian

H̃1(x , y) = 3x2 + 3xy + y2 − 2x3 − 3x2y − xy2 − 1.

This Hamiltonian has the heteroclinic solution

x0(t) ≡ 0, y0(t) = −3/
(
e3t + 1

)
,

which is analytic in a complex strip of width d0 = π/3.
Fontich-Simó: The splitting of the separatrices is O(e−c/h)
for any 0 < c < 2π2/3, where h is the characteristic
exponent of the hyperbolic fixed points of f 3.
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Second idea: Study for µ = 1.539

The (1,5)-periodic elliptic island escapes from the stability
domain at some 1.539 < µ? < 1.540.
Set µ = 1.539. We have numerically found the following
chain of heteroclinic connections between the
(m,n)-periodic saddle points on the symmetry lines:

(0,1)→ (1,6)→ (2,11)→ (3,16)→ (4,21).

Hence, there is no IC with rotation number ρ ∈ (0,4/21).
Besides, if µ ∈ [1.539, µ?), then the rotation number of the
LRIC should be the “most irrational” number in the interval

(4/21,1/5).
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