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Focus on Some Aspects of Social Dynamics beyond Vehicle
Autonomy at Interface to possible Mathematical Questions

I Heterogeneous traffic and
surroundings conditions are
likely to be impossible to
describe by deterministic
models

I Different scales are present
in integrated social and
traffic models due to e.g.
typical speeds or group sizes

I LV5 autonomy requires
possibly provable stable
control mechanisms to
guarantee traffic safety
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Possible Mathematical Descriptions and Questions
Aspect

I Heterogeneous traffic and
surroundings conditions are
likely to be impossible to
describe by deterministic
models

I LV5 autonomy requires
possibly provable stable
control mechanisms to
guarantee traffic safety

I Different scales are present
in integrated social and
traffic models differentiating
between typical speeds and
group sizes

Mathematical terms

I Uncertainty quantification
methods for different traffic
models, here: hyperbolic
flow models

I Stability / Optimality /
Robustness of suitable
closed loop control
strategies, here: MPC

I Control across scales in
nonlinear setting, here:
optimal control for swarming
type

Aim is to highlight possible contributions or mathematical methods
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(Vehicular)Traffic Modeling at Different Scales due to
Spatial, Temporal or Agent AggregationHPRV_BGKmodels_v4.tex 22-12-2018 14:46

Hierarchy of tra�c models

Microscopic scale Mesoscopic scale Macroscopic scale

Spatially homogeneous model (Section 2):

@tf(t, v) = Q[f, f ](t, v)

The solution of Q[f, f ] = 0 provides the

distribution at equilibrium Mf (v; ⇢)

Classical BGK model (Section 3.2):

@tf(t, x, v)+v@xf(t, x, v) =
1

✏
(Mf (v; ⇢) � f(t, x, v))

Sub-characteristic conditionR
V

v2@⇢Mf (v; ⇢)dv �
�R

V
@⇢Mf (v; ⇢)dv

�2
never satisfied in dense tra�c

Payne-Whitham type model (Section 3.2):

@t⇢ + @x⇢u = 0

@t⇢u + @x

Z

V

v
2
f(t, x, v)dv =

1

✏
(Qeq(⇢) � ⇢u)

Sub-characteristic condition
U 0

eq(⇢)
2⇢2 < 0

never satisfied

Bando’s model (Section 3.2):

ẋi = vi

v̇i =
1

✏
(Ueq(⇢i) � vi)

It does not consider the interaction term

and it is unstable if ✏ > 1
2|U0

eq(⇢)|

Follow-the-leader model (Section 4.1):

ẋi = vi = wi � h(⇢i)

and

v̇i = C�
(vi+1�vi)

(xi+1�xi)
�+1 + 1

✏ (Veq(⇢i) � vi)

or

ẇi = 1
✏ (Veq(⇢i) + h(⇢i) � wi)

Modified BGK model (Section 4.2):

@tg(t, x, w)+@x(w�p(⇢))g(t, x, w) =
1

✏
(Mg(w; ⇢) � g(t, x, w))

The sub-characteristic condition is conditionally

verified in dense tra�c

Aw-Rascle and Zhang model (Section 3.3):

@t⇢ + @x(q � ⇢h(⇢)) = 0

@tq + @x

 
q2

⇢
� qh(⇢)

!
=

1

✏
(Qeq(⇢) + ⇢h(⇢) � q)

where q = ⇢u + ⇢h(⇢).

Sub-characteristic condition U 0
eq � �h0(⇢)

conditionally verified in dense tra�c

Closure Ueq(⇢) =
R

V
fdv

and Qeq(⇢) = ⇢Ueq(⇢)
Closure Ueq(⇢) =

R
V

fdv
and Qeq(⇢) = ⇢Ueq(⇢)

Figure 1.1: Schematic summary of the work.

of a BGK-type model for tra�c flow. This approach has also the advantage of prescribing the
mesoscopic step between the microscopic follow-the-leader model and the macroscopic Aw-Rascle
and Zhang model. Finally, we discuss the results and possible perspectives in Section 5.

2 Review of a homogeneous kinetic model

Recent homogeneous kinetic model for tra�c flow have been discussed e.g. in [43, 45]. The
model proposed therein is used as starting point for the discussion in the following. However, the
particular choice below is not required for the shown results later.

General kinetic tra�c models of the form read

@tf(t, x, v) + v@xf(t, x, v) =
1

✏
Q[f, f ](t, x, v), (2.1)

where
f(t, x, v) : R+ ⇥ R ⇥ V ! R+ (2.2)

is the mass distribution function of the flow, i.e. f(t, x, v)dxdv gives the number of vehicles in
[x, x + dx] with velocity in [v, v + dv] at time t > 0. Moments of the kinetic distribution function
f allow to define the usual macroscopic quantities for tra�c flow

⇢(t, x) =

Z

V

f(t, x, v)dv, (⇢u)(t, x) =

Z

V

vf(t, x, v)dv, u(t, x) =
1

⇢

Z

V

vf(t, x, v)dv (2.3)

yielding density, flux and mean speed of vehicles, respectively, at time t and position x. The space
V := [0, VM ] is the space of microscopic speeds. We suppose that V is limited by a maximum
speed VM > 0, which may depend on several factors, and that the density is also limited by a
maximum density ⇢M . Throughout the work we will take dimensionless quantities, thus VM = 1
and ⇢M = 1.

In [43] the spatially homogeneous kinetic model corresponding to (2.1) has been discussed:

@tf(t, v) =
1

✏
Q[f, f ](t, v). (2.4)

3

I Diagram of some examples of traffic models
I Depending on type of interaction coupling on different levels

possible e.g. individual or fluid
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Modeling Influence of Heterogeneous Conditions by
Methods of Uncertainty Quantification

Exemplify on fluid–like (macroscopic) traffic flow model for density
ρ = ρ(t, x), velocity v = v(t, x), property z = z(t, x)

∂t

(
ρ
z

)
+ ∂x

(
ρv
zv

)
=

(
0

1
τ (ρ (Ueq(ρ)− v))

)
, z = ρv + ρp(ρ)

I Model effect of heterogeneous conditions by random variable
ξ with given probability distribution P

I Example: relaxation parameter τ = τ0 + ξ or initial or
boundary conditions

I Simplest case: Random variable does not have underlying
dynamic: introduces parametric uncertainty also called ξ:
ρ = ρ(t, x , ξ) 1

Efficient model predictions E(ρ(t, x)) and Var(ρ(t, x))?
1and similar for the functions v , z
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Generalized Polynomial Chaos Expansion or Karuhn–Loeve
Expansion

Stochastic hyperbolic equation for ρ = ρ(t, x , ξ) with uncertain
relaxation time

∂t

(
ρ
z

)
+ ∂x

(
ρv
zv

)
=

(
0

1
τ(ξ) (ρ (Ueq(ρ)− v))

)

I Multi-Level Monte Carlo, Stochastic Collocation, Moment
methods, . . .

I (Truncated) Series expansion in ξ base functions
φi (ξ), i = 0, . . . orthogonal w.r.t. to weight associate to P

ρ(t, x , ξ) =
K∑

i=0

ρi (t, x)φi (ξ)

I E.g. for Legendre polynomials E(ρ(t, x)) = ρ0(t, x) and
Var(ρ(t, x)) =

∑
i≥1

ρi (t, x)
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Mathematical Questions on Well-Posedness

Stochastic hyperbolic equation for ρ = ρ(t, x , ξ) transformed to
System of transport equations of size 2(K + 1) for coefficients
~ρ = (ρ0, . . . , ρK ) :

∂t

(
~ρ
~z

)
+ ∂x

∫
F (~ρ, ~z , ~v)~φdP =

∫
S(~ρ, ~z , ~v)~φdP

I K = 0 is the deterministic fluid model

I Formulation assumes the solution ρ belongs to the space of
2K + 1 base functions in ξ

I Requires to define Galerkin projection of F , i.e. (ρv) possible,
requires a priori computation of a tensor

M`,i ,k =

∫
φ`(ξ)φi (ξ)φk(ξ)dP
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Mathematical Questions on Well-Posedness (cont’d)

Stochastic hyperbolic equation for ρ = ρ(t, x , ξ) transformed to
system of transport equations of size 2(K + 1) for coefficients

∂t

(
~ρ
~z

)
+ ∂x

∫
F (~ρ,~z, ~v)~φdP =

∫
S(~ρ,~z, ~v)~φdP

I K = 1 and gPC expansion
of (ρ, z , v) leads to loss of
hyperbolicity

I Explicit example available
having complex eigenvalues
of the projected flux function

I Local Lax–Friedrichs scheme
converges but yields
qualitatively wrong solution
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Hyperbolic gPC Formulation

Stochastic hyperbolic equation for ρ = ρ(t, x , ξ) transformed to
system of transport equations of size 2(K + 1) for coefficients

∂t

(
~ρ
~z

)
+ ∂x

∫
F (~ρ,~z, ~v)~φdP =

∫
S(~ρ,~z, ~v)~φdP

I Expand only (ρ, z) not v
and recompute coefficient in
v

I gPC projection of
v = z

ρ − p(ρ) requires to
solve the (linear) system

P(~ρ)~v = ~z − Pγ+1(ρ)

with P(ρ) = ~ρTM.
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Results on the gPC Formulation

I P(ρ) is positive definite for a
subclass of base functions

I Hyperbolicity: Expansion in
(ρ, z) and projection yields a
strictly hyperbolic system for
ρ0 > 0

I Consistency: for
deterministic τ → 0 recover
the gPC formulation of the
scalar (hyperbolic) LWR
model

I Numerically: Observe
convergence to reference for
K →∞
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Solution to Riemann problem K = 1 and K = 63 modes
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Recall Example of Hierarchy of Traffic ModelsHPRV_BGKmodels_v4.tex 22-12-2018 14:46

Hierarchy of tra�c models

Microscopic scale Mesoscopic scale Macroscopic scale

Spatially homogeneous model (Section 2):

@tf(t, v) = Q[f, f ](t, v)

The solution of Q[f, f ] = 0 provides the

distribution at equilibrium Mf (v; ⇢)

Classical BGK model (Section 3.2):

@tf(t, x, v)+v@xf(t, x, v) =
1

✏
(Mf (v; ⇢) � f(t, x, v))

Sub-characteristic conditionR
V

v2@⇢Mf (v; ⇢)dv �
�R

V
@⇢Mf (v; ⇢)dv

�2
never satisfied in dense tra�c

Payne-Whitham type model (Section 3.2):

@t⇢ + @x⇢u = 0

@t⇢u + @x

Z

V

v
2
f(t, x, v)dv =

1

✏
(Qeq(⇢) � ⇢u)

Sub-characteristic condition
U 0

eq(⇢)
2⇢2 < 0

never satisfied

Bando’s model (Section 3.2):

ẋi = vi

v̇i =
1

✏
(Ueq(⇢i) � vi)

It does not consider the interaction term

and it is unstable if ✏ > 1
2|U0

eq(⇢)|

Follow-the-leader model (Section 4.1):

ẋi = vi = wi � h(⇢i)

and

v̇i = C�
(vi+1�vi)

(xi+1�xi)
�+1 + 1

✏ (Veq(⇢i) � vi)

or

ẇi = 1
✏ (Veq(⇢i) + h(⇢i) � wi)

Modified BGK model (Section 4.2):

@tg(t, x, w)+@x(w�p(⇢))g(t, x, w) =
1

✏
(Mg(w; ⇢) � g(t, x, w))

The sub-characteristic condition is conditionally

verified in dense tra�c

Aw-Rascle and Zhang model (Section 3.3):

@t⇢ + @x(q � ⇢h(⇢)) = 0

@tq + @x

 
q2

⇢
� qh(⇢)

!
=

1

✏
(Qeq(⇢) + ⇢h(⇢) � q)

where q = ⇢u + ⇢h(⇢).

Sub-characteristic condition U 0
eq � �h0(⇢)

conditionally verified in dense tra�c

Closure Ueq(⇢) =
R

V
fdv

and Qeq(⇢) = ⇢Ueq(⇢)
Closure Ueq(⇢) =

R
V

fdv
and Qeq(⇢) = ⇢Ueq(⇢)

Figure 1.1: Schematic summary of the work.

of a BGK-type model for tra�c flow. This approach has also the advantage of prescribing the
mesoscopic step between the microscopic follow-the-leader model and the macroscopic Aw-Rascle
and Zhang model. Finally, we discuss the results and possible perspectives in Section 5.

2 Review of a homogeneous kinetic model

Recent homogeneous kinetic model for tra�c flow have been discussed e.g. in [43, 45]. The
model proposed therein is used as starting point for the discussion in the following. However, the
particular choice below is not required for the shown results later.

General kinetic tra�c models of the form read

@tf(t, x, v) + v@xf(t, x, v) =
1

✏
Q[f, f ](t, x, v), (2.1)

where
f(t, x, v) : R+ ⇥ R ⇥ V ! R+ (2.2)

is the mass distribution function of the flow, i.e. f(t, x, v)dxdv gives the number of vehicles in
[x, x + dx] with velocity in [v, v + dv] at time t > 0. Moments of the kinetic distribution function
f allow to define the usual macroscopic quantities for tra�c flow

⇢(t, x) =

Z

V

f(t, x, v)dv, (⇢u)(t, x) =

Z

V

vf(t, x, v)dv, u(t, x) =
1

⇢

Z

V

vf(t, x, v)dv (2.3)

yielding density, flux and mean speed of vehicles, respectively, at time t and position x. The space
V := [0, VM ] is the space of microscopic speeds. We suppose that V is limited by a maximum
speed VM > 0, which may depend on several factors, and that the density is also limited by a
maximum density ⇢M . Throughout the work we will take dimensionless quantities, thus VM = 1
and ⇢M = 1.

In [43] the spatially homogeneous kinetic model corresponding to (2.1) has been discussed:

@tf(t, v) =
1

✏
Q[f, f ](t, v). (2.4)

3

I Results on Uncertainty Quantification on Mesoscopic Level
Exist

I Open or closed loop control consistent across the scales
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Optimal Control Across Scales in Nonlinear Dynamics
Where may this problem arise?

I Control strategies for N
(interacting) agents like
large crowds of people,
suitably many vehicles on
large–scale highway system

I Goal is a consistent control
for any number of agents
including N =∞

I Exemplified on the case of
typical swarming type
interactions with state x
with single control u

uncontrolled and controlled on particle and meanfield

d

dt
xi =

1

N

N∑

j=1

p(xi , xj , u), u = argmin ũ

∫ T

0

1

N

N∑

j=1

φ(xj , ũ)dt
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Finite (P) and corresponding Infinite (MF) Optimal
Control Problem

(P) u = argmin ũ

∫ T

0

1

N

∑

j

φ(xi , u)dt s.t.
d

dt
xi =

1

N

∑

j

p(xi , xj , u)

(MF ) u = argminũ

∫ T

0

∫
φ(x , u)µ(x , t)dx s.t. 0 = ∂tµ+ divx (µGµ)

ODE

I Pontryagins Maximum
Principle and adjoint
variables zi ∈ RK

I BBGKY hierarchy leads to
joint meanfield distribution
g = g(t, x , z) in state x and
adjoint z for N =∞

MF
I L2−first–order optimality

conditions

0 = ∂tµ + divx
(
µGµ

)
,

0 = −∂tλ−∇xλ
TGµ−

−
∫
µ(y, t)∇xλ(y, t)T p(y, x, u)dy + φ

Necessary conditions for consistent control?
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Necessary Conditions for Consistent Controls (P) vs (MF)

Lemma. Decompose g(t, x , z) = µ(x , t)µc(z , x , t). Then, the
finite and infinite problem are consistent provided that

∇xλ(t, x) =

∫
zµc(z , x , t)dz

I Multiplier λ in the L2 sense is gradient
of the expectation of conditional
probability density of BBGKY
hierarchy

I Mesoscopic formulation allows to
analyse consistent numerical
discretization

I Extension to Game Theoretic Setting
possible, e.g. Stackelberg game with
infinitely many players
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Including Uncertainty Using MPC Framework

I Open loop control
maybe not
suitable for
on-board/online
control of LV5 cars

I Sudden,
unexpected events
need to be
accounted for by
suitable control
measures

I Receding horizon
or
Model–Predictive
Control

✓1

✓2
✓3

✓ = 0

✓ = ⇡/2

✓ /2 [�⇡/2, ⇡/2]

✓ /2 [�⇡/2, ⇡/2]

vi sin (✓1) < 0

vi sin
�
✓k

�
> 0, k = 2, 3

y

x

i

2

3

1

Figure 3: Choice of the interacting car in the case vi > 0. The interacting vehicle will be car 2,
namely the nearest vehicle in the driving direction of vehicle i.

two-dimensional case (see (7)), respectively. Observe that

⇢2D
i ! ⇢1D

i , as �Y,
��yj(i) � yi

��! 0+

only if we assume that

lim
�Y !0+

(yj(i)�yi)!0+

�Y��yj(i) � yi

�� = 1. (8)

The interacting vehicle j(i) is determined by the following map

i 7! j(i) = arg min
h=1,...,N

vi sin ✓h>0

✓h2[�⇡
2 ,⇡2 ]

kQh � Qik2 . (9)

This choice is motivated as follows, see also Figure 3. Assume that each test vehicle i defines a
coordinate system in which the origin is its right rear corner if vi � 0 and its left rear corner if
vi < 0. We are indeed dividing the road in four areas. Let ✓h be the angle between the x-axis (in
the car coordinate system) and the position vector Qh of vehicle h. Then the request ✓h 2

⇥
�⇡

2 , ⇡
2

⇤

allows to consider only cars being in front of vehicle i. Instead, the request vi sin ✓h > 0 allows
to consider only cars in the driving direction of vehicle i. Among all these vehicles we choose the
nearest one. Therefore, (9) can be rewritten as

i 7! j(i) = arg min
h=1,...,N

vi(yh�yi)>0
xh>xi

kQh � Qik2 .

6
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Performance of Receding Horizon Control Depending on
Prediction Horizon

Evolution of state dynamics under receding horizon control with
different prediction horizons N on Meanfield
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Analytical Performance Bounds Available

V∗(τ, Y ) = minu

∫ T

τ
h(X ) +

ν

2
u2ds, x′i (t) = f (xi (t), X−i (t)) + u

VMPC (τ, y) =

∫ T

τ
h(XMPC ) +

ν

2
(uMPC )2ds, (xMPC

i )′(t) = f (XMPC (t)) + uMPC

I V ∗ value function for (full) optimal control u and initial data
X (τ) = Y

I VMPC receding horizon control dynamics and corresponding
value function

I Grüne [2009]: Finitely many particles. There exists 0 < α < 1
such that

VMPC (τ, y) ≤ 1

α
V ∗(τ, y)

I α depends on size of horizon and growth conditions of f
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Bounds are Independent of Number of Particles

I Result extends to
mesoscopic level under
same assumptions ; also:
value of α independent of
number of particles

I Growth conditions are
fulfilled e.g. simple
swarming models

I Allows to control a priori
prediction horizon

I Open: Stability on
mesoscopic level

Quality of the estimate VMPC (τ, y) ≤ 1
α
V∗(τ, y).

blue=true/α, red=receding horizon
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Summary

I Modeling heterogeneous aspects by random variables leads to
interesting mathematical questions for example on
macroscopic level

I Similar question of uncertainty on kinetic scale have been
investigated but links are not fully explored

I For control actions some links between microscopic and
kinetic scale are established

I Receding horizon methods for treating time dependent
uncertainty are also scale invariant

Present results here are in collaboration with S. Gerster, E.
Iacomini, C. Ringhofer and M. Zanella.
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Thank you for your attention.

herty@igpm.rwth-aachen.de
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