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Focus on Some Aspects of Social Dynamics beyond Vehicle
Autonomy at Interface to possible Mathematical Questions

» Heterogeneous traffic and
surroundings conditions are
likely to be impossible to
describe by deterministic
models

» Different scales are present
in integrated social and
traffic models due to e.g.
typical speeds or group sizes

Model arrors a1 days with low densty (RTMG sensor data) Average errors

» LV5 autonomy requires " _
possibly provable stable ] A ) L
control mechanisms to N ,‘ﬁ"“
guarantee traffic safety N
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Possible Mathematical Descriptions and Questions
Aspect

» Heterogeneous traffic and Mathematical terms
surroundings conditions are » Uncertainty quantification
likely to be impossible to methods for different traffic
describe by deterministic models, here: hyperbolic
models flow models

» LV5 autonomy requires » Stability / Optimality /
possibly provable stable Robustness of suitable
control mechanisms to closed loop control
guarantee traffic safety strategies, here: MPC

» Different scales are present » Control across scales in
in integrated social and nonlinear setting, here:
traffic models differentiating optimal control for swarming
between typical speeds and type
group sizes

Aim is to highlight possible contributions or mathematical methods
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(Vehicular)Traffic Modeling at Different Scales due to
Spatial, Temporal or Agent Aggregation

Hie v of traffic models
Microscopic scale Mesoscopic scale
Bando's model (Section 3.2): T E———— Payne-Whitham type model (Section 3.2):

d= v Oup+ Dzpu=0

1
0uf (1,2, ) +002 f (8, 2,) = 7 (M (w3 ) = f(t,,0)) ot 0. [ 43500900 = 2 @unl) = )

= % (Wea(ps) = vi)

It does not consider the inter
and it is unstable if ¢ >

Spatially homogeneous model (Section 2):

B f(t,v) = QLf, fl(t,v)

Closure Usq(p)
and Qeq(p) =

Cl"j“; ”'(“' () - Iy f ;‘” The solution of Q[f, f] = 0 provides the (
and Qeq(p) = pUeq(p) distribution at equilibrium M; (v; p) ealp)
) Aw-Rascle and Zhang model (Section 3.3):
Follow-the-leader model (Section 4.1):

AR Modified BGK model (Section 4.2): Oup+ Ou(a = ph(e)) = 0
2
ol 1 7
Dug(t, @, w)+0e (w—p(p))g(t, z, w) = = (Mg (w; p) — g(t, x, w)) Beq+0s (— - uh(p)) (Qeqlp) + phip) — a)
S e A e » B
s = Oy L L (Vg (i) — )
e o The sub-characteristic condition is conditionally where g = pu + ph(p).
= 2 (Vaaloe) 1 hlos) — 08) d in dense traffic Sub-characteristic condition Ul > —h'(p)
= conditionally verified in dense traffic

» Diagram of some examples of traffic models
» Depending on type of interaction coupling on different levels

possible e.g. individual or fluid
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Modeling Influence of Heterogeneous Conditions by
Methods of Uncertainty Quantification

Exemplify on fluid—like (macroscopic) traffic flow model for density
p = p(t,x), velocity v = v(t,x), property z = z(t, x)

. <§> O <[Z)Z> B <i (p(Uer(p) — v))) » 2= pv+pp(p)

» Model effect of heterogeneous conditions by random variable
& with given probability distribution P

> Example: relaxation parameter 7 = 79 + £ or initial or
boundary conditions

» Simplest case: Random variable does not have underlying
dynamic: introduces parametric uncertainty also called &:

p=p(t,x,§)*
Efficient model predictions E(p(t, x)) and Var(p(t, x))?

and similar for the functions v, z
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Generalized Polynomial Chaos Expansion or Karuhn—Loeve

Expansion
Stochastic hyperbolic equation for p = p(t, x, &) with uncertain
relaxation time

% (2) 0 (%) = (4 (o watr - )

» Multi-Level Monte Carlo, Stochastic Collocation, Moment
methods, ...

» (Truncated) Series expansion in & base functions
?i(€),i =0,... orthogonal w.r.t. to weight associate to P

p(t,x,€) = Zp, £, x)i(€)

» E.g. for Legendre polynomials E(p(t, x)) = po(t,x) and

Var(p(t,x)) = ; pi(t, x)
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Mathematical Questions on Well-Posedness

Stochastic hyperbolic equation for p = p(t, x, ) transformed to
System of transport equations of size 2(K + 1) for coefficients

ﬁ:(p()a”'upK):

8t<§>+8x/ F(5, 2, V)pdP = /5  Z,7)pdP

» K = 0 is the deterministic fluid model

» Formulation assumes the solution p belongs to the space of
2K + 1 base functions in £

» Requires to define Galerkin projection of F, i.e. (pv) possible,
requires a priori computation of a tensor

Moix = / 60(€)61(€)ou(€)dP
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Mathematical Questions on Well-Posedness (cont'd)

Stochastic hyperbolic equation for p = p(t, x, ) transformed to
system of transport equations of size 2(K + 1) for coefficients

Reference solution

ret-sol

&(@4%&/Hﬁi@&P:/ﬂﬁiﬂ&P 05

» K =1 and gPC expansion o
of (p,z,v) leads to loss of
hyperbolicity O g

» Explicit example available ol
having complex eigenvalues o
of the projected flux function

» Local Lax—Friedrichs scheme 0
converges but yields
qualitatively wrong solution 0z
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Hyperbolic gPC Formulation

Stochastic hyperbolic equation for p = p(t, x, &) transformed to
system of transport equations of size 2(K + 1) for coefficients

Reference solution

X (’ZZ) + Oy /F([;‘, 7, 7)GdP = /5(,3, %, V) @dP

» Expand only (p, z) not v
and recompute coefficient in

v o2 0+ o6 os 1 12 11 15 1o >
o

» gPC projection of
v = % — p(p) requires to
solve the (linear) system

P(F)V = Z— P7+1(p)

with P(p) = pT M.
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Results on the gPC Formulation

075

o b |

» P(p) is positive definite for a
subclass of base functions

» Hyperbolicity: Expansion in
(p, z) and projection yields a
strictly hyperbolic system for
po >0

» Consistency: for
deterministic 7 — 0 recover
the gPC formulation of the
scalar (hyperbolic) LWR
model

» Numerically: Observe
convergence to reference for

o o0z 04 08 08 1 1z 14 1s 18 2
x

K — 0 Solution to Riemann problem K = 1 and K = 63 modes
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Recall Example of Hierarchy of Traffic Models

Hierarchy of traffic models

Microscopic scale Mesoscopic scale Macroscopic scale
Bando’s model (Section 3.2):

Payne-Whitham type model (Section 3.2):

Classical BGK model (Section 3.2): Z . gl (s )
&= 1 Opp + Ozpu=0
By f(t, z,v)+vde f(t, 2, v) = = (My(vip) — f(t,z, v 5 2 1

o i) =) SRR RIS G S G0 dupu+ 0. [ 1tz 00 = L Qualp) = pu)

Sub-characteristic condition .
Tt does not consider the interaction term [y v?0, My (v; p)dv > ([, 8p My (v p)dv)® S\Il%(lldra("\‘l‘}l\gl( condition

and it is unstable if € > st e ] fim e (et Usa(p)*p* <0

never satisfied

Spatially homogeneous model (Section 2):

B f(t,v) = QLS fI(¢,v)

Closure Usq(p) = [, fdv The solution of Q[f, f] = 0 provides the Closure Ueq(p) = [, fdv
and Qea(p) = U

distribution at equilibrium M; (v; p) and Qeq(p) = pUea(p)

- Aw-Rascle and Zhang model (Section 3.3):
Follow-the-leader model (Section 4.1):

) Modified BGK model (Section 4.2): Oup+ 0(a - ph(e)) = 0
2
1 7 1
@ ,,,a,nd ) el w) 0 (wp(p)g(t 7 w) = (My(w; p) = gt 7,w)) D+ 0. (7 - ah(ﬂ)) = Qa0 + ph(p) ~ @)
R e S
o= O S+ (Vealp) — )
The sub-characteristic condition is conditionally where g = pu + ph(p).
o verified in dense traffic
i = 1 (Voalps) + (i) = ws)

Sub-characteristic condition U,

—h'(p)

conditionally verified in dense traffic

» Results on Uncertainty Quantification on Mesoscopic Level
Exist

» Open or closed loop control consistent across the scales
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Optimal Control Across Scales in Nonlinear Dynamics
Where may this problem arise?

» Control strategies for N
(interacting) agents like
large crowds of people,
suitably many vehicles on
large—scale highway system

» Goal is a consistent control
for any number of agents
including N = oo

» Exemplified on the case of
typical swarming type
interactions with state x uncontrolled and controlled on particle and meanfield
with single control u

d 1 71
axi = N‘I._le(XhXj’U)’ u = argmin ﬁ/o NZ¢()97[])dt
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Finite (P) and corresponding Infinite (MF) Optimal
Control Problem

T
(P) u= argmin E/o ,il¥¢(x,-, u)dt s.t. %x,- = /t/zj:p(x,-,xj, u)
T
(MF) u= argmin,;/ /gb(x, u)p(x, t)dx s.t. 0 = Opr + divy (1G,)
0

ODE
» Pontryagins Maximum MF
Principle and adjoint > L2—f_ir_st—order optimality
variables z; € RK conditions
» BBGKY hierarchy leads to 0= Bep + divy (uGp)
joint meanfield distribution 0= —8ex = VAT G
g = g(t, x, z) in state x and

adjoint z for N = oo
Necessary conditions for consistent control?

- /u(y, VA, 1) ply, x, u)dy + ¢
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Necessary Conditions for Consistent Controls (P) vs (MF)

Lemma. Decompose g(t, x, z) = u(x, t)uc(z, x, t). Then, the
finite and infinite problem are consistent provided that

VA(t, x) = /zuc(z,x, t)dz

» Multiplier A in the L? sense is gradient
of the expectation of conditional
probability density of BBGKY
hierarchy

» Mesoscopic formulation allows to
analyse consistent numerical
discretization

inion

e =

» Extension to Game Theoretic Setting
possible, e.g. Stackelberg game with
infinitely many players
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Including Uncertainty Using MPC Framework

» Open loop control
maybe not 0 ¢ (/2 7/2
suitable for
on-board/online
control of LV5 cars PR,

» Sudden,
unexpected events
need to be
accounted for by * ,

i past current time prediction horizon
suitable control
measures

. . ast trajectory o 0]
» Receding horizon i il ez -
or et kn) cedbiack value ft(x(n)) = '(05

Model-Predictive -
COntro' past éedbmnlum:

timal predicted trajectory x,- (k)

-1 optimal control sequence u*(k)

T "ol timer

I Int1 N
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Performance of Receding Horizon Control Depending on
Prediction Horizon

@ N=10

Evolution of state dynamics under receding horizon control with

different prediction horizons N on Meanfield
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Analytical Performance Bounds Available

T v
VE(r, Y) = minu/ B0 + 2 s, x(£) = £ (1), X—i(1) +

VMPC(T’ y) = /'T h(XMPC) " g(uMPC)2ds7 (XIMPC)/(t) _ f(XMPC(t)) | MPC

» V* value function for (full) optimal control u and initial data
X(t)=Y

» VMPC yeceding horizon control dynamics and corresponding
value function

» Griine [2009]: Finitely many particles. There exists 0 < o < 1
such that

1 *
VMPC(Tvy) S av (7',_)/)

> « depends on size of horizon and growth conditions of f
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Bounds are Independent of Number of Particles

» Result extends to
mesoscopic level under
same assumptions ; also:

o g
value of « independent of " Valon
number of particles .

» Growth conditions are
fulfilled e.g. simple

swarming models

¢ % *
MPC horizon

sve
Figure 2. Value of the cost functional J3N  (Xq) for controls obtained using a MPC st
with control horizon N (red) and presentation of the optimal costs Vi (Xo) multiplied b

> A | IOWS tO Contr0| a priori ;}z:‘;‘,;dm computed as in [28, Theorem 5.4]. For N < 4 no estimate of the type (2.11) con
pred|Ct|0n horizon Quality of the estimate VMPC(7 ) < % V*(r,y).

blue=true/a, red=receding horizon
» Open: Stability on
mesoscopic level
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Summary

» Modeling heterogeneous aspects by random variables leads to
interesting mathematical questions for example on
macroscopic level

» Similar question of uncertainty on kinetic scale have been
investigated but links are not fully explored

» For control actions some links between microscopic and
kinetic scale are established

» Receding horizon methods for treating time dependent
uncertainty are also scale invariant

Present results here are in collaboration with S. Gerster, E.
lacomini, C. Ringhofer and M. Zanella.
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Thank you for your attention.

herty@igpm.rwth-aachen.de
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