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User (Wardrop) equilibrium

inefficient network utilization
Braess’ paradox
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Navigation apps side-effects

L.W. Foderaro (2017)

J.-G. B. (2018)
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Conservation laws on networks1

Networks

Finite collection of directed arcs I` = ]a`, b`[ connected by nodes

I1

I2

I3

I4

I5 I6

I7

I8 I9

1[Holden-Risebro 1995; Garavello-Piccoli 2006]
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LWR model2

Non-linear transport equation: PDE for mass conservation

∂tρ+ ∂xf(ρ) = 0 x ∈ R, t > 0

ρ = ρ(t, x) ∈ [0, ρmax] mean traffic density
f(ρ) = ρv(ρ) flux function

Empirical flux-density relation: fundamental diagram

ρρcr ρmax

fmax

f(ρ)

0

Greenshields ’35

ρρcr ρmax

fmax

f(ρ)

vf fmax

ρmax−ρcr

Newell-Daganzo

2[Lighthill-Whitham 1955; Richards 1956]
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Riemann problem at junctions

{
∂tρ` + ∂xf`(ρ`) = 0
ρ`(0, x) = ρ`,0

` = 1, . . . , n+m

Riemann solver: RSJ : (ρ1,0, . . . , ρn+m,0) 7−→ (ρ̄1, . . . , ρ̄n+m) s.t.

conservation of cars:
∑n
i=1 fi(ρ̄i) =

∑n+m
j=n+1 fj(ρ̄j)

waves with negative speed in incoming roads
waves with positive speed in outgoing roads

Consistency condition:

RSJ
(
RSJ(ρ1,0, . . . , ρn+m,0)

)
= RSJ(ρ1,0, . . . , ρn+m,0) (CC)

Set γ̄` = f`(ρ̄`)
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Demand & Supply 3

Incoming roads i = 1, . . . , n:

γmax
i (ρi,0) =

{
fi(ρi,0) if 0 ≤ ρi,0 < ρcr

fmax
i if ρcr ≤ ρi,0 ≤ 1

ρ

, f(ρ)γmax
i

fmax(ρ)

Outgoing roads j = n+ 1, . . . , n+m:

γmax
j (ρj,0) =

{
fmax
j if 0 ≤ ρj,0 ≤ ρcr
fj(ρj,0) if ρcr < ρj,0 ≤ 1

ρ

, f(ρ)γmax
j

fmax(ρ)

Admissible fluxes at junction: Ω` = [0, γmax
` ]

3[Lebacque]
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Priority Riemann Solver4

(A) distribution matrix of traffic from incoming to outgoing roads

A = {aji} ∈ Rm×n : 0 ≤ aji ≤ 1,

n+m∑
j=n+1

aji = 1

(B) priority vector

P = (p1, . . . , pn) ∈ Rn : pi > 0,
n∑
i=1

pi = 1

(C) feasible set

Ω =

{
(γ1, · · · , γn) ∈

n∏
i=1

Ωi : A · (γ1, · · · , γn)T ∈
n+m∏
j=n+1

Ωj

}

4[DelleMonache-Goatin-Piccoli, CMS 2018]
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Priority Riemann Solver

Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do
∀i ∈ Jc → hi = max{h : h pi ≤ γmaxi } =

γmaxi
pi

,

∀j ∈ {n+ 1 . . . , n+m} → hj = sup{h :
∑
i∈J ajiQi + h(

∑
i∈Jc ajipi) ≤

γmaxj }.
Set ~ = minij{hi, hj}.
if ∃ j s.t. hj = ~ then
Set Q = ~P and J = {1, . . . , n}.

else
Set I = {i ∈ Jc : hi = ~} and Qi = ~ pi for i ∈ I.
Set J = J ∪ I.

end if
end while
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PRS in practice

2× 2 junction (n = 2, m = 2):

γ2

γ1

γmax
1

γmax
2

P

γmax
3 = a3,1γ1 + a3,2γ2

γmax
4 = a4,1γ1 + a4,2γ2

1 Define the spaces of the
incoming fluxes

2 Consider the demands

3 Trace the supply lines

4 The feasible set is given
by Ω

5 Trace the priority line

Different situations can occur
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PRS: optimal point

P intersects the supply lines in ∂Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q

P
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PRS: optimal point

P intersects the supply lines outside Ω

γ2

γ1

γmax
1

γmax
2

γmax
3

γmax
4

Q
P
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PRS: summary

General Riemann Solver at junctions:

no restriction on A

no restriction on the number of roads

priorities come before flux maximization

compact algorithm to compute solutions

general existence result via Wave-Front-Tracking
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Multi-class model on networks5

ρc` density of vehicles of class c = 1, . . . , Nc on link I`
ρ` =

∑
c ρ

c
` total traffic density on link I`

∂tρ
c
` + ∂x(ρc`v`(ρ`)) = 0 x ∈ I`, t > 0,

Summing on c = 1, . . . , Nc we get

∂tρ` + ∂x(ρ`v`(ρ`)) = 0 x ∈ I`, t > 0,

5[Garavello-Piccoli, CMS 2005; Cristiani-Priuli, NHM 2015; Samanayarake&al, Tr. Sci.
2018]
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Multi-class junction conditions

1 Compose the total distribution matrix.
Ac =

{
acji
}
i,j

distribution matrices for each class c = 1, . . . , Nc. Set

A := {aji}, where aji :=

Nc∑
c=1

acji
ρci
ρi

(1)

weighted distribution matrix for the total density of the populations at
the junction.

2 Compute the fluxes (γ̄1, . . . , γ̄n+m)
using the selected Riemann solver RSJ = RSAJ corresponding to (1).

3 Distribute the fluxes among the various classes.
The incoming and outgoing fluxes for each class are given by

γ̄ci =
ρci
ρi
γ̄i, i = 1, . . . , n, γ̄cj =

n∑
i=1

acjiγ̄
c
i , j = n+ 1, . . . , n+m.
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Strategy modeling on network

Goal: minimize the weighted distance from the target T c

Value function
uc`(y) = inf {dc(y, x) : x ∈ T c}

where

dc(y, x) = inf

{∫ L`

y

1

gc(z, t, ρ`(z, t))
dz +

∑
i

∫ Li

0

1

gc(z, t, ρ`i(z, t))
dz

}

gc being the running cost, thus giving the “shortest path”

19 / 30
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Strategy modeling on network (cont’d)

Weighted distance from the target T c: uc` viscosity solution of
∂xu

c
`(x) + 1

gc(x,t,ρ`(x,t))
= 0 x ∈ I`

min
`∈Out(Jk)

uc`(0) = uc`(Ll) Jk ∈ J \ T c, l ∈ Inc(Jk)

uc`(L`) = 0 , π`(L`) ∈ T c

where gc is the running cost (gc ≡ 1 or gc = v`)

−→ eikonal equation on network
[Schieborn-Camilli 2013; Camilli-Festa-Schieborn 2013]

We set
W c
k :=

{
l ∈ Out(Jk) : ucl (0) = min

j∈Out(Jk)
ucj(0)

}
and

Ack =

{
αcji = 1/|W c

k |, if j ∈W c
k

αcji = 0, otherwise

20 / 30
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System discretization

Conservation laws:

ρc,ν+1
`,1 = ρc,ν`,1 −

∆t

∆x`,1

(
ρc,ν`,1
ρν`,1

F ν`,1 − γ̄c,ν`,1

)

ρc,ν+1
`,h = ρc,ν`,h −

∆t

∆x`,h

(
ρc,ν`,h
ρν`,h

F ν`,h −
ρc,ν`,h−1

ρν`,h−1

F ν`,h−1

)

ρc,ν+1
`,N`

= ρc,ν`,N` −
∆t

∆x`,N`

(
γ̄c,ν`,N` −

ρc,ν`,N`−1

ρν`,N`−1

F ν`,N`−1

)
where
F ν`,h = F`(ρ

ν
`,h, ρ

ν
`,h+1) := min

{
D`(ρ

ν
`,h), S`(ρ

ν
`,h+1)

}
(Godunov scheme)

∆t ≤ min`,h ∆x`,h/V` (CFL condition)

Eikonal equations:

uc,ν`,h+1 − u
c,ν
`,h

∆x`,h
+

1

gc(ρν`,h)
= 0

uc,ν`,N` = min
i∈Out(Jk)

uc,νi,1 , x`,N` = Jk ∈ J

21 / 30
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System discretization (cont’d)

Junction coupling conditions:

W c,ν
k =

{
l ∈ Out(Jk) : uc,νl,1 = min

i∈Out(Jk)
uc,νi,1

}
,

Ac,νk =
{
ac,νji

}
ji

: ac,νji =

{
1/|W c,ν

k |, if j ∈W c,ν
k ,

0, otherwise,

Aνk =

{
Nc∑
c=1

ac,νji
ρc,νi,Ni
ρνi,Ni

}
ji

,

(γ̄ν`1 , ..., γ̄
ν
`nk+mk

) = RSAν
k
(ρν`1 , ..., ρ

ν
`nk+mk

)

γ̄c,νi,Ni =
ρc,νi,Ni
ρνi,Ni

γ̄νi , i ∈ Inc(Jk),

γ̄c,νj,1 =

`nk∑
i=`1

ac,νji γ̄
c,ν
i , j ∈ Out(Jk),

Initial and boundary conditions

ρc,0`,h =
1

∆x`,h

x`,h+1∫
x`,h

ρ̄c`(x)dx, uc,ν`,N` = ρc,ν`,N` = 0, x`,N` ∈ T
c,
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Example 16: Pasadena

6[Thai-LaurentBrouty-Bayen, IEEE ITS 2016]
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Example 1

v1` (ρ) = 1− ρ, g1(ρ) = 1

v2` (ρ) = 1− ρ, g2(ρ) = 1− ρ
ρ1,01 = (1− P )ρ̄, ρ2,01 = P ρ̄, ρ̄ = 0.9

P=0.5

25 / 30
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Example 1

Vehicles rate P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
T
T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Performance for percentage of routed vehicles

population 1 (non routed)

population 2 (routed)

total population

Vehicles rate C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
T
T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Performance for percentage of vehicles (main/secondary roads)

secondary roads

main road

total

Total Travel Time in the
whole network for each of
the two populations and for
the whole population de-
pending on the penetration
rate of routed vehicles P

Total Travel Time in the
main road and in the two
detours to reach destination
depending on the penetra-
tion rate of routed vehicles
P

TTT (ρ) = ∆t∆x

Nf∑
ν=0

∑
`∈L

N∑̀
h=1

ρν`,h
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Example 2: Sophia Antipolis
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Example 2

initial condition ρ̄ = 0.8

P=0.5

non informed informed
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Conclusion

[A. Festa and P. Goatin, Modeling the impact of on-line navigation devices in
traffic flows, 2019 IEEE 58th Conference on Decision and Control (CDC), Nice,
France (2019), 323-328.]

Multi-population model accounting for routing choices:

Can be applied to any Riemann Solver at junction

Solves eikonal equations on networks

Reproduces expected behaviour

Can be extended to route choice based on traffic forecast

Convergence?

29 / 30
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Related reference

[N. Laurent-Brouty, A. Keimer, P. Goatin and A. Bayen, A macroscopic traffic
flow model with finite buffers on networks: Well-posedness by means of
Hamilton-Jacobi equations, Comm. Math. Sci., 18(6) (2020), 1569-1604.]

Multi-buffer junction model accounting for variable routing ratios:

Hamilton-Jacobi formulation of LWR

Well-posedness by fixed-point theorem

Suitable for solving optimal control problems as DTA

Can (in principle) be extended to multi-commodity

Dr. Paola Goatin
Inria Sophia Antipolis - Méditerranée

France
paola.goatin@inria.fr

http://www-sop.inria.fr/members/Paola.Goatin/
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