

Controlling unfairness in traffic networks

M. Grazia Speranza University of Brescia

IPAM, November 17th, 2020

How to reach your destination....

Map and O/D

Coordination

Map, traffic and O/D

Sat-nav Shortest path (time/distance)

Sat-nav First k shortest paths (time)

Time to think about a new generation?

Traffic assignment approaches

Route guidance

The goal:

To find a traffic assignment with controlled limited inconvenience, and reduce the price of anarchy

Constrained approaches

Maximum allowed inconvenience

5% more than shortest path

The first constrained approach

Jahn, Möhring, Schulz, Stier-Moses, OR, 2005

Min Total travel time

on paths of limited length

The first constrained SO approach

Travel time on arc (i,j) with flow x_{ij}

Min Total travel time

on paths of limited length

Non linear optimization problem on an exponential number of paths

Linear constrained SO models

Inconvenience (unfairness)

For an OD pair: concepts for inconvenience (unfairness)

Loaded inconvenience: ratio of the experienced travel time w.r.t. the fastest traveler, with current congestion level

Normal inconvenience: ratio of the length w.r.t. the shortest path

User equilibrium (UE) inconvenience: ratio of the experienced travel time w.r.t. to the travel time in a user equilibrium

Free-flow inconvenience: ratio of the experienced travel time w.r.t. the fastest path, with free-flow travel time

Grazia Speranza - Controlling unfairness

Heuristic column generation

Through a procedure that works on a modified network

Generate new improving paths

Solve the restricted problem

Instances

40 instances with 150 nodes and 8 instances with 330 nodes

Instances

Instances

Sioux Falls Berlin-Friedrichshain Winnipeg Chicago

A||K| |V| |K| 40K 24 76 528 224 523 506 265K 1,067 2,975 4,344 13M 933 245M 2,950 83,113

Performance of the heuristic

		Shortest paths on modified network		Dual variables		CSI CAS-SI		
3	22	SP-GEN l		DUAI	DUAL-GEN		· ,)/	
				l		n		
	γ (%)	100	1000	100	1000	1000		
Ĩ	0	0.3(0)	3.4(0)	0.3(0)	4.1(0)	16.63		
	5	1.8(0.1)	16.4(0.1)	8.0(0.5)	20.6(2.2)	23.87	L'IG.	
run time	10	1.8(0.1)	14.1(0.2)	12.5(0.7)	29.1(2.7)	30.65		
64	15	1.9(0.1)	13.3(0.3)	22.3(0.6)	42.2(2.4)	43.2		
8	0	0.0	0.0	0.0	0.0	-		
	5	0.41	0.41	0.02	0.01			
avg. gap	10	0.08	0.07	0.06	0.05	-		
	1 5	0.07	0.05	0.09	0.08	-		
	0	0.0	0.0	0.0		10.01		
	5	1.88	1.84	0.11	0.09	-		
max. gap	10	0.68	0.64	0.19	0.18	-		
	15	0.51	0.45	0.31	0.28	-		

Average over 40 instances

Performance of the heuristic

		γ (%)			
		0	5	10	15
n = 1000	LIN-C-SO paths	1170	17128	45553	93559
111	paths	1170	1540	1590	1604
SP-GEN $l = 100$	% LIN-C-SO paths	100	9.04	3.50	1.72
	iterations	4.5	4.4	4.1	4.0
	paths	1170	1538	1585	1601
SP-GEN $l = 1000$	% LIN-C-SO paths	100	9.03	3.49	1.71
	iterations	4.4	4.6	4.2	4.2

Average over 40 instances

Between UE and SO

Grazia Speranza - Controlling unfairness

Impact of compliance

Instance: 150 nodes, 480 arcs, and 1170 OD pairs Oligo-centric, in-peak, and high in-city traffic

CVaR objective

 Γ_{β}

Average arc congestion over the β *100% most congested arcs

$\beta \equiv \min \omega + \frac{1}{\lceil \beta A \rceil} $	$\sum_{j)\in A} \eta_{ij}$	
s.t.		
$d_c = \sum_{k} y_{ck}$	Eligible path	$\forall c \in C$
$x_{ij} = \sum_{c \in C} \sum_{k \in K_c^{\gamma}} a_{ij}^{ck} y$	lck	$\forall (i,j) \in A$
$x_{ij} = \sum_{h=1}^{n} \lambda_{ij}^{h}$		$\forall (i,j) \in A$
$0 \le \lambda_{ij}^h \le \Delta_{ij}^h$	OD pair $\forall (i$	$(j) \in A \forall h = 1,, n$
$\epsilon_{ij} = \sum_{h=1}^{n} \frac{\epsilon_{ij}^{h} - \epsilon_{ij}^{h-1}}{\Delta_{ij}^{h}}$	$^{1}-\lambda_{ij}^{h}$	$\forall (i,j) \in A$
$\omega + \eta_{ij} \ge \epsilon_{ij}$		$\forall (i,j) \in A$
$x_{ij} \ge 0$		$\forall (i,j) \in A$
$y_{ck} \ge 0$		$\forall c \in C \forall k \in K_c^{\gamma}$
$\eta_{ij} \ge 0$		$\forall (i,j) \in A.$

CVaR objective

Grazia Speranza - Controlling unfairness

Average over 40 instances

The constrained SO approaches

The constrained SO approaches

Some paths could turn out to be more inconvenient than planned (e.g., a priori inconvenience = 5%, a posteriori = 10%) and some good paths could be missed

One step ahead...

Idea:

A model that embeds the path generation

A model embedding the path generation

Min Total travel time (piecewise approximation)

subject to

- Total flow routed for each O/D pair

- Travel time on a path does not exceed the travel time experienced on any other path by a given percentage ϕ

Any other path? possibly unused or used

FP-UC-SO and L-UC-SO Exponential number of binary variables

A com	plete model	FP-UC-SO	
min	$\sum_{(ij)\in A} \sigma_{ij} \longleftarrow \text{Total travel t}$	ime	G.SIT
	$x_{ij} = \sum_{c \in C} \sum_{k \in K_c} a_{ij}^{ck} y_{ck}$	$\forall (i,j) \in \mathbf{A}$	her
	$d_c = \sum_{k \in K_c} y_{ck}$	$\forall c \in C$	
	$x_{ij} = \sum_{h=1}^n \lambda_{ij}^h$	$\forall (i,j) \in A$	
	$\sigma_{ij} = \sum_{h=1}^{n} \frac{f_{ij}^h - f_{ij}^{h-1}}{\Delta_{ij}^h} \lambda_{ij}^h$	$\forall (i,j) \in A$	
	$\tau_{ij} = \sum_{h=1}^{n} \frac{t_{ij}(b_{ij}^{h}) - t_{ij}(b_{ij}^{h-1})}{\Delta_{ij}^{h}} \lambda_{ij}^{h}$	$\forall (i,j) \in A$	
Limited	$\tau_{ck} = \sum_{(i,j)\in A} a_{ij}^{ck} \tau_{ij}$	$\forall c \in C \forall k \in K_c$	
wrt.possibly	$\tau_{ck} \le (1+\phi)\tau_{ck'} + M(1-v_{ck})$	$\forall c \in C \forall k \in K_c \forall k' \in K_c \setminus \{k\}$	
unused paths	$y_{ck} \le d_c v_{ck}$	$\forall c \in C \forall k \in K_c$	
	$x_{ij} \ge 0$	$\forall (i,j) \in A$	
	$y_{ck} \ge 0$	$\forall c \in C \forall k \in K_c$	
A CONTRACT OF A CONTRACT.	$0 \le \lambda_{ij}^h \le \Delta_{ij}^h$	$\forall (i,j) \in A \forall h = 1,, n$	
UNIVERSITY OF BRESCIA	$v_{ck} \in \{0,1\}$ Grazia Speranza - Cont	$\forall c \in C \forall k \in K_c.$ rolling unfairness	

A com	plete model	L-UC-SO
min	$\sum_{(ij)\in A} \sigma_{ij} \longleftarrow$ Total travel time	G.SIT
	$x_{ij} = \sum_{c \in C} \sum_{k \in K_c} a_{ij}^{ck} y_{ck}$	$\forall (i,j) \in A$
	$d_c = \sum_{k \in K_c} y_{ck}$	$\forall c \in C$
	$x_{ij} = \sum_{h=1}^{n} \lambda_{ij}^{h}$	$\forall (i,j) \in A$
	$\sigma_{ij} = \sum_{h=1}^{n} \frac{f_{ij}^{h} - f_{ij}^{h-1}}{\Delta_{ij}^{h}} \lambda_{ij}^{h}$	$\forall (i,j) \in A$
	$\tau_{ij} = \sum_{h=1}^{n} \frac{t_{ij}(b_{ij}^{h}) - t_{ij}(b_{ij}^{h-1})}{\Delta_{ij}^{h}} \lambda_{ij}^{h}$	$\forall (i,j) \in A$
Limited	$\tau_{ck} = \sum_{(i,j)\in A} a_{ij}^{ck} \tau_{ij}$	$\forall c \in C \forall k \in K_c$
inconvenience>	$\tau_{ck} \le (1+\phi)\tau_{ck'} + M(2-v_{ck}-v_{ck'})$	$\forall c \in C \forall k \in K_c \forall k' \in K_c \setminus \{k\}$
w.r.t. used paths	$y_{ck} \le d_c v_{ck}$	$\forall c \in C \forall k \in K_c$
	$x_{ij} \ge 0$	$\forall (i,j) \in A$
	$y_{ck} \ge 0$	$\forall c \in C \forall k \in K_c$
A CONTRACT OF A	$0 \le \lambda_{ij}^h \le \Delta_{ij}^h$	$\forall (i,j) \in A \forall h = 1,, n$
	$v_{ck} \in \{0,1\}$	$\forall c \in C \forall k \in K_c.$
UNIVERSITY OF BRESCIA	Grazia Speranza - Controlling	unfairness

A heuristic column-generation

→ Generate new improving paths

Solve restricted optimization problem

Quality of the heuristic

φ	Run time FP-UC-SO	(sec) PC-M	Θ Avg. gap (%) Max. gap (%)		
1	563	1.61	0.22	0.63	
2	321	1.39	0.24	1.55	
3	176	1.30	0.30	1.30	
4	153	1.27	0.25	1.00	
5	151	1.30	0.22	0.96	
6	132	1.28	0.21	0.88	
7	115	1.30	0.20	0.90	
8	106	1.28	0.19	0.90	
9	99	1.28	0.19	0.90	
10	101	1.30	0.19	0.90	

Comparison with UE and SO

Comments

How to distribute vehicles over the different paths?

Incentives

Time dependent network

Dynamic problem

Decentralized optimization

Thank you for your attention!

