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Framework

Framework
Mathematical modeling of traffic flow on a single road, by means of both

• microscopic (agent-based) follow-the-leader models based on a
system of ODEs

• MACROSCOPIC (fluid-dynamic) models based on conservation laws
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Framework: Macroscopic Model

ρ(x , t) density of cars at point x and time t

V (x , t) velocity of cars at point x and time t

f (x , t) = ρ(x , t)V (x , t) flux of cars at point x and time t

The fundamental diagram establishes the relationship between the flux and
the density of vehicles, i.e. {(ρ(x , t), f (x , t)) : x ∈ R, t > 0}

f

f max

ρmax ρ
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Classical LWR Model

Lighthill-Whitham-Richards (LWR) model (1955)

∂tρ(x , t) + ∂x (ρ(x , t)V (ρ(x , t))) = 0, x ∈ R, t > 0

Main features
• is a hyperbolic conservation law (the total mass has to be preserved)
• the velocity depends on the density and typically

V (ρ) = Vmax
(

1− ρ
ρmax

)
• easy to implement and very cheap in terms of memory and time
• can be used also on large networks for traffic forecast

• BUT accelerations are considered to be instantaneous and traffic is
described only at the equilibrium (no typical features of traffic
dynamics as capacity drop or spontaneous congestions like Stop & Go
waves)
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Derivation of the delayed LWR model

Question
Is there a significant impact of time delays in (macroscopic) traffic models?

• Consider a delayed microscopic model by Newell1

ẋi (t) = W
(∆xi (t − T )

∆X
)
, i = 1, . . . ,N (1)

where W (·) is a velocity function, T > 0 a reaction time,
∆xi (t) = xi+1 − xi the spacing between vehicle i and i + 1 and
∆X > 0 a space scaling (i.e. average length of a vehicle)

• Goal: derive a LWR type model with explicit delay dependence

1Newell, Oper. Res., 1961
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Derivation of the delayed LWR model

• Define the traffic density ρ as the inter-vehicle-spacing2

ρi (t) = ∆X
∆xi (t − T )

• Rewriting in terms of V and inserting into (1)

ẋi (t) = W
( 1
ρi (t − T )

)
= V (ρi (t − T ))

• To link the microscopic and macroscopic description, we consider

∂t
1

ρi (t) = ∂t
∆xi (t)

∆X = V (ρi+1(t − T ))− V (ρi (t − T ))
∆X

• Limit process N →∞ leads to ∂t
1

ρ(y ,t) = ∂y V (ρ(y , t − T )) or

∂tρ(x , t) + ∂x (ρ(x , t)V (ρ(x , t − T ))) = 0
2Aw, Klar, Materne, Rascle, SIAP, 2002
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Microscopic vs. macroscopic approach

• Two special scenarios: rarefaction wave (left) and shock wave (right)
• Convergence of the microscopic model for ∆X small enough can be

observed
• Since the microscopic model is NOT collision free, the model breaks

down for ∆X = 0.5
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Comments on the delayed LWR model

• A convection-diffusion equation3 can be also derived from (1) by
using a Taylor expansion in the argument of W :

∂tρ+ ∂x (ρV (ρ)) = −T∂x ((ρV ′(ρ))2∂xρ) (TCHS)

3Tordeux, Costeseque, Herty, Seyfried, SIAP, 2018
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Delayed LWR model

Delayed LWR model

{
∂tρ(x , t) + ∂x (ρ(x , t) V (ρ(x , t − T ))) = 0 x ∈ R, t ∈ [0,Tf ]
ρ(x , t) = ρ0(x) x ∈ R, t ∈ [−T , 0]

• T > 0 is the time delay, which represents the reaction time of both
drivers and vehicles

• Note: In order to guarantee the well-posedness of the problem, an
initial history function as initial data has to be defined on [−T , 0]

• In the limit case of T = 0 the classical LWR model is recovered

• If the delay is not chosen appropriately, the maximum principle can be
violated (ρ can be greater than 1)
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Theoretical properties

Lemma - Conservation of mass
The delayed LWR model preserves the quantity ρ(x , t).

Lemma - Positivity
Assume we have initial data with non-negative density ρ(x , t) ≥ 0.
Then, for the delayed LWR model the density stays non-negative.

Lemma - Unboundedness
Assume V is monotone decreasing and V (ρmax) = 0 for ρmax, the maximal
density in the classical LWR model. The delayed first order model has no
maximal density ρmax.

Note: In general ρ > ρmax is allowed. Moreover, existence and uniqueness
of the solution needs to be considered carefully4

4Keimer, Pflug, NoDEA, 2019
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Numerical discretization

Idea: Investigate properties from a numerical viewpoint

• ∆x , ∆t > 0 define a grid in space {xi = i∆x , i ∈ Z} and time
{tn = n∆t, n ∈ N}.

• ρn
i = ρ(xi , tn) is the discretized variable

• classical CFL condition: ∆t ≤ ∆x
maxk (λk ) , where λk are the eigenvalues

of the Jacobian matrix of f

Lax-Friedrichs Method

ρn+1
i = 1

2(ρn
i+1 + ρn

i−1)− ∆t
2∆x (f (ρn

i+1)− f (ρn
i−1))

BUT we are dealing with the delayed model...
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Numerical scheme

Altered Lax-Friedrichs method

ρn+1
i = 1

2(ρn
i+1 + ρn

i−1)− ∆t
2∆x (f (ρn−T∆

i+1 , ρn
i+1)− f (ρn−T∆

i−1 , ρn
i−1))

• T ≥ ∆t to be able to treat with the delay

• T∆ is the number of steps that make up the time delay T

• Identify flux as f (ρn−T∆
i+1 , ρn

i+1) = ρn
i+1V (ρn−T∆

i+1 )

• For the well-posedness of the discrete problem, we have to provide an
initial history function as initial data defined on [−T , 0], i.e., ρ0(x , 0)
is assumed to be constant in t for t ∈ [−T , 0]

Simone Göttlich – On the influence of time delays in vehicular traffic November 19, 2020 16



CHAIR OF SCIENTIFIC COMPUTING

Properties of the discretization

Conservation
At the discrete level, we have:

∆x
∑

i
ρn+1

i = ∆x
∑

i

(
1
2 (ρn

i+1 + ρn
i−1)− ∆t

2∆x (V (ρn−T∆
i+1 )ρn

i+1 − V (ρn−T∆
i−1 )ρn

i−1)
)

This gives us
∆x

∑
i
ρn+1

i = ∆x
∑

i
ρn

i

and therefore conservation of mass.
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Properties of the discretization

Positivity
To ensure positivity, we need to guarantee

∆t
2∆x (V (ρn−T∆

i+1 )ρn
i+1 − V (ρn−T∆

i−1 )ρn
i−1) ≤ 1

2(ρn
i+1 + ρn

i−1).

We achieve this result by
• introducing an altered CFL condition:

∆t ≤ ∆x
max{|ρn|, |ρn−T∆ |}

• assuming |V (ρ)| ≤ max{|ρn|, |ρn−T∆ |} with Vmax = 1

Simone Göttlich – On the influence of time delays in vehicular traffic November 19, 2020 18
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Rarefaction (1st row) vs. shock wave (2nd row)

0 10 20 30 40 50 60 70 80 90 100

Space

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
en

si
ty

Comparison with and without CFL

 Initial Data
 Delayed LWR without CFL

0 10 20 30 40 50 60 70 80 90 100

Space

0.4

0.45

0.5

0.55

0.6

0.65

0.7

D
en

si
ty

Comparison with and without CFL

Initial Data
Delayed LWR without CFL

0 10 20 30 40 50 60 70 80 90 100

Space

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
en

si
ty

Comparison with and without CFL

 Initial Data
 Delayed LWR without CFL

0 10 20 30 40 50 60 70 80 90 100

Space

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

D
en

si
ty

Comparison with and without CFL

  Initial Data
  Delayed LWR with CFL
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Properties of the discretization

L∞ bound
Under the altered CFL condition, it holds

||ρn+1||L∞ ≤ 2 max{|ρn|, |ρn−T∆ |}

TV bound
Under the altered CFL condition, it holds

• in space, assuming TV (ρn
∆) =

∑
j |ρn

j+1 − ρn
j |:

∑
j
|ρn+1

j+1 −ρ
n+1
j | ≤ 2

(
5 + 1

max{|ρn−T∆
j |, |ρn

j |}

)
max{TV (ρn

∆),TV (ρn−T∆
∆ )}

• in time: ∑
j
|ρn+1

j − ρn
j | ≤

∑
j

4 max{|ρn−T∆
j |, |ρn

j |}+ 2.
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Numerical tests

Starting from empirical observations5, we assume the velocity function as

V (ρ) =


Vmax ρ ≤ ρf

α ( 1
ρ −

1
ρc

) ρf < ρ < ρc

0 ρ ≥ ρc

• α > 0 (parameter)
• ρc ∈ (0, ρmax ] represents the so-called safe distance at the

macroscopic level
• ρf ∈ [0, ρmax ) represents the distance until vehicles influence each

other

Note that V (ρ) respects the hypothesis |V (ρ)| ≤ |ρmax | as Vmax = 1

5Cristiani, Iacomini, DCDS-B, 2019
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Discretization parameters

Let us fix the discretization parameters as follows:

• space interval [a, b] = [0, 1], ∆x = 0.02

• periodic boundary conditions

• ∆t is chosen such that the CFL condition is satisfied

• ρc = 0.75 and ρf = 0.2 as real data suggests6

• for simplicity the delay is a multiple of ∆t: T∆ ≈ (10∆t, 20∆t).

6Balzotti, Iacomini, SEMA SIMAI Springer Series, 2020
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LWR vs. delayed LWR

ρ0(x) = 5
8 + 1

8 sin (2πx) T∆ = 15∆t

 Density evolution shows that the LWR model smears out the
perturbations while the delayed LWR model preserves them
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The crucial role of the delay: too small

ρ0(x) = 5
8 + 1

8 sin (2πx) T∆ = 4∆t
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 If the delay is too small, we recover a situation similar to the LWR
model
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The crucial role of the delay: too large

ρ0(x) = 5
8 + 1

8 sin (2πx) T = 18∆t
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 The hypothesis are no longer satisfied and the density starts to
oscillate
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Stop & Go waves

Definition
Stop-and-Go waves are a typical feature of congested traffic. A S&G wave
is detected when vehicles stop and restart without any apparent reason
generating a wave that travels backward with respect to the cars’
trajectories.

Relevance
S&G waves are one of the main reasons for
• accidents,
• longer travel times,
• high fuel consumption,
• pollution

 VIDEO by Stern et al.: https://youtu.be/2mBjYZTeaTc
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Backward propagation of Stop & Go waves

ρ0(x) =
{

0.6 x < 0.5
0.1 x ≥ 0.5.

T∆ = 10∆t
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 Density profile at Tfinal = 3.5 yields a well-defined S&G wave7
7Flynn et al., Phys. Rev. E, 2009
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Triggering of Stop & Go waves

ρ0(x) =
{

0.35 1.34 ≤ x ≤ 1.342
0.2 elsewhere,

T = 21∆t

 Initial perturbation increases and moves backward as time increases
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A note on delayed second order models

Follow-up question
What do we observe in second order delayed models?

Starting from the model by Gazis, Herman, Rothery (1961)

ẋi (t) = vi (t)

v̇i (t) = C (vi+1(t − T )− vi (t − T ))
(xi+1(t − T )− xi (t − T ))γ+1 , i = 1, . . . ,N,

with delay T > 0 and model constants C = vref∆Xγ > 0 and γ ≥ 0, we
derive the delayed Aw-Rascle-Zhang (ARZ) model

∂tρ(x , t) + ∂x (ρ(x , t)v(x , t)) = 0 (RSD)
∂t(ρ(x , t)w(x , t)) + ∂x (ρ(x , t)v(x , t)w(x , t)) = Q(∂x v , ρ)
 Q(∂x v , ρ) = vref

(
∂x v(x , t − T )ρ(x , t − T )γ − ∂x v(x , t)ρ(x , t)γ

)
,

where w = v + P(ρ) and P(ρ) is a known pressure function
Simone Göttlich – On the influence of time delays in vehicular traffic November 19, 2020 31
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Data-fitting

• Take real data from the Minnesota Department of Transportation8
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• Q(ρ) fits the fundamental diagram data in a least squares sense9:

Q(ρ) = α
[√

1 + (λp)2 + (
√

1 + (λ(1− p))2 −
√

1 + (λp)2) ρ

ρmax

−
√

1 + λ2( ρ

ρmax
− p)2

]
8

http://data.dot.state.mn.us/datatools/
9Fan, Herty, Seibold, NHM, 2014
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Data-fitting: Comparison of the ARZ to the delayed ARZ model
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• Take a road segment (without ramps) and consider the time interval
16:00-16:10 (workday)

• The classical ARZ model tends to avoid deviations
• Error between real data and simulated models:

E (x , t) = |ρmodel(x , t)− ρdata(x , t)|
∆ρ + |vmodel(x , t)− vdata(x , t)|

∆v ,

where EARZ = 0.6404 and ERSD = 0.6034
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Conclusion and future perspective

Conclusions

• introduced new delayed macroscopic traffic models, pointing out
similarities and differences to the undelayed versions

• proposed an altered Lax-Friedrichs method to compute the numerical
solution

• showed that the LWR delayed model is able to reproduce Stop & Go
waves while the delayed ARZ model performs well regarding real data

Future Perspective

• advanced parameter estimation techniques

• inclusion of stochastic events for route planning
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This talk is based on the following references:

• M. Burger, S. Göttlich and T. Jung, Derivation of a first order traffic flow
model of Lighthill-Whitham-Richards type, IFAC PapersOnLine, 51, pp.
49–54, 2018.

• M. Burger, S. Göttlich and T. Jung, Derivation of second order traffic flow
models with time delays, Netw. Heterog. Media, Vol. 14(2), pp. 265-288,
2019.

• S. Göttlich, E. Iacomini and T. Jung, Properties of the LWR model with
time delay, to appear in Netw. Heterog. Media, 2020.

• T. Jung, Delayed Traffic Models in Multiple Scales: New Macroscopic
Models and Their Numerics, PhD Thesis, University of Mannheim, to appear
2020.

• ... and was supported by the German Research Foundation (DFG).
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Thank you for your attention!
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