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High level motivation 
Planning the future of mobility: mixed autonomy 

Neom, KSA Jurong district, Singapore 

Cartube 

The boring company 

Hyperloop E-taxi 



Short answer:  
it is highly uncertain.  

100% self-driving cars: 
-60% to +200% energy 

Transportation today:  
28% US energy 
consumption 

Example  
Impact of automation on the energy footprint of 
mobility 



Traffic control, traffic management 
Forward simulation models 
 Variety of tools historically 
developed at different scales 

 Energy-based vehicular models 
 Microscopic models 
 Mesoscopic models 
 Macroscopic models 
 Agent based models 
 Excel accounting models 
  
  

 
 



The state of the art microsim today 
Microscopic simulation models: simulating 100,000s of 
vehicles 
Example 

 App “problem” 
 Thru-traffic 
 20% app users 
 nextGen DTA 
  
  

 
 



Always in motion the future is 
The next battlefield (2-5years) 

Data: 
Floating car data (GPS, cell tower, CAV 
data) 
Asset data (signal timing, metering etc.) 
Event data (closures, games, special 
events) 
Maps assets (#lanes, speed limits etc.) 
 Calibration: 
Estimation: vehicle-based 
ID 
Missing data inference 
Demand 
Routing 

Model computation: 
Computational time for model forecast 
Distribution of the model on AWS EC2 
 

Control / deep-RL: 
Model free deep-RL 
End2end learning / pixel learning 
Sample inefficiency 
Curse of dimensionality in the action 
space  
Multi-agent learning training 
nonstationarity 
High variance of gradient estimators 



A call to action 
Can we over the next few (2) years demonstrate ML-based microsim?  

Framework: 
State of the art microsim: SUMO, Aimsun or other 
RLLAB, RLLIB, TensorFlow, Caffe, etc. 
All in AWS EC2 or similar cloud 
 
(Mixed)-autonomy traffic control: 
Every controllable asset (infrastructure or CAV) modeled 
Most common scenarios solved: merge, intersections, 
freeways, arterials, roundabouts, tools, metered bridges, etc.  
 
Can we demonstrate the following within 2 years? 
Benchmarks for all, winner algorithms for all 
Actual migration on assets (static and vehicles)  



Acceleration of history 
Deep-RL is about to leapfrog 80 years of model-based research 

1935: 
First aggregate model of congestion 

 

1955: 
First PDE model of traffic 
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Acceleration of history 
Deep-RL is about to leapfrog 80 years of model-based research 
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First aggregate model of 
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First experiment showing 
instability 
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First controller implemented 

 

Prof. Daniel Work, Vanderbilt 
Prof. Benedetto Piccoli, Rutgers 
Prof. Benjamin Seibold, Temple 
Prof. Jonathan Sprinkle, UoA	



Acceleration of history 
Deep-RL solution to the same problem 

1935: 
First aggregate model of congestion 

 

1955: 
First PDE model of traffic 

 

2008: 
First experiment showing instability 

 

2017: 
First controller implemented 

 

2018: 
Better result with deep-RL 
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Acceleration of history 
Deep-RL solution to the same problem 

1935: 
First aggregate model of congestion 

 

1955: 
First PDE model of traffic 

 

2008: 
First experiment showing instability 

 

2017: 
First controller implemented 

 

2018: 
Better result with deep-RL (Cathy Wu’s PhD) 

AV off AV on 
Automated 
 

Observed 
 

Unobserved 

Prof. Cathy Wu, MIT	



Acceleration of history 
Deep-RL solution to the same problem 
Setting: 1 AV, 21 human 
Experiment: 
•  Goal: maximize average velocity 
•  Observation: relative velocity & 

headway 
•  Action: acceleration 
•  Policy: multi-layer perceptron (MLP) 
•  Learning algorithm: policy gradient 

Results:  
•  1 AVs: +49% average velocity 
•  Stabilization at near-optimal 

velocity 
 

Prof. Cathy Wu, MIT	



Acceleration of history 
Will deep-RL leapfrog 80 yrs. of model-based research? 

1935: 
First aggregate model of congestion 

 

1955: 
First PDE model of traffic 

 

2008: 
First experiment showing instability 

 

2017: 
First controller implemented 

 

2018: 
Better result with deep-RL (Cathy Wu’s PhD) 

1,000 articles	

1 article	

~10,000 articles	

Prof. Cathy Wu, MIT	



Problem statement 
Traffic flow control by CAV (and static assets if needed) 

CAV: 
Autonomous,  
Onboard policy (learned) 
Connected to other CAVs 
 
Sensed vehicle: 
Sensed by CAV proximity 
Or other [C]onnected vehicle 
 
Other vehicle 
Following human dynamics  
(car following model) 
 



Building lego blocks 
Deep-RL lego blocks = science fiction of model based approaches 

Setup: 1 AV, 41 human 
Experiment 
•  Goal: Maximize average velocity 
•  Observation: following headways, 

velocity 
•  Action: acceleration and lane 

change 

Results 
•  Insight: A single AV can stabilize 

multiple lanes of traffic 
•  Emergent traffic break 



Building lego blocks 
Deep-RL lego blocks = science fiction of model based approaches 

Setup: 1 AV, 41 human 
Experiment 
•  Goal: Maximize average velocity 
•  Observation: following headways, 

velocity 
•  Action: acceleration and lane 

change 

Results 
•  Insight: A single AV can stabilize 

multiple lanes of traffic 
•  Emergent traffic break 



Intersection control 
Moving towards automated intersections 

A multiagent approach to 
autonomous intersection 
management. 
Dresner, Stone. JAIR, 2008. 

Polling-systems-based control of 
high-performance provably-safe 
autonomous intersections. 
Miculescu, Karaman. CDC, 2014. 

Queuing theory 
Reservation systems 
Model predictive control 

What if even one of these vehicles is not automated? 



Intersection control 
Moving towards automated intersections 

Setting: 0 AV, 14 human 
 
Dynamics: cascaded 
nonlinear systems with 
right-of-way dynamics 
model 
 
No autonomy 
 

Automated 
 

Observed 
 

Unobserved 



Intersection control 
Moving towards automated intersections 
Setting: 1 AV, 13 human 
Experiment: 
•  Goal: maximize average velocity 
•  Observation: fully observed 
•  Action: acceleration 

Results 
•  Emergent mixed-autonomy 

platoon 
•  Insight: A single AV can slow or 

stop ALL vehicles behind it 
•  1 AV: +60% average velocity 
•  14 AVs: +170% average 

velocity 

Automated 
 

Observed 
 

Unobserved 



Intersection control 
For time space diagram afficionados 
Setting: 1 AV, 13 human 
Experiment: 
•  Goal: maximize average velocity 
•  Observation: fully observed 
•  Action: acceleration 
Results 
•  Emergent mixed-autonomy platoon 
•  Insight: A single AV can slow or stop 

ALL vehicles behind it 
•  1 AV: +60% average velocity 
•  14 AVs: +170% average velocity 



Merge control 
Moving towards automated merges 

Impacts: 40% of highway 
congestion 
 

Setting: 0 AV, 17 human 
 

Dynamics:  
cascaded nonlinear systems with 
right-of-way dynamics model 
 
 
 
 
  

Longitudinal control algorithm 
for automated vehicle merging. 
Lu, Hedrick. IJC, 2003. 

The impacts of a communication based merging 
assistant on traffic flows of manual and equipped 
vehicles at an on-ramp using traffic flow simulation. 
Pueboobpaphan, et al. IEEE ITSC, 2010. 

Automated 
 

Observed 
 

Unobserved 



Merge control 
Moving towards automated merges 
Setting: 1 AV, 16 human 
Experiment: 
•  Goal: maximize average velocity 
•  Observation: Local and merging 

vehicles, statistics, e.g. queue length 

•  Action: acceleration 
Results 
•  Emergent mixed-autonomy 

cooperative merge 
•  1 AV: +142% average velocity (6.3 m/s) 
•  0 AV: 2.6 m/s 

Automated 
 

Observed 
 

Unobserved 



Transfer learning 
Moving towards automated merges 

Setting: p% CAV penetration 
 
Experiment: 
•  Goal: maximize average velocity 
•  Observations: 1 vehicle ahead/behind 
•  Actions: acceleration 
 
Transfer Learning 
•  Initial training on ring road with 

periodically induced perturbations 
•  Resultant policy extracted and tested 

on straight highway with merge. 



Transfer learning 
Moving towards automated merges 

Transfer Learning Results: 
•  Ring road policy initially 

outperforms human-driven 
dynamics 

•  Significance: Control 
strategies derived from 
simplified closed network 
geometries are somewhat 
transferable to open 
network problems. 

 
 

 

Initial	performance	
boost	



Transfer learning 
Moving towards automated merges 

Setting: 0% CAV Penetration 
Dynamics: Cascaded nonlin. sms with right-of-way 
dyn. model, convective instability, and fluctuating 
densities 



Transfer learning 
Moving towards automated merges 

Setting: 5% CAV Penetration 
Dynamics: Cascaded nonlin. sms with right-of-way 
dyn. model, convective instability, and fluctuating 
densities 



Transfer learning 
This slide is also dedicated to the time-space diagram afficionados 

6.7% improvement in throughput 
Short story: deep-RL just learned to create gaps with forward waves 
 
 

 



Penetration studies 
How many CAVs does it take to smooth traffic? 

0%	AV	(baseline)	 2.5%	AV	(0%	throughput)	

10%	AV	(+13%	throughput)	5%	AV	(+6.7%	throughput)	

A. Kreidieh	 E. Vinitsky	



In real life 
Oscillations exist naturally in highway traffic 



Flow smoothing on I210 
How many CAVs does it take to smooth traffic? 
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Flow smoothing on I210 
How many CAVs does it take to smooth traffic? 



Bridge metering 
Lagrangian metering 

NextGen 
infrastructure 
Can we remove the metering 
light and can we replace it 
with CAVs? San	Francisco	Downtown	

San	Francisco	Bay	Bridge	



Bridge metering ([not] waiting for Godot) 
Lagrangian metering: 33% improvement (throughput) 

Setting:  
-  10% CAV Penetration 
-  Four lanes -> Two lanes -> One 

Dynamics:  
Cascaded nonlinear systems with right-of-
way dynamics model, merge conflicts, 
and excessive, fluctuating inflow 



Bridge metering 
Lagrangian metering 

Multi-lane merge 

Toll plaza: 18 lanes 



Policy transfer 
Left: baseline scenario; right: flow maximization 

E. Vinitsky	K. Jang	



Policy transfer 
Go to our demo booth tomorrow! 

F. Wu	



End-to-end pixel learning 
Deep RL as a Markov decision process 

Markov decision process: 

state  
spac
e  

reward 
function 

action 
space 

autonomous 
vehicle 

microscopic 
simulator 

F. Wu	



End-to-end pixel learning 
State space design 

Local 
Observation 

t-4 
t-3 

t-2 
t-1 

  t 

render 
render 

F. Wu	



End-to-end pixel learning 
Action space design 

Local 
Observation 

t-4 
t-3 

t-2 
t-1 

  t 

render Baseline 
Acceleration 

RL 
Correction 

+

render 

F. Wu	



End-to-end pixel learning 
Reward function design 

Local 
Observation 

t-4 
t-3 

t-2 
t-1 

  t 

render Baseline 
Acceleration 

RL 
Correction 

+

render 

+

efficiency safety 
F. Wu	



End-to-end pixel learning 
Learning on simple environments 

humans humans+AI AI 

RL augmentation improves human drivers’ skills to the level of an optimized AI.  

F. Wu	



End-to-end pixel learning 
What if one could remove the need for state space 
access? 



The vision 
Eventually linked to dashcam data 

Fully centralized:  
Pixel learning 

Decentralized:  
Pixel learning, multi-
agent 

Decentralized:  
Dashcam segmented 
data 

F. Wu	



Who is next? 
Traffic management 



Deep-RL 
Basic optimization framework 

Agent	

Environment	

action at

state st

reward rt

rt+1

st+1

Global rewards 
Average velocity 
Energy consumption 
Travel time 
Safety, comfort 

Goal:  
learn policy                         
to maximize reward 

⇡ : S ! A

Policy parameters 
(deep neural network) 

max 
✓

E
"

HX

t=0

r(st, at)

����⇡✓

#

Cumulative rewards, 
returns 



Flow 
Brief presentation of FLOW 

Traffic 
microsimulator 

SUMO / Aimsun 

Environment 

Agent 

Custom 
dynamics 

Task designer 
Markov Decision Process 
Traffic network 
Traffic dynamics 
Vehicle types 
Noise models 
Inflows 
Routes 

Computational framework 

state st action atreward rt

RL Library 
RLlib/rllab 



Lego-blocks 
Building a library 

On/off-ramp 

Single-lane 

Grid network Bottleneck 

Intersection 

Straight road 

Signalized  
intersection 

Multi-lane 



Benchmarks, launched 2018, CORL 
https://flow-project.github.io/ 



Dashboard CIRCLES 
 



Dashboard CIRCLES 
 



User community 
Classes, workshops, tutorials, events, users… 
 
IEEE	CDC,	Nice,	France	



Flow open source library 
https://flow-project.github.io/ 
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