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High level motivation
Planning the future of mobility: mixed autonomy

Cartube




Example

Impact of automation on the energy footprint of

mobility

Short answer:
it is highly uncertain.

Transportation today:
28% US energy
consumption

100% self-driving cars:
-60% to +200% energy

_|III_|I

Higher highway speeds

Range of estimate [JJJJ
Platooning

Eco-driving

Congestion mitigation
De-emphasized performance
Improved crash avoidance
Vehicle right-sizing

Changed mobility services

Infrastructure footprint

Increased features -

Travel cost reduction

New user groups
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Changes in energy
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consumption due to

vehicle automation (%)

Z. Wadud, D. MacKenzie, and P. Leiby, “Help or hindrance? the travel, energy and
impacts of highly automated vehicles,” Transportation Research Part A: Policy and Practice,

vol. 86, pp. 1 — 18, 2016.

carbon



Traffic control, traffic management

Forward simulation models

Variety of tools historically

developed at different scales .
Energy-based vehicular models —zf
Microscopic models ——
Mesoscopic models
Macroscopic models
Agent based models
Excel accounting models

Traveler energy consumption model

~1 (individual) agent

LBNL Traveler Energy Consumption Model
LBNL Vehicle Model Library (VML)

ANL Autonomie

Micro/meso simulation
~50,000 — 100,000 agents
Aimsun, VSSIM, SUMO, FLUIDS

Macrosimulation
~500,000-1,000,000 agents
Connected Corridors
Mobile Millennium

TOPL, etc.

Agent based model
~ 5,000,000 agents
MATSim, BEAM, Mobiliti, etc.

3 Av:i"lj




The state of the art microsim today

Microscopic simulation models: simulating 100,000s of
vehicles
Example
App “problem”
Thru-traffic

20% app users
nextGen DTA

)41’015501@

the mind of movement

Q
[E SUMO
Simulation of Urban MObili




Always in motion the future is
The next battlefield (2-Syears)

Data: Model computation:
Floating-car data (GPS,cell {ower CAV Computational time for model forecast
: W . : Distribution-of-the-model-on- AWSEC2
events) Control / deep-RL.:

%aaﬁsbass?tsﬁ#lenes-speed-nm%e%eﬁ Model free deep-RL
IDration:

End2end learning / pixel learning

Estimation-vehicle-based Sample inefficiency

J’D_ _ _ Curse of dimensionality in the action
Missing-data-inference space

Demand Multi-agent learning training

MDA ibiia~



A call to action

Can we over the next few (2) years demonstrate ML-based microsim?

Framework:

State of the art microsim: SUMO, Aimsun or other
RLLAB, RLLIB, TensorFlow, Caffe, etc.

All in AWS EC2 or similar cloud

(Mixed)-autonomy traffic control:
Every controllable asset (infrastructure or CAV) modeled
Most common scenarios solved: merge, intersections,

freeways, arterials, roundabouts, tools, metered bridges, etc.

Can we demonstrate the following within 2 years?
Benchmarks for all, winner algorithms for all
Actual migration on assets (static and vehicles)

TO JOIN THE
ALLIANCE




Acceleration of history

Deep-RL is about to leapfrog 80 years of model-based research

1935:

First aggregate model of congestion

1955:
First PDE model of traffic




Acceleration of history

Deep-RL is about to leapfrog 80 years of model-based research

1935:
First aggregate model of congestion —

R —— - e § —
1955: = Traffic Jam without Bottleneck

N

First PDE model of traffic

Experimental evidence X5

2008: for the physical mechanism of forming a jam

First experiment showing instability -
L Yuki Sugiyama, Minoru Fukul, Macoto Kikuchi

Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari
Shin-ichi Tadaki and Satoshi Yukawa’

Movie 1




Acceleration of history

Deep-RL is about to leapfrog 80 years of model-based research

1935:
First aggregate model of Dissipation of stop-and-go traffic
congestion ) .
1955: waves via control of a single
First PDE model of traffic autonomous vehicle
2008: ILLINOIS

TGERS W& TEMPLE THE UNIVERSITY
First experiment ShOWing NNNNNNNNNNNNNNNNNNNNNNNNNNNN CHAMPAIGN RU G S UNIVERSITY' A OF ARIZONA.
instability
2017:

Prof. Daniel Work, Vanderbilt
Prof. Benedetto Piccoli, Rutgers
Prof. Benjamin Seibold, Temple
Prof. Jonathan Sprinkle, UoA

First controller implemented




Acceleration of history

Deep-RL solution to the same problem

1935:

First aggregate model of congestion

1955:
First PDE model of traffic

2008:

First experiment showing instability

2017:

First controller implemented

2018:
Better result with deep-RL

Prof. Cathy Wu,

Automated

Observed

Unobserved




Acceleration of history

Deep-RL solution to the same problem

1935:

First aggregate model of congestion

1955:
First PDE model of traffic

2008:

First experiment showing instability

2017:

First controller implemented

2018:
Better result with deep-RL (Cathy Wu’s PhD)

Prof. Cathy Wu, MIT

Automated
Observed

& Unobserved



Acceleration of history

Deep-RL solution to the same problem

Setting: 1 AV, 21 human

Experiment:
« Goal: maximize average velocity

* Observation: relative velocity &
headway

« Action: acceleration
* Policy: multi-layer perceptron (MLP)
* Learning algorithm: policy gradient

Results:

1 AVs: +49% average velocity

« Stabilization at near-optimal
velocity

Prof. Cathy Wu, MIT

Automated

Observed

Unobserved



Acceleration of history
Will deep-RL leapfrog 80 yrs. of model-based researchy

Prof. Cathy Wu, MIT
1935:

First aggregag model of congestion

1955: ~10,000 articles

First PDE mojg| of traffic

2008:

First experimdgeit showing instability Automated

1,000 articles °) Observed

Unobserved

: 1 article
Better result with deep-RL (Cathy Wu'’s PhL




Problem statement

Traffic flow control by CAV (and static assets if needed)

cav: D

Autonomous, N

Onboard policy (learned) p \

Connected to other CAVs y R

Sensed vehicle 1I_® ~ i

Sensed by CAV proximity e Agent

Or other [Clonnected vehicle u ¥ /4 Y | ))) —_—
. ‘m 3‘-1. N S 4 y 4 Autonomous

Other vehicle 1_B ‘ X, \ e oreeed

Following human dynamics e - — s Unobserved humans
(car following model)



Building lego blocks

Deep-RL lego blocks = science fiction of model based approaches

Setup: 1 AV, 41 human

Experiment
« Goal: Maximize average velocity

* Observation: following headways,
velocity

 Action: acceleration and lane
change

Results

* Insight: A single AV can stabilize
multiple lanes of traffic

 Emergent traffic break




Building lego blocks

Deep-RL lego blocks = science fiction of model based approaches

Setup: 1 AV, 41 human

Experiment
« Goal: Maximize average velocity

* Observation: following headways,
velocity

 Action: acceleration and lane
change

Results

* Insight: A single AV can stabilize
multiple lanes of traffic

 Emergent traffic break




Intersection control

Moving towards automated intersections

Queuing theory
Reservation systems
Model predictive control

A multiagent approach to

autonomous intersection

management.

Dresner, Stone. JAIR, 2008.

Polling-systems-based control of
high-performance provably-safe
autonomous intersections.
Miculescu, Karaman. CDC, 2014.

What if even one of these vehicles is not automated?



Intersection control

Moving towards automated intersections

Automated

Setting: 0 AV, 14 human Observed

& Unobserved

Dynamics: cascaded
nonlinear systems with
right-of-way dynamics
model

No autonomy




Intersection control

Moving towards automated intersections
Setting: 1 AV, 13 human A
utomated

Experiment: Observed

» Goal: maximize average velocity 2 Unobserved
* Observation: fully observed
« Action: acceleration

Results

 Emergent mixed-autonomy
platoon

* Insight: A single AV can slow or
stop ALL vehicles behind it

« 1 AV: +60% average velocity




Intersection control

For time space diagram afficione

Setting: 1 AV, 13 human
Experiment:

* Goal: maximize average velocity
« Observation: fully observed

« Action: acceleration

Results

Position (m)

« Emergent mixed-autonomy platoon

* Insight: A single AV can slow or stop
ALL vehicles behind it

- 1 AV: +60% average velocity

Position (m)

« 14 AVs: +170% average velocity

) \\\\\\\///////

Space-Time Diagram for Figure Eights with no Autonomous Vehicles
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Merge control

Moving towards automated merges

Impacts: 40% of highway
congestion

Setting: 0 AV, 17 human

Dynamics:
cascaded nonlinear systems with
right-of-way dynamics model

Longitudinal control algorithm
for automated vehicle merging.
Lu, Hedrick. 1JC, 2003.

Automated
Observed

& Unobserved

The impacts of a communication based merging
assistant on traffic flows of manual and equipped
vehicles at an on-ramp using traffic flow simulation.
Pueboobpaphan, et al. IEEE ITSC, 2010.



Merge control

Moving towards automated merges

Setting: 1 AV, 16 human
Experiment:

» Goal: maximize average velocity

« Observation: Local and merging Automated
vehicles, statistics, e.g. queue length |l Observed

« Action: acceleration

Results

 Emergent mixed-autonomy
cooperative merge

 1AV: +142% average velocity (6.3 m/s)
« 0AV:26m/s

& Unobserved




Transfer learning

Moving towards automated merge

Uncontrollable
Region

Setting: p% CAV penetration

) )) Sensing

2
Autonomous
\‘\ === Observed humans
& » —ul
Ly - W

Experiment:

« Goal: maximize average velocity
 Observations: 1 vehicle ahead/behind
 Actions: acceleration

= Unobserved humans

Transfer Learning

 Initial training on ring road with
periodically induced perturbations » 1) ses
« Resultant policy extracted and tested e

Autonomous vehicles
on straight highway with merge. = Observed human-driven

= Unobserved human-driven




Transfer learning

Moving towards automated merges

Transfer Learning Results:  ["t/performance
* Ring road policy initially
outperforms human-driven

Training Performance in the Presence and Absence of an
Initial Ring Road Policy

dynamics
+ Significance: Control
strategies derived from
simplified closed network
geometries are somewhat -
transferable to open e
network problems. I B



Transfer learning

Moving towards automated merges

)) ) Sensi . .
)) sensia : Setting: 0% CAV Penetration
Autonomous vehicles . . . .
N —— Dynamics: Cascaded nonlin. sms with right-of-way
s dyn. model, convective instability, and fluctuating
AAancitine




Transfer learning

Moving towards automated merges

))) Sensing Setting: 5% CAV Penetration

Aufonomots vehicles Dynamics: Cascaded nonlin. sms with right-of-way
dyn. model, convective instability, and fluctuating
densities

mmm Observed human-driven

= Unobserved human-driven



Transfer learning

dos
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This slide

6.7% improvement in throughput

Short story: deep

-RL just learned to create gaps with forward waves
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Penetration studies

How many CAVs does it take to smooth traffic?
0% AV (baseline)

2. 5%AV %throughput) E. V'mtSky
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In real life
Oscillations exist naturally in highway traffic




Flow smoothing on 1210

How many CAVs does it take to smooth traffic?

07:02:01



Flow smoothing on 1210

How many CAVs does it take to smooth traffic?




Flow smoothing on 1210

How many CAVs does it take to smooth traffic?

Position {m)

1500

1000

w
i=3
<

o

Time-Space Diagram: Lane 0
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Velocity (m/s)

Time-Space Diagram: Lane 0

=500 —250 0 250 500 750 1000 1250

E-y
Velocity (m/s)



Flow smoothing on 1210
How many CAVs does it take to smooth traffic?

Time-Space Diagram: Lane 5

1500

1000

Position (m)

500

—-500

—750 —500 —-250 0 250 500 750 1000
Time (s)
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Flow smoothing on 1210

How many CAVs does it take to smooth traffic?

reward = —energy consumed

Problem
The agent can optimize that reward by not moving

Need an incentive to move forward:

- Penalty for staying too long in the network
- Additional state (time since entered)

‘w500
o

Time-Space Diagram: Lane 4

) y
®
\




Bridge metering

Lagrangian metering

NextGen

infrastructure
Can we remove the metering

light and can we replace it
with CAVs?

= e i



Bridge metering ([not] waiting for Godot)

Lagrangian metering: 33% improvement (throughput)

Setting: Dynamics:
- 10% CAV Penetration Cascaded nonlinear systems with right-of-
way dynamics model, merge conflicts,

- Four lanes -> Two lanes -> One ) i
and excessive, fluctuating inflow



Bridge metering

Lagrangian metering

Multi-lane merge




Policy transfer

Left: baseline scenario; right: flow maximizatio
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Baseline Scenario‘ RL Vehicleé
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@'EVISAWA‘&E Berkeley

UNIVERSITY OF CALIFORNIA




Policy transfer
Go to our demo booth tomorrow!




End-to-end pixel learning
Deep RL as a Markov decision process

Markov decision process:

reward
function

state
spac
e

F. Wu

reward
R,
1

Sr+l
<

4_”_..

autc_)nomous action
vehicle space

H "

! 1

! 1

.[ | i

.| Agent | !
action

A,

Environment ]4—

L - mlcroscoplc
simulator



End-to-end pixel learning

State space design

';l Agent |

reward
R,

)

f

\,

Environment ]4—

action
A

F. Wu



End-to-end pixel learning
Action space design

F. Wu

:l Agent ||
state reward

<« " action
s, || R, 4 [q7

—— RHI ( RL
Sl L Environment ]4— Correction




End-to-end pixel learning
Reward function design

m

e

F. Wu
efficiency safety
1
r= ( Vavd = (1 = BJVsud
Vmax
JL
state reward i
- ‘ action| _
s, ||l 4 [qF
— —ut f . RL
e Environment Correction




End-to-end pixel learning

Learning on simple environments

—

F. Wu

(a) Circle environment. (b) Cross environment.

8@100x100 10@oUXOU
5@100x100 @100x 16@25%25

RL augmentation improves human drivers’ skills to the level of an optimized Al.

0% | 10% 20% 30% 40% 50% 60% |70%] 80% 90% |100%
Circle || 210| 210 324 336 334 340 342 343 340 336 342
Cross || 348 336 353 350 510 548 545 562 420 447 436

humans humans+Al Al



End-to-end pixel learning
What if one could remove the need for state space




The vision
Eventually linked to dashcam data

Fully centralized: Decentralized: Decentralized:
Pixel learning Pixel learning, multi- Dashcam segmented




Who is next?

Traffic management

Traffic
flow
control




Deep-RL

Basic optimization framework

state sy
reward ’I“tl AgentJ-

action a; Goal

St+1 — ](_ learn policym: S — A
e l Environment to maximize reward )

/Global rewards\ H
Average velocity max [£ Z 7“(St, at) o
Energy consumption / | t=0 f f |
Travel time
Cumulative rewards, Policy parameters

Gafety, comiort - returns (deep neural network)




Flow
Brief presentation of FLOW

Computational framework

r N | Agent :
Task designer I;II:ILt;?TIarI:))/
Markov Decision Process DS

Traffic network State 5. T —— l, —

Traffic dynamics r _— t

Vehicle types nvironmen

Noise models T
Custom

Inflows oo

Routes y

. )\




Lego-blocks
Building a library
w /—\‘ On/off-ramp
Smgleh Multi-lane

K Kﬂ Signalized
Intersectlon

g j / intersection

Straight road

1

Bottleneck Grid network




Benchmarks, launched 2018, CORL
https://flow-project.github.io/

It might

look goofy ...

Conference on Robot Learning (CoRL) - 2018 Edition
The Conference on Robot Learning (CoRL) is a new annual international conference focusing on the intersection of robotics and machine learning. The first
meeting (CoRL 2017) was held in Mountain View, California on November 13 - 15, 2017, and brought together about 350 of the best researchers working on

robotics and machine learning.

CoRL 2018 will be held on October 29th-31st, 2018, in Zirich, Switzerland.

OPENAI
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58"‘ Conference on Decision and Contml - Nice, France - December 1113 2019

Bode Lecture announced: L. Guo. Plenary Speakers: A. Astolfi, F. Bach, D. Del Vecchio, R. Mahony.

Invitation to the 58" IEEE Conference on Decision and Control

£ itis my honor and pleasure to invite you to attend CDC 2019 in Nice, France. Nice, with its millennial history, has always been a warm and welcoming city. Besides being a
\ great fourist destination on the Mediierranean sea, it is also a dynamic city, with several hi-tech companies and R&D centers, a fantastic place for congresses and conventions,
as well as a great cultural place.
Together with the Organizing Committee, we are giving our best to ensure  rich and diverse program. We wish to have the pleasure to meet you here in 2019.
Carlos Canudas-de-Wit, General Chair

The 58" IEEE Conference on Decision and Control will be held Wednesday through Friday, December 11-13, 2019 at the Palais des Congres et des Expositions Nice Acropolis, Nice, France.
The conference will be preceded by technical workshops on Tuesday, December 10, 2016.

The CDC is recogrized asthe premietscienific and i dedicated to the of the theory and practice of systems and control. The CDC annually brings together
imunity of and in the field of automatic control to discuss new research results, and innovative

Become a "Platinum - Gold Sponsor” for the 58th CDC
and place your banner here!

W Follow @DC2019

PaperPlaza Submission site

m\evan( to decision makmg, automatic Donim\ and related areas.
The 58" CDC will feature contributed and invited papers, as well as tutorial sessions and workshops.

The IEEE CDC is hosted by the IEEE Control Systems Society (CSS) in cooperation with the Society for Industrial and Applied Mathematics (SIAM), and the Japanese Society for Instrument
and Control Engineers (SICE).

Nice is the Capital of the Cite d’Azur, enjoying more than 300 days of sunshine per year. Its internationally-renowned history and culture, the shifting shimmer of its sea, its towering mountain
peaks, make it a leading tourism destination with more than 5 milion visitors. Its intemational airport serves 100 destinations worldwide.

The Palais des Congrés et des Expositions Nice Acropolis was elected “Best Congress and Convention Center Europe” for three consecutive years. It is conveniently located in the city center. It
features 5 auditoriums from 250 to 2500 places and 50 meeting rooms.

Tweets by @CDC2019 ()

& cDC 2019 Nice R

A Nice Tourisme
¥ @Nice_ e

Quelle que soit I'neure, il est toujours agréable de se
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Whatever the time, it's always nice to stroll around
Qld Town
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Flow open source library
https://flow-project.github.io/

-~ FLOW:is a
deep.reinforcementlearning

framework.

Developed by | Made'in
Mobile Sensing Lab UC Beikeley
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