Solving Traffic Problems using Autonomous Vehicles

Alexandre Bayen

Director, Institute of Transportation Studies Professor, EECS & CEE Faculty Scientist, LBNL

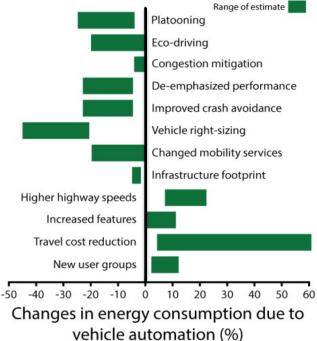
Berkeley DeepDrive

∢riselob

High level motivation Planning the future of mobility: mixed autonomy

Example Impact of automation on the energy footprint of mobility

Short answer: it is highly uncertain. Transportation today: 28% US energy consumption 100% self-driving cars: -60% to +200% energy



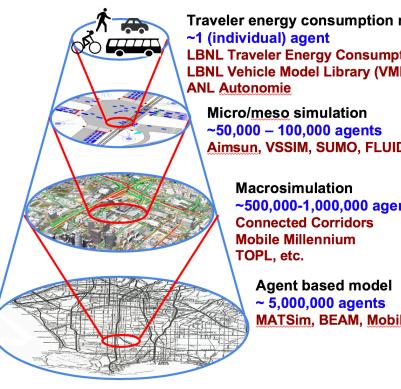
Z. Wadud, D. MacKenzie, and P. Leiby, "Help or hindrance? the travel, energy and carbon impacts of highly automated vehicles," *Transportation Research Part A: Policy and Practice*, vol. 86, pp. 1 - 18, 2016.

Traffic control, traffic management

Forward simulation models

Variety of tools historically developed at different scales

Energy-based vehicular models **Microscopic models** Mesoscopic models Macroscopic models Agent based models Excel accounting models



Traveler energy consumption model LBNL Traveler Energy Consumption Model LBNL Vehicle Model Library (VML)

Aimsun, VSSIM, SUMO, FLUIDS

~500,000-1,000,000 agents

MATSim, BEAM, Mobiliti, etc.

The state of the art microsim today Microscopic simulation models: simulating 100,000s of vehicles

Example

App "problem" Thru-traffic 20% app users nextGen DTA

the mind of movement

Always in motion the future is The next battlefield (2-5years)

Data:

Floating car data (GPS, cell tower, CAV data)

Asset data (signal timing, metering etc.) Event data (closures, games, special events)

Maps assets (#lanes, speed limits etc.) Calibration:

Estimation: vehicle-based

Ð

Missing data inference Demand

Douting

Model computation: Computational time for model forecast Distribution of the model on AWS EC2

Control / deep-RL: Model free deep-RL End2end learning / pixel learning Sample inefficiency Curse of dimensionality in the action space Multi-agent learning training

A call to action

Can we over the next few (2) years demonstrate ML-based microsim?

Framework:

State of the art microsim: SUMO, Aimsun or other RLLAB, RLLIB, TensorFlow, Caffe, etc. All in AWS EC2 or similar cloud

(Mixed)-autonomy traffic control:

Every controllable asset (infrastructure or CAV) modeled Most common scenarios solved: merge, intersections, freeways, arterials, roundabouts, tools, metered bridges, etc.

Can we demonstrate the following within 2 years?

Benchmarks for all, winner algorithms for all Actual migration on assets (static and vehicles)

Acceleration of history

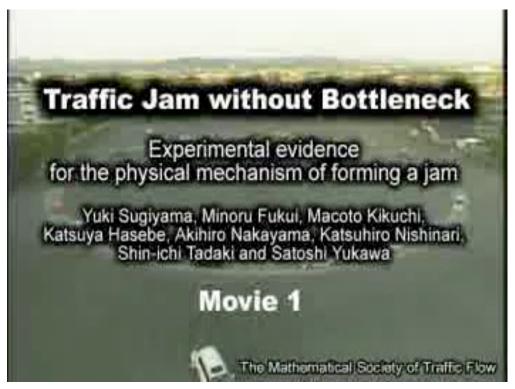
Deep-RL is about to leapfrog 80 years of model-based research

1935:First aggregate model of congestion1955:First PDE model of traffic

Acceleration of history

Deep-RL is about to leapfrog 80 years of model-based research

1935:
First aggregate model of congestion
1955:
First PDE model of traffic
2008:
First experiment showing instability



Acceleration of history

Deep-RL is about to leapfrog 80 years of model-based research

1935:

First aggregate model of congestion

1955:

First PDE model of traffic

2008: First experiment showing instability

2017:

First controller implemented

Dissipation of stop-and-go traffic waves via control of a single autonomous vehicle

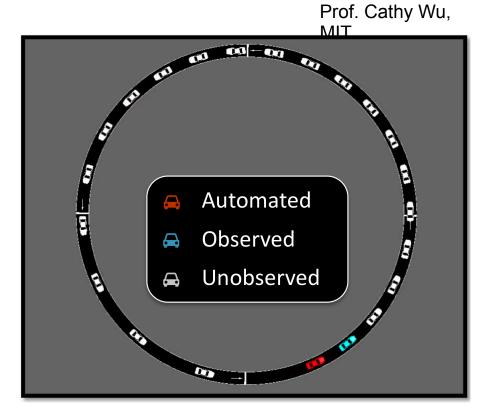
I <u>L L L I N O I S</u> UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN RUTGERS TEMPLE</u> UNIVERSITY*

Prof. Daniel Work, Vanderbilt Prof. Benedetto Piccoli, Rutgers Prof. Benjamin Seibold, Temple Prof. Jonathan Sprinkle, UoA

THE UNIVERSITY OF ARIZONA

Acceleration of history Deep-RL solution to the same problem

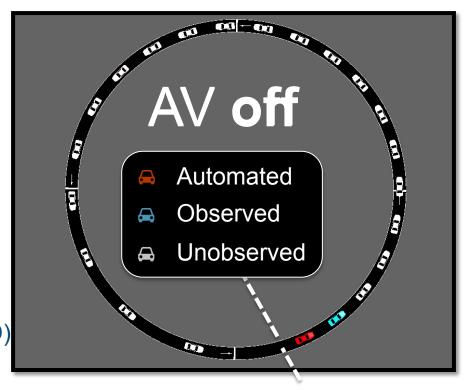
1935:
First aggregate model of congestion
1955:
First PDE model of traffic
2008:
First experiment showing instability
2017:
First controller implemented
2018:
Better result with deep-RL



Acceleration of history Deep-RL solution to the same problem

Prof. Cathy Wu, MIT

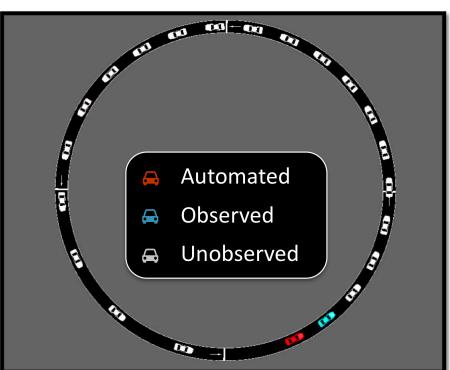
1935:
First aggregate model of congestion
1955:
First PDE model of traffic
2008:
First experiment showing instability
2017:
First controller implemented
2018:
Better result with deep-RL (Cathy Wu's PhD)



Acceleration of history Deep-RL solution to the same problem

Setting: 1 AV, 21 human Experiment:

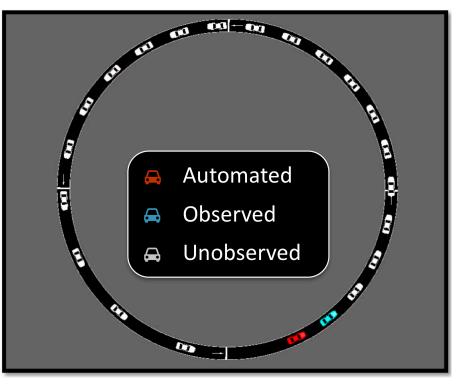
- Goal: maximize average velocity
- Observation: relative velocity & headway
- Action: acceleration
- **Policy**: multi-layer perceptron (MLP)
- Learning algorithm: policy gradient Results:
- 1 AVs: +49% average velocity
- Stabilization at near-optimal velocity



Prof. Cathy Wu, MIT

Acceleration of history Will deep-RL leapfrog 80 yrs. of model-based research?

1935: First aggregat model of congestion ~10,000 articles 1955: First PDE mo el of traffic 2008. t showing instability First experime 1.000 articles 2017÷ mplemented First controlle 2018: 1 article Better result with deep-RL (Cathy Wu's PhE



Prof. Cathy Wu, MIT

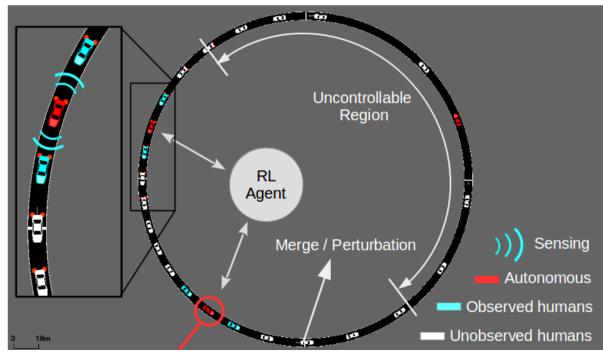
Problem statement

Traffic flow control by CAV (and static assets if needed)

CAV: Autonomous, Onboard policy (learned) Connected to other CAVs

Sensed vehicle Sensed by CAV proximity Or other [C]onnected vehicle

Other vehicle Following human dynamics (car following model)



Building lego blocks

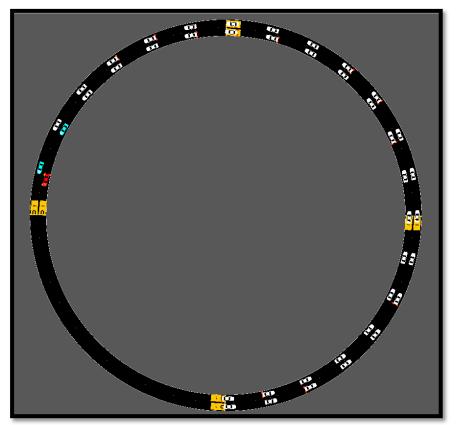
Deep-RL lego blocks = science fiction of model based approaches

Setup: 1 AV, 41 human Experiment

- **Goal**: Maximize average velocity
- Observation: following headways, velocity
- Action: acceleration and lane change

Results

- **Insight**: A single AV can stabilize multiple lanes of traffic
- Emergent traffic break



Building lego blocks

Deep-RL lego blocks = science fiction of model based approaches

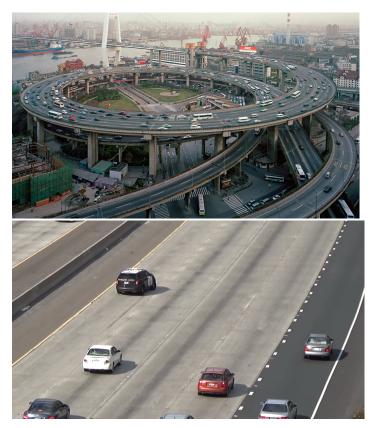
Setup: 1 AV, 41 human

Experiment

- Goal: Maximize average velocity
- Observation: following headways, velocity
- Action: acceleration and lane change

Results

- **Insight**: A single AV can stabilize multiple lanes of traffic
- Emergent traffic break



Intersection control

Moving towards automated intersections

Queuing theory Reservation systems Model predictive control

A multiagent approach to autonomous intersection management. Dresner, Stone. JAIR, 2008.

Polling-systems-based control of high-performance provably-safe autonomous intersections. Miculescu, Karaman. CDC, 2014.

What if even one of these vehicles is not automated?

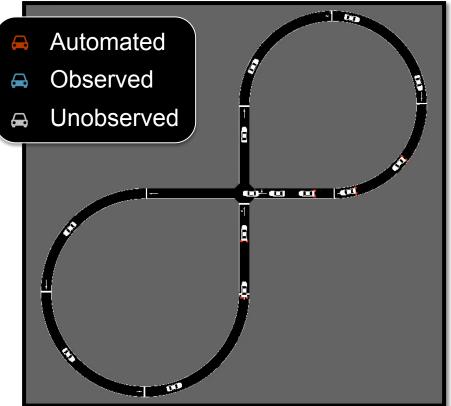
Intersection control

Moving towards automated intersections

Setting: 0 AV, 14 human

Dynamics: cascaded nonlinear systems with right-of-way dynamics model

No autonomy



Intersection control

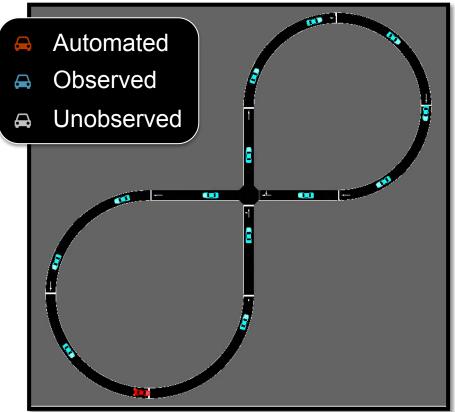
Moving towards automated intersections

Setting: 1 AV, 13 human Experiment:

- Goal: maximize average velocity
- Observation: fully observed
- Action: acceleration

Results

- Emergent mixed-autonomy
 platoon
- Insight: A single AV can slow or stop ALL vehicles behind it
- 1 AV: +60% average velocity



Intersection control For time space diagram afficiona

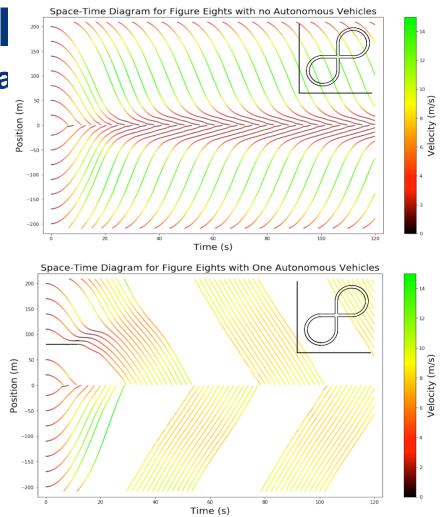
Setting: 1 AV, 13 human

Experiment:

- Goal: maximize average velocity
- Observation: fully observed
- Action: acceleration

Results

- Emergent mixed-autonomy platoon
- Insight: A single AV can slow or stop ALL vehicles behind it
- 1 AV: +60% average velocity
- 14 AVs: +170% average velocity



Merge control

Moving towards automated merges

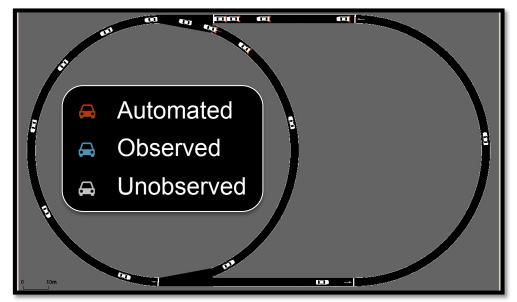
Impacts: 40% of highway congestion

Setting: 0 AV, 17 human

Dynamics:

cascaded nonlinear systems with right-of-way dynamics model

Longitudinal control algorithm for automated vehicle merging. Lu, Hedrick. IJC, 2003.



The impacts of a communication based merging assistant on traffic flows of manual and equipped vehicles at an on-ramp using traffic flow simulation. Pueboobpaphan, et al. IEEE ITSC, 2010.

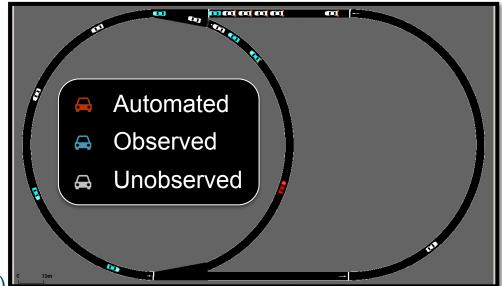
Merge control Moving towards automated merges

Setting: 1 AV, 16 human Experiment:

- Goal: maximize average velocity
- **Observation:** Local and merging vehicles, statistics, e.g. queue length
- Action: acceleration

Results

- Emergent mixed-autonomy cooperative merge
- 1 AV: +142% average velocity (6.3 m/s)
- 0 AV: 2.6 m/s



Moving towards automated merges

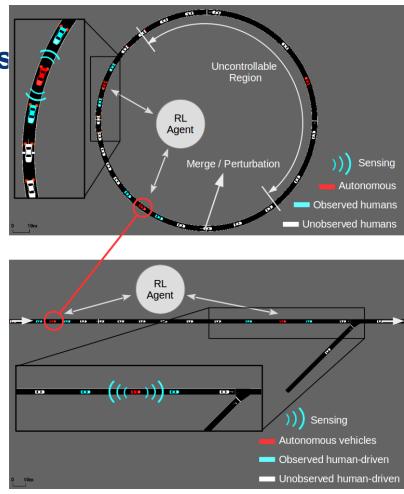
Setting: p% CAV penetration

Experiment:

- Goal: maximize average velocity
- Observations: 1 vehicle ahead/behind
- Actions: acceleration

Transfer Learning

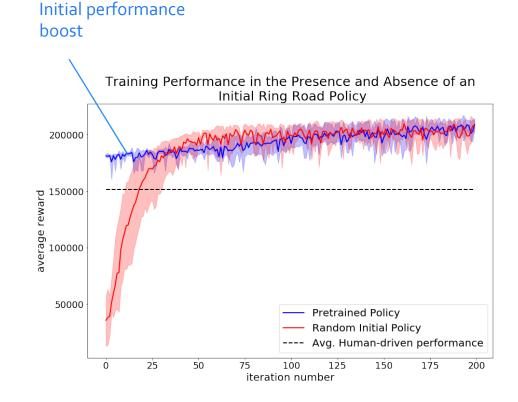
- Initial training on ring road with periodically induced perturbations
- Resultant policy extracted and tested on straight highway with merge.



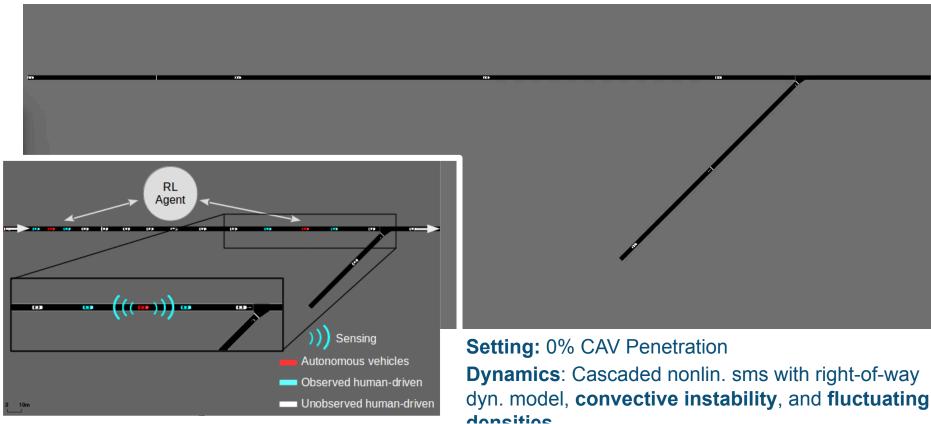
Moving towards automated merges

Transfer Learning Results:

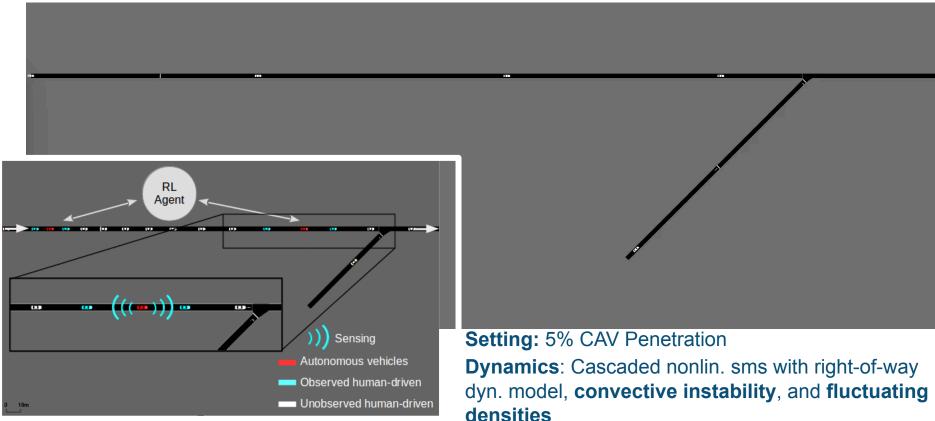
- Ring road policy initially outperforms human-driven dynamics
- Significance: Control strategies derived from simplified closed network geometries are somewhat transferable to open network problems.



Moving towards automated merges



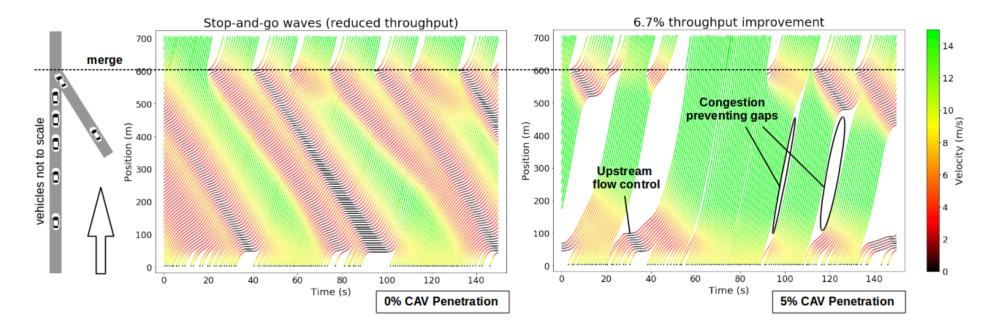
Moving towards automated merges

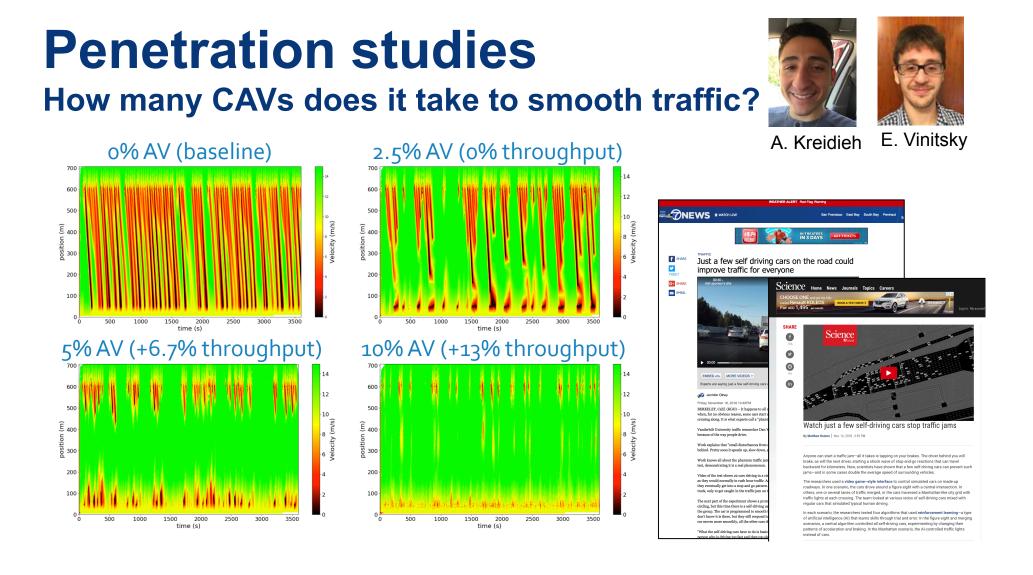


This slide is also dedicated to the time-space diagram afficionados

6.7% improvement in throughput

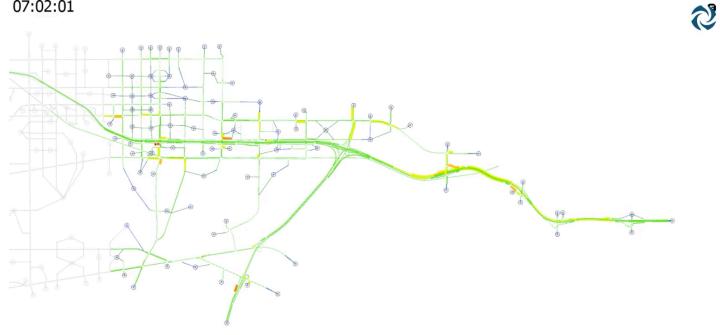
Short story: deep-RL just learned to create gaps with forward waves

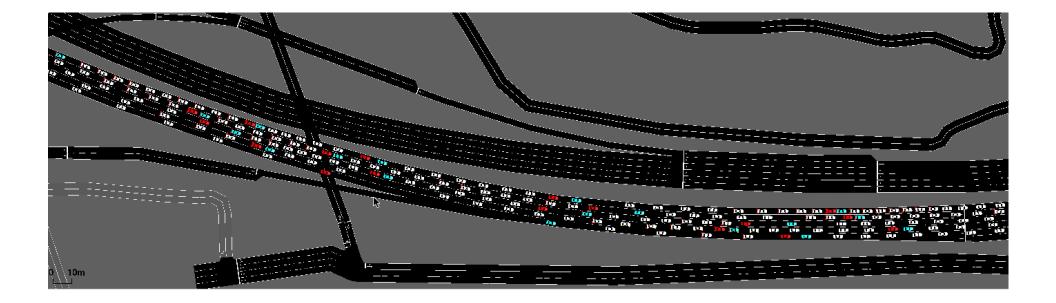


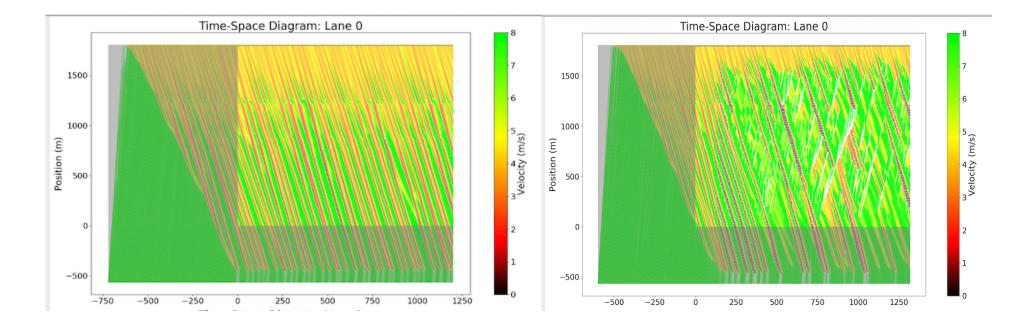


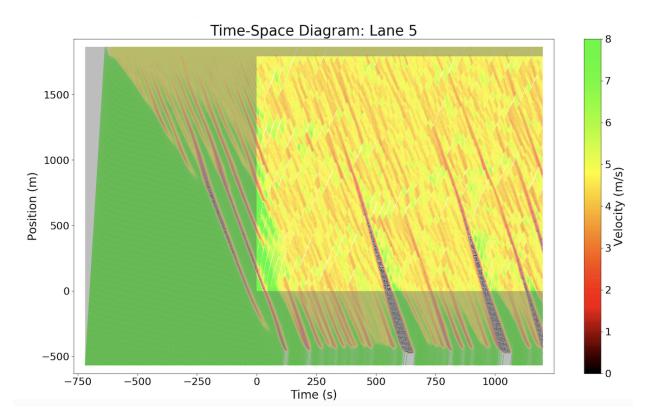
In real life Oscillations exist naturally in highway traffic

07:02:01









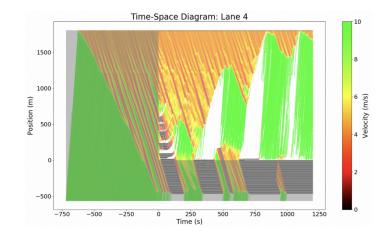
reward = -energy consumed

Problem

The agent can optimize that reward by not moving

Need an incentive to move forward:

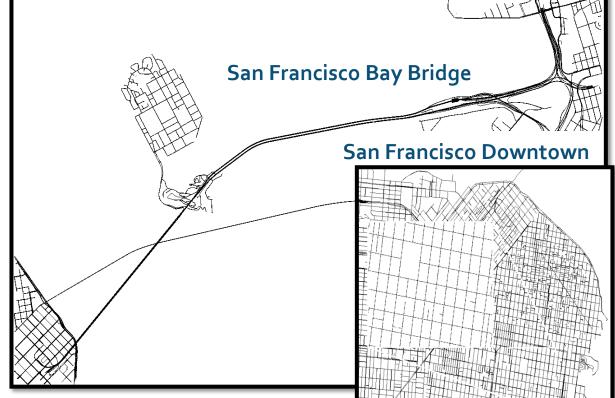
- Penalty for staying too long in the network
- Additional state (time since entered)



Bridge metering Lagrangian metering

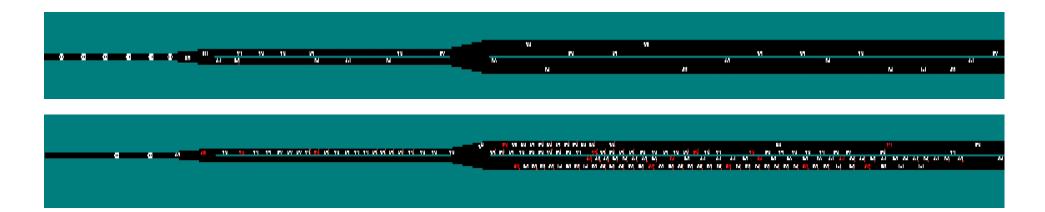
NextGen infrastructure

Can we remove the metering light and can we replace it with CAVs?



Bridge metering ([not] waiting for Godot)

Lagrangian metering: 33% improvement (throughput)



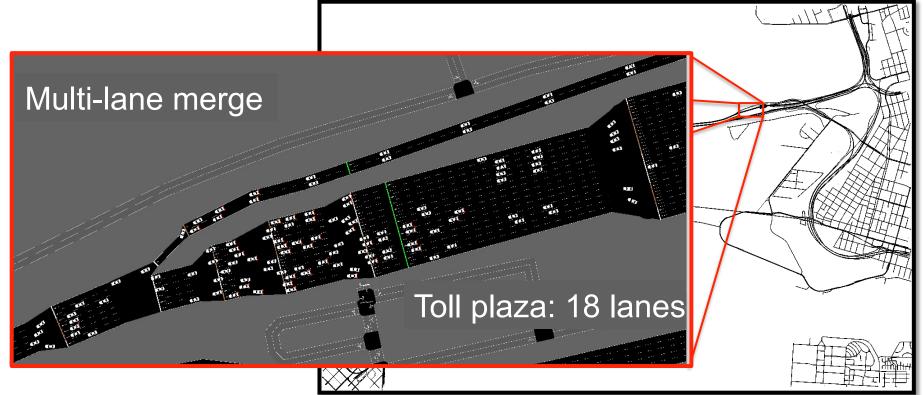
Setting:

- 10% CAV Penetration
- Four lanes -> Two lanes -> One

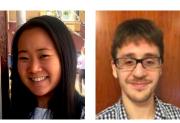
Dynamics:

Cascaded nonlinear systems with right-ofway dynamics model, **merge conflicts**, and **excessive, fluctuating inflow**

Bridge metering Lagrangian metering



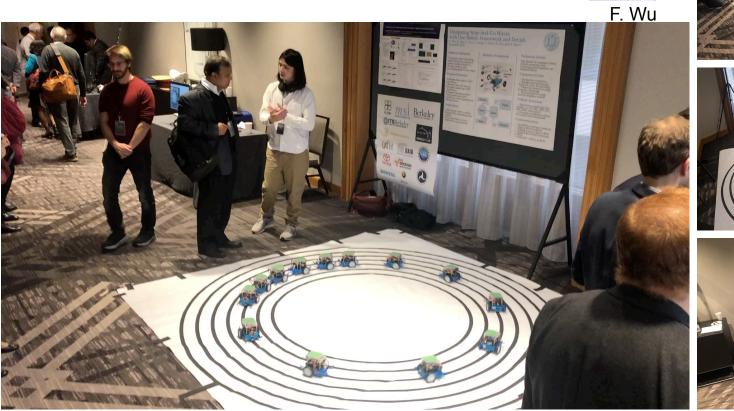
Policy transfer Left: baseline scenario; right: flow maximization



K. Jang

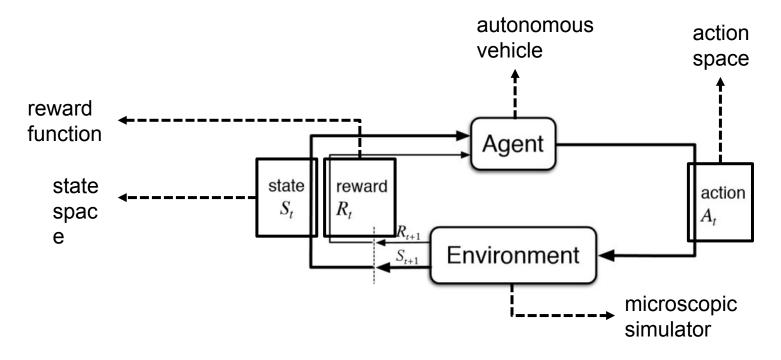
E. Vinitsky

Policy transfer Go to our demo booth tomorrow!

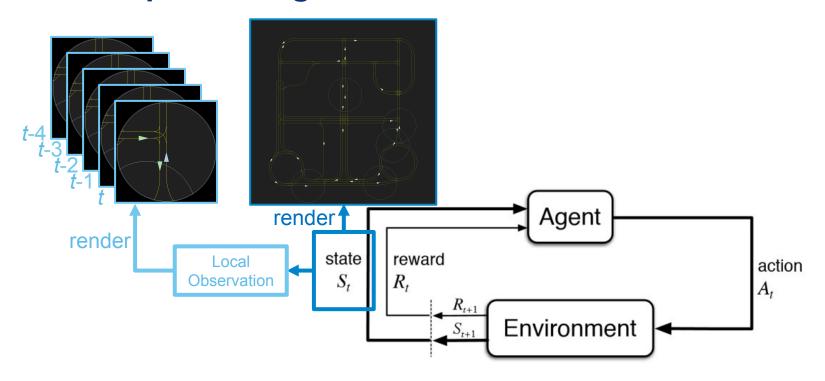


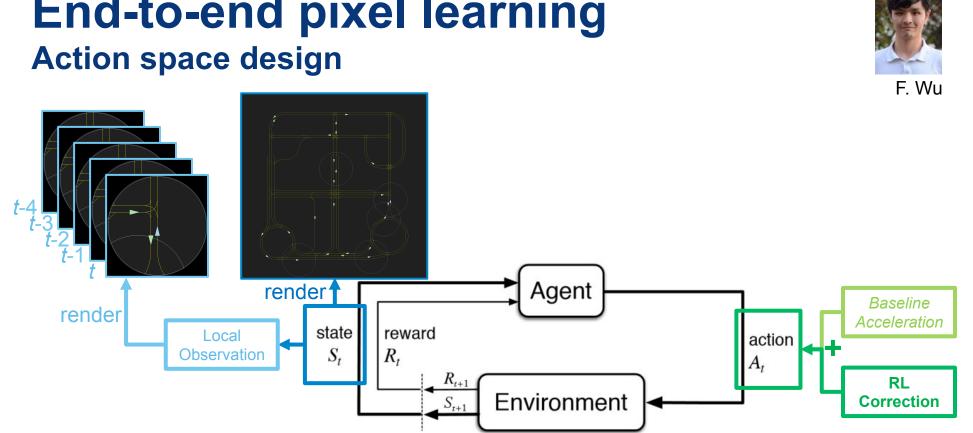
End-to-end pixel learning Deep RL as a Markov decision process

Markov decision process:

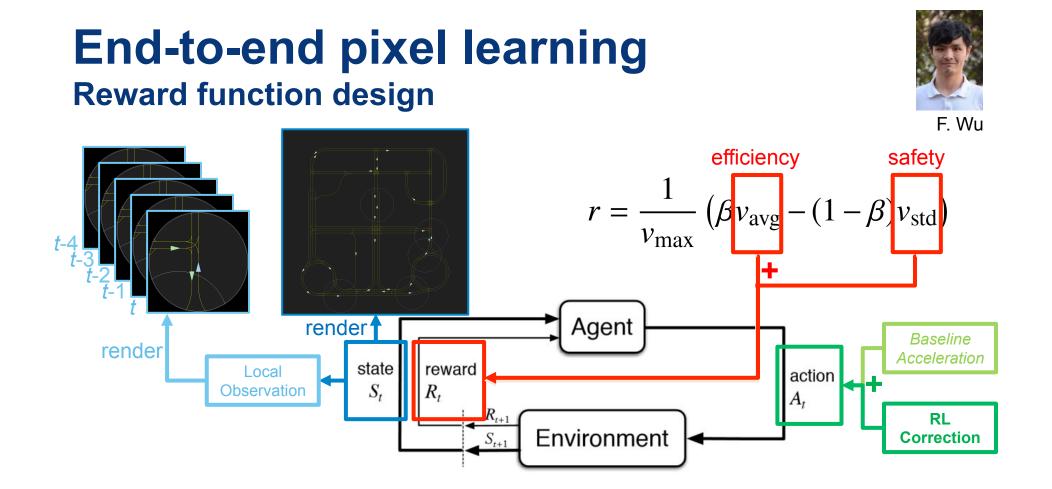


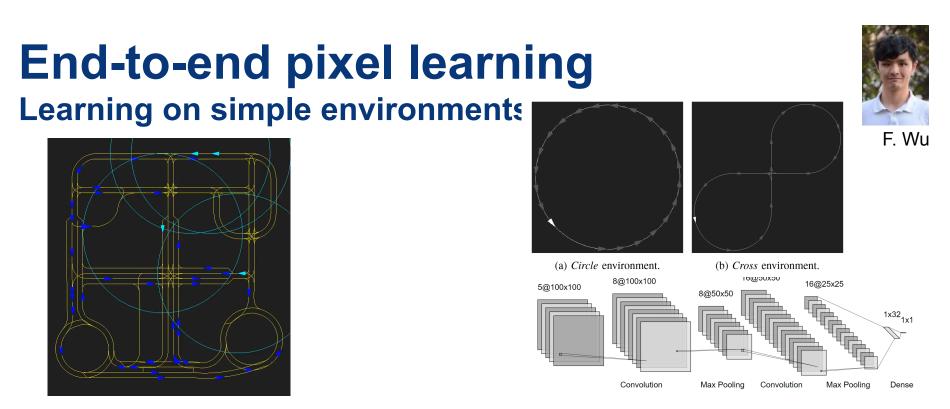
End-to-end pixel learning State space design





End-to-end pixel learning





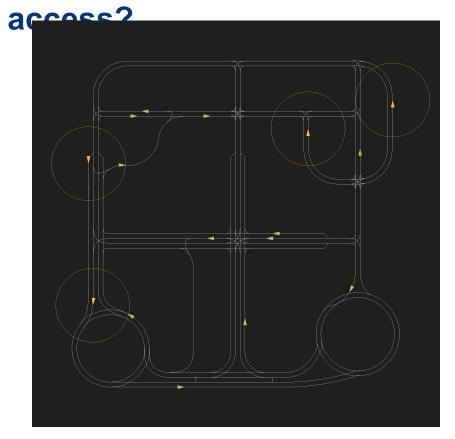
RL augmentation improves human drivers' skills to the level of an optimized AI.

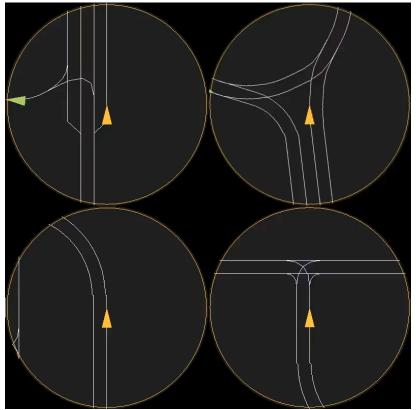
Circle210210324336334340342343340336342Cross348336353350510548545562420447436		0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
<i>Cross</i> 348 336 353 350 510 548 545 562 420 447 436	Circle	210	210	324	336	334	340	342	343	340	336	342
	Cross	348	336	353	350	510	548	545	562	420	447	436

humans

humans+AI

End-to-end pixel learning What if one could remove the need for state space

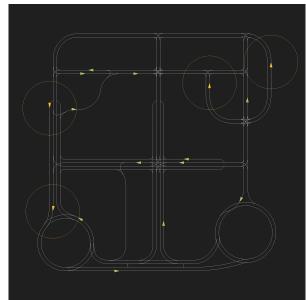




The vision Eventually linked to dashcam data

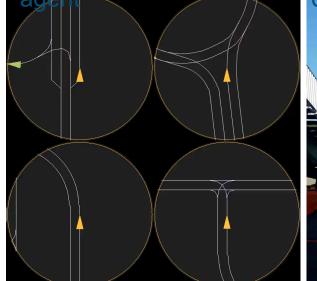
Fully centralized:

Pixel learning



Decentralized:

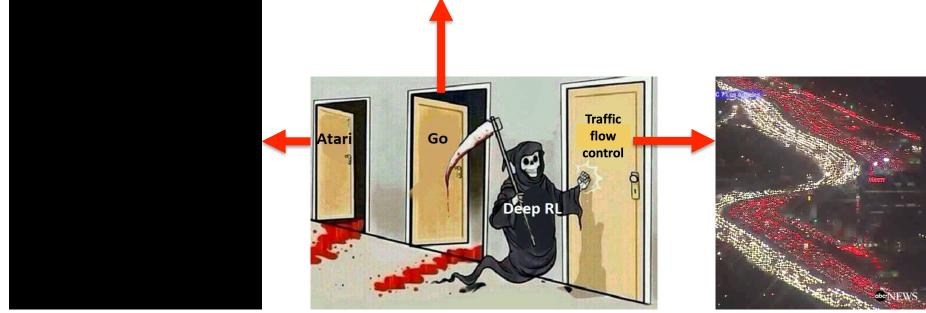
Pixel learning, multi-

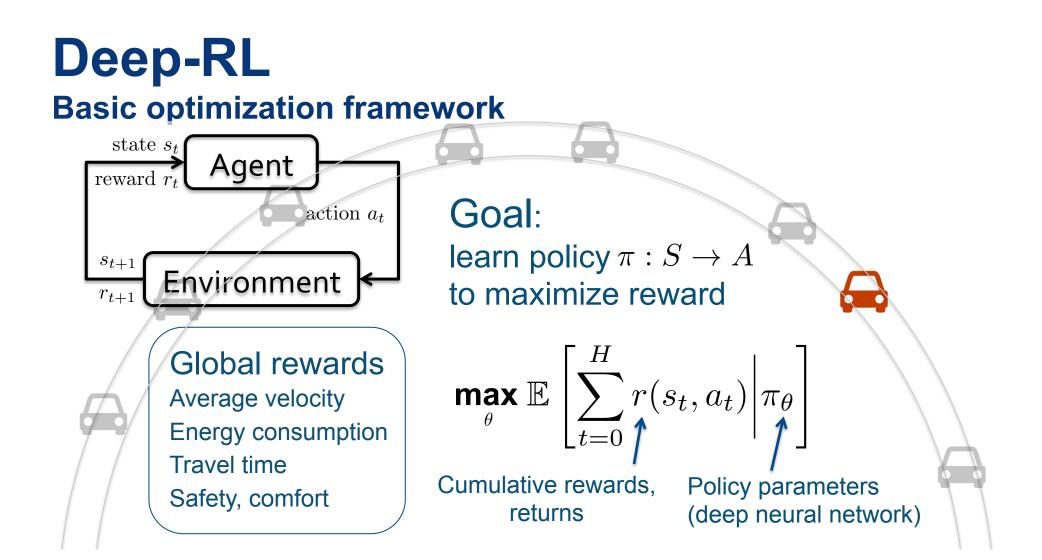


Decentralized:

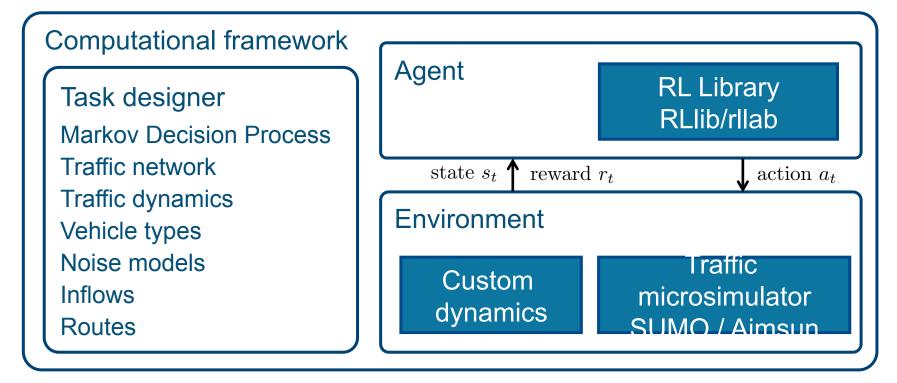
Dashcam segmented

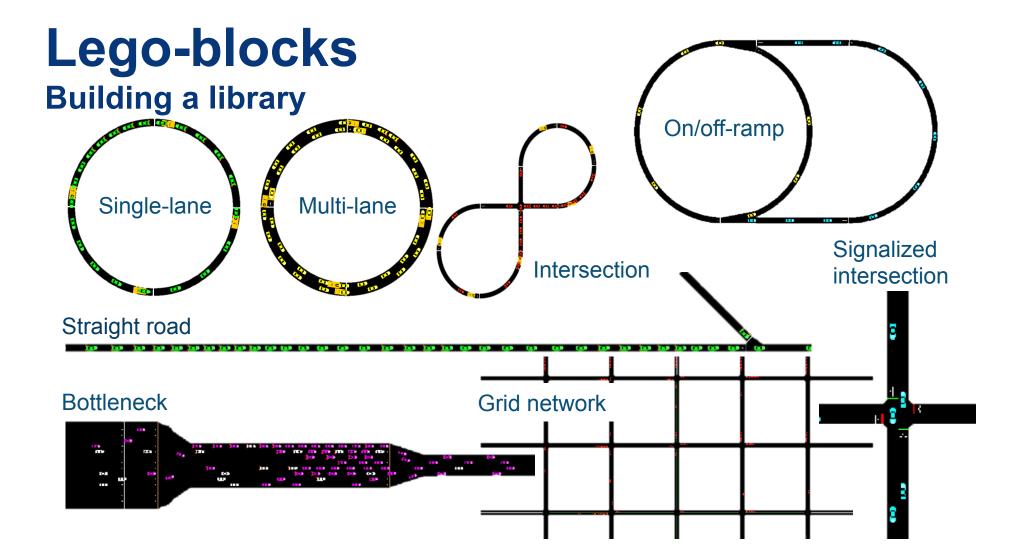
Who is next? Traffic management





Flow Brief presentation of FLOW





Benchmarks, launched 2018, CORL https://flow-project.github.io/

HOME PAPER SUBMISSION REGISTRATION ORGANIZERS PROGRAM PROCEEDINGS SPONSORS PLAN YOUR TRIP

Conference on Robot Learning (CoRL) - 2018 Edition

The Conference on Robot Learning (CoRL) is a new annual international conference focusing on the intersection of robotics and machine learning. The first meeting (CoRL 2017) was held in Mountain View, California on November 13 - 15, 2017, and brought together about 350 of the best researchers working on robotics and machine learning.

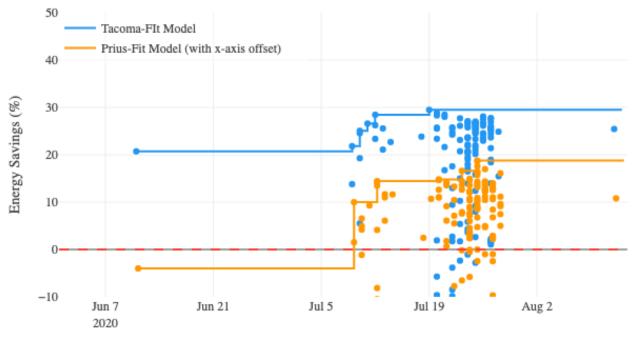
CoRL 2018 will be held on October 29th-31st, 2018, in Zürich, Switzerland.

Dashboard CIRCLES

Houris *											Log Out
Introl Strategy Leaderboard											
			Submission Scores Over Time							0 88X# 1	•
No www. Taccaras Pricinged www. Price Price (19 Made (1999 in 1996)											
				•		- 1			•		
	, ,		4		1920- 1920-	ļ	÷1			1	
2020			Date								
10 e Submissions										Search	
tegy N	Submitter Nome	'n	Fuel Economy		Inflow Rate (white (%)	Network Speed (mA-(%))	е. - 6	Sofety Rote (N	Min Safety Value (m)	Date	15
fox.vin.45	Amoury .		20.7: 156.4 (+29.5% +10.7%)		6432.0 (-2.5%)	45(-35%)		99.9	-14	2020-07-19	
.0på, speed, mpg, rop, sheck	Nathan		20.5; 163.8 (+28.8%; +14.7%)		8663.7 (+31.3%)	45(-3.6%)		94.8	-30.5	2020-07-20	
.0p3_speed_mpg_nop	Nothen		20.5; 1637 (+287%) +147%(8669.7 (+31.4%)	45132%		948	-28.4	2020-07-20	
	Nathan		20.4:162.9 (+28.5% +14.3%)		8687.7 (+31.7%)	44(-42%)		94.8	-39.9	2020-07-21	

Dashboard CIRCLES

Submission Scores Over Time

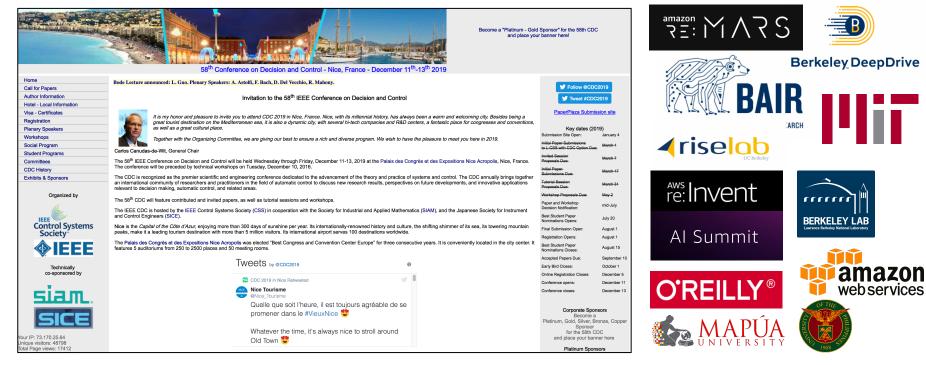


Date

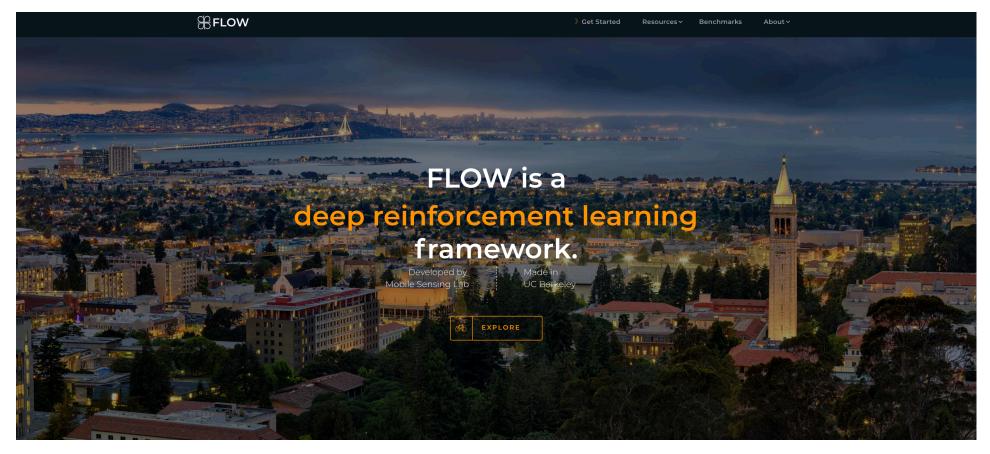
User community

Classes, workshops, tutorials, events, users...

IEEE CDC, Nice, France



Flow open source library https://flow-project.github.io/



Solving Traffic Problems using Autonomous Vehicles

Alexandre Bayen

Director, Institute of Transportation Studies Professor, EECS & CEE Faculty Scientist, LBNL

Berkeley DeepDrive

∢riselob

Solving Traffic Problems using Autonomous Vehicles

amazon ZE: MAZS

Alexandre Bayen

Director, Institute of Transportation Studies Professor, EECS & CEE Faculty Scientist, LBNL

Berkeley DeepDrive

∢riselob

