

IPAM Safe Operation of Connected and Autonomous Vehicle Fleets Workshop, 2020

Counterfactual reasoning with reinforcement learning?

- *Motivation*: Quantify impact of technology on societal systems
- Pace of change & complexity is increasing

Reward

Impacts on:

- Public safety & health
- Economic wellbeing
- Sustainability
- Resilience
- Equity & fairness

Policy evaluation \rightarrow quantify impact

Policy learning \rightarrow improve impact

Years 2020 to 2049: Mixed autonomy

Wadud, et al. TR-A, 2016. TR-A; U.S. Energy Information Administration, 2017.

Deep reinforcement learning (RL)

Single-lane: dynamical system equilibria

Human driver model

- Car-following model
- $\ddot{\mathbf{X}}_{i} = f(V_{i}, V_{i}-V_{i-1}, X_{i}-X_{i-1})$
- Intelligent Driver Model [Treiber, et al. 2000]

Wu. et al. CoRL. 2017: Wu, et al. IEEE T-RO, in review; Treiber, et al. Physical Review E, 2000.

Single-lane: state of the art policy

State of the art

畐

Mixed autonomy traffic (single-lane)

1955

Setting: 1 AV, 21 human

Experiment

- Goal: maximize average velocity
- **Observation**: relative vel and headway
- Action: acceleration
- **Policy**: multi-layer perceptron (MLP)
- Learning algorithm: policy gradient

Results

- 1 AV: +49% average velocity
- First near-optimal controller for single-lane
- Uniform flow at **near-optimal velocity**
- Generalizes to out-of-distribution densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review.

Wu, et al.

Single-lane: learned policy via deep RL

State of the art

Proportional-integral (PI) controller with saturation [Stern, et al. 2018]

Our results

- Near-optimal
- Generalizes to out-of-distribution traffic densities
- Memory not needed

Average velocity vs traffic density

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

Traffic LEGO blocks 5-10% AVs Benchmarks for autonomy in transportation

Challenge: combinatorial number of environments A critical challenge to scaling deep reinforcement learning

Elements: Road network, Roadway signage, Rules of the road, Types of vehicles, Speed limits, Traffic lights, # Lanes, Driver behavior, ...

Transfer learning across networks

- *Research question*: Can knowledge be transferred across traffic scenarios?
- Transfer learning: The use of knowledge gained from a source task to bias the learning process on a target task towards a set of good hypotheses.
- Zero-shot transfer: Extreme setting where no learning is done on the target task. Out-ofdistribution generalization.

Source task

Target task

Lazaric, Alessandro. Transfer in Reinforcement Learning: a Framework and a Survey. Springer, 2012.

Zero-shot transfer

Circular track \rightarrow More/less dense circular track

Wu. et al. CoRL. 2017: Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

Transfer learning

Circular roads \rightarrow Straight roads

Kreidieh, Wu, Bayen, ITSC 2018.

Initial performance boost

Aboudy Kreidieh (UC Berkeley)

- Successful direct transfer!
- Closed \rightarrow open networks

*Capacity drop experiment is a variation of: Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018

[Ongoing research]

Zero-shot transfer Bottleneck → Grid?!

26% improvement over human baseline (IDM)

No fine-tuning!

High-dimensional control

Key challenge in cooperative multi-agent systems: curse of dimensionality

Variance reduction in policy gradient methods Key idea: factorizing stochastic policies → opportunity for improved control variates

Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.

Pathways toward reality

Physical tests & deployment

Insights for urban planning & industry

Collaborators & Partners

Prof. Alexandre Bayen⁺ Eugene Vinitsky⁺ Aboudy Kreidieh⁺

Zee Yan

FLOW

aws

Vindula Jayawardana

臺中市政府

TAICHUNG CITY GOVERNMENT

Civil and Environmental

Engineering

ION AND DECISION SYSTEMS

+ = UC Berkeley

Kanaad Parvate⁺ Kathy Jang⁺ Nishant Kheterpal⁺

Leah Dickstein⁺ Ananth Kuchibhotla⁺ Nathan Mandi⁺

IDSS

MIT INSTITUTE FOR DATA, SYSTEMS, AND SOCIETY

DS

Mixed Autonomy Traffic: A Reinforcement Learning Perspective

- **Deep reinforcement learning** provides a pathway for understanding the impacts of mixed autonomy in urban systems
- Transfer learning across networks can improve sample efficiency of RL to enable the analysis of larger and more complex traffic scenarios
- Numerous opportunities to scale to **high dimensional control**
- There's everything left to do

