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Counterfactual reasoning with 
reinforcement learning?
•  Motivation: Quantify impact of technology on societal systems
•  Pace of change & complexity is increasing

Impacts on:
•  Public safety & health
•  Economic wellbeing
•  Sustainability
•  Resilience
•  Equity & fairness

City

Environment Agent Reward

Policy evaluation à quantify impact Policy learning à improve impact



Years 2020 to 2049: Mixed autonomy
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Urban simulation
City



Axes of difficulty in mixed autonomy traffic

Scope 
(# vehicles,  

road network)

1-20 
vehicles, 

1 road

500K vehicles, 
10K roads

Curse of 
dimensionality 🙁	

PID control

Degree of autonomy0% 100%

Polling systems

Reservation 
systems

Jackson networks

Part 1: RL?

Model predictive 
control

Partial differential 
equations

Part 2: RL?

Low 
uncertainty in 

transitions

Low  
uncertainty 
in rewards

High 
uncertainty 
in rewards & 

transitions

Feedback 
linearization

Part 3: Then what?
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Decisions in transportation:

Vehicle accelerations
Tactical maneuvers

Transit schedules

Traffic lights

Land use

Parking

Tolling

…

Deep reinforcement learning (RL)

Agent	

Environment	

action at

state st

reward rt

rt+1

st+1

Global rewards
Average velocity
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Formation of 
traffic jams 

[Sugiyama, et al. 2008] A
ve

ra
ge

 v
el

o
ci

ty
 (m

/s
)

Vehicle density (veh/m)

Average velocity vs traffic densityHuman driver model
•  Car-following model
•  ẍi = f(vi, vi–vi-1, xi–xi-1)
•  Intelligent Driver Model 

[Treiber, et al. 2000]

Single-lane: dynamical system equilibria

Wu, et al. CoRL, 2017;  
Wu, et al. IEEE T-RO, in review; Treiber, et al. Physical Review E, 2000.

Traffic jams
(stable)

Optimal
(unstable)



260m

Single-lane: state of the art policy
State of the art
•  Hand-tuned 

model-based controller
•  Proportional-integral 

(PI) controller  
with saturation  
[Stern, et al. 2018]

Wu, et al. CoRL, 2017; 
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018
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Setting: 1 AV, 21 human

Experiment
•  Goal: maximize average velocity
•  Observation: relative vel and headway

•  Action: acceleration
•  Policy: multi-layer perceptron (MLP)
•  Learning algorithm: policy gradient

Results
•  1 AV: +49% average velocity
•  First near-optimal controller for single-lane
•  Uniform flow at near-optimal velocity
•  Generalizes to out-of-distribution densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review.

AV offAV on

Mixed autonomy traffic (single-lane)

1955

Wu, et al.

20192008

2017

Automated

Observed

Unobserved

Sugiyama, et al.

Stern, et al.



Single-lane: learned policy via deep RL

State of the art
Proportional-integral 
(PI) controller  
with saturation  
[Stern, et al. 2018]

Our results
•  Near-optimal
•  Generalizes to 

out-of-distribution 
traffic densities

•  Memory not needed
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This work

TrainTest Test

Wu, et al. CoRL, 2017; 
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018



On/off-rampSingle-lane

Grid networkBottleneck

Intersection

Straight highway
Signalized  
intersection

Multi-lane

Traffic LEGO blocks 
Benchmarks for autonomy in transportation

Wu, et al. IEEE ITSC, 2017;  Wu, et al. IEEE T-RO, in review 
Vinitsky, Kreidieh, …, Wu, et al. CoRL, 2018.

5-10% AVs

+142%+30%+49%

+40%

+60%
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Challenge: combinatorial number of environments 
A critical challenge to scaling deep reinforcement learning

≠

≠ Elements: Road network, Roadway signage, 
Rules of the road, Types of vehicles, Speed 
limits, Traffic lights, # Lanes, Driver behavior, …



Transfer learning across networks

•  Research question:  
Can knowledge be transferred 
across traffic scenarios?

•  Transfer learning: The use of 
knowledge gained from a source 
task to bias the learning process 
on a target task towards a set of 
good hypotheses.

•  Zero-shot transfer: Extreme 
setting where no learning is 
done on the target task. Out-of-
distribution generalization.

Lazaric, Alessandro. Transfer in Reinforcement Learning: a Framework and a Survey. Springer, 2012.

Knowledge

KnowledgeZero-shot transfer

?

Transfer

Source task Target task



Our results
•  Near-optimal
•  Zero-shot transfer: 

Generalizes to out-
of-distribution 
traffic densities
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Optimal
(unstable)

Traffic jams
(stable)

Hand-designed SotA 
 [Stern, et al. 2018]

Learned control  
law (ours)

TrainTest Test

Wu, et al. CoRL, 2017; 
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

Zero-shot transfer 
Circular track à More/less dense circular track

Single-lane 
5% AV



Transfer learning 
Circular roads à Straight roads

Aboudy Kreidieh 
(UC Berkeley)

Kreidieh, Wu, Bayen, ITSC 2018.

•  Successful direct transfer!
•  Closed à open networks

Initial	performance	boost	

Single-lane 
5% AV



Setting: No AVs, 100% IDM

Setting: 10% AVs, 90% IDM

1480 veh/hr
Phenomenon: capacity drop

1800 veh/hr

Zero-shot transfer 
One bottleneck à Many different bottlenecks

Results:
•  22% improvement
•  Avoids capacity drop
•  Learned policy 

transfers to different 
inflow rates, number of 
lanes, and percent of 
automated vehicles

Successful transfer:
Network: 8 > 4 > 2 Bottleneck

Network: 8 > 4 > 2 > 1 Bottleneck

Scenario: varying inflow rates, varying % AVs.

Zee Yan

 [Ongoing research]

*Capacity drop experiment is a variation of: Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018



Zero-shot transfer 
Bottleneck à Grid?!

26% improvement over 
human baseline (IDM)

No fine-tuning!
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High-dimensional control

Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.

Variance reduction in policy gradient methods
Key idea: factorizing stochastic policies à 
opportunity for improved control variates

Key challenge in cooperative multi-agent systems: curse of dimensionality

Door	Opening	(24-dim)	
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Pathways toward reality
Physical tests & deployment

Insights for urban planning & industry



Automatic traffic signal optimization 
Not just for futuristic automated vehicles!

•  Motivation:
–  Improve travel times & congestion
–  Mitigate air pollution
–  Improve coordination across city 

boundaries

•  Same approach
•  Potential for  

near-term benefits

Vindula Jayawardana

Dr. Fang-Pang Lin, Schumi Huang (NCHC)

	

 [Ongoing research]

Current
controller

RL-based 
controller

30% speed improvement
29% queue reduction
60% queue reduction (3x3)
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Mixed Autonomy Traffic: 
A Reinforcement Learning Perspective

•  Deep reinforcement learning provides  
a pathway for understanding the impacts 
of mixed autonomy in urban systems

•  Transfer learning across networks can improve 
sample efficiency of RL to enable the analysis of larger 
and more complex traffic scenarios

•  Numerous opportunities to scale to high dimensional 
control

•  There’s everything left to do


