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Counterfactual reasoning with
reinforcement learning?

* Motivation: Quantify impact of technology on societal systems

» Pace of change & complexity is increasing
Environment Agent Reward

City

Impacts on:
» Public safety & health
* Economicwellbeing
« Sustainability
* Resilience
Equity & fairness

Policy evaluation = quantify impact Policy learning = improve impact
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Years 2020 to 2049: Mixed autonomy @e—&

Transportation in the US

Limited Degree of autonomy  Full
Wadud, et al. TR-A, 2016. TR-A; U.S. Energy Information Administration, 2017.
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Urban simulation

City
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500K vehicles,
S Axes of difficulty in mixed autonomy traffic

RO =Sl I Part 3: Then what?
urse o 4 ﬁ
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Deep reinforcement learning (RL)

state s; A Decisions in transportation:
—>| ent ]—
reward r; J Goal: Vehicle accelerations

action a, learn policy 7: S — A Tactical maneuvers
Transit schedules

St1 to maximize reward
TH[ Environment ](_ H Q Traffic lights

max K E T(st, at) T Land use
f Parking
Global rewards - Lt=0 ! 2 |
: Cumulative rewards, Policy parameters Tolling
Average velocity returns (deep neural network)

Energy consumption I

. I
Travel time _
Safety, comfort

DQN (2015) TRP

(2015) AlphaGo (2016)
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Single-lane: dynamical system equilibria

Human driver model Average velocity vs trafficdensity = .

Car-following model
X; = Vi, VimVig, X=X 4)

Intelligent Driver Model
[Treiber, et al. 2000]

Formation of

traffic jams
[Sugiyama, et al. 2008]

Wau, et al. CoRL, 2017;

Wu, et al. IEEE T-RO, in review; Treiber, et al. Physical Review E, 2000.
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Single-lane: state of the art policy

State of the art

Hand-tuned

model-based controller

Proportional-integral
(PI) controller

with saturation
[Stern, et al. 2018]
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WU, et al. CoRL, 2017;

= Wau, et al. IEEE T-RO, in review; Stern, et al. TR-
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Wu, et al.

Mixed autonomy traffic (single-lane) ., m

— .

1955 Sugiyama, et al. 2008 2019
Setting: 1 AV, 21 human _oalog
Experiment

» Goal: maximize average velocity

* Observation: relative vel and headway
* Action: acceleration

* Policy: multi-layer perceptron (MLP)

: . . . Automated
» Learningalgorithm: policy gradient
Observed
Results -
o 1AV:+49% average velocity , & Unobserved

* First near-optimal controller for single-lane

* Uniform flow at near-optimal velocity

* Generalizes to out-of-distribution densities
Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review.




Single-lane: learned policy via deep RL

State of the art

Proportional-integral
(PI) controller

with saturation
[Stern, et al. 2018]
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Average velocity vs traffic density

---- Stop-and-go stable limit cycle

---- Uniform flow unstable equilibrium
— PI with saturation controller

---- Calibration density for Pl controller

—— MLP controller (ours)
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WU, et al. CoRL, 2017;
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018
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Traffic LEGO blocks 5-10% AVs

Benchmarks for autonomy in transportation

Smgle lane I\/|u|t| Iane On/off-ramp Intersectmn

j:\l, +142%
k\ i : \ /+60%

Stra|ght h|ghvvay

— ) Signalized
ottlenec +400/ Grid network intersection

Wu, et al. [EEE ITSC, 2017; Wu, et al. IEEE T-RO, in review
Vinitsky, Kreidieh, ..., Wu, et al. CoRL, 2018.
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Challenge: combinatorial number of environments

A critical challenge to scaling deep reinforcement learning

Somerville
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Transfer learning across networks

Source task Target task

* Research question:
Can knowledge be transferred
across traffic scenarios?

* [ransfer learning: The use of
knowledge gained from a source
task to bias the learning process
on a target task towards a set of

good hypotheses.
* Zero-shot transfer: Extreme Knowledge
setting where no learning is Transfer

done on the target task. Out-of-
distribution generalization.

Zero-shot transfer

Lazaric, Alessandro. Transfer in Reinforcement Learning: a Framework and a Survey. Springer, 2012.




Zero-shot transfer

Circular track 2 More/less dense circular track. .
, Average velocity vs traffic density
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Transfer learning ngle ne

) . Initial performance boost
Circular roads = Straight roads

Aboudy Kreidieh
Training Performance in the Presence and Absence of an
Initial Ring Road Policy (UC Berkeley)

Uncontrollable
Region
200000
))) Sensing © 150000
Autonomous g
=== Observed humans dh)
= Unobserved humans g
© 100000
[
>
©
50000
—— Pretrained Policy
—— Random Initial Policy
---- Avg. Human-driven performance

0 25 50 75 100 125 150 175 200
iteration number

) )) Sensing
Autonomous vehicles

mm= Observed human-driven

= s e e Successful direct transfer!

Kreidieh, Wu, Bayen, ITSC 2018. ° C|Qged 9 open ﬂetWOrkS



[Ongoing research]

Zero-shot transfer
One bottleneck 2 Many different bottlenecks
Results:

Phenomenon: capacity drop « 22% improvement
Setting: No AVs, 100% IDM 1480 veh/hr « Avoids capacity drop

* Learned policy
transfers to different
inflow rates, number of
lanes, and percent of
automated vehicles

ZeeYan

Setting: 10% AVs, 90% IDM 1800 veh/hr

Successful transfer: NN
. - 5% \\\\/\v/\//

tflow rate (veh/hr)

>
o
o

\

| /

‘ \

\

|

|

(

\

1400
>
o

1200

loo10000 1250 1500 1750 2000 2250 2500 2750

inflow rate (veh/hr)

Scenario: varying inflow rates, varying % AVs.

*Capacity drop experiment is a variation of: Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018



Zero-shot transfer
Bottleneck = Grid?!

L

26% improvement over
human baseline (IDM)

No fine-tuning!
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High-dimensional control

Key challenge in cooperative multi-agent systems: curse of dimensionality

Variance reduction in policy gradient methods

Key idea: factorizing stochastic policies >
opportunity for improved control variates

Door Opening (24-dim)

100
80
60

40

Success Percentage

20

B = V/(s) Vi
0 Bj=Q(s, [4;, a-;1) (Ours)
0 25 50 75 100 125 150 175 200
Iterations

Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.
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Pathways toward reality

PhySica| tests & deplOymeﬂt [ ——

Enter your city:

In the zoom region: ——
m Intersections [
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m On/off-ramps |8

1000 [PYVR

AV adoption

Ownership type private

Insights for urban planning & industry



Automatic traffic signal optimization

Not just for futuristic automated vehicles!

« Motivation:
— Improve travel times & congestion
— Mitigate air pollution
— Improve coordination across city
boundaries
« Same approach

o Potential for
near-term benefits

Average Time Spend by a Vehicle

—— Fixed Timing Controller
Autonomous Controller

~
e

[e2]
o

/

A
\. 7
7N

(o2}
o

=y
o
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] 29% queue reduction
60% queue reduction (3x3)

Average Time Spend by a Vehicle
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Current
controller

RL-based
controller

Dr Fang Pang Lin, Schum| Huang (NCHC)

[Ongoing research]

huikutou Park

»
ZMOST TS 26l BUOR

Ministry of Science and Technology TAICHUNG CITY GOVERNMENT

o NARLabs WEZANBRRESBMFB

wErr ) BRESRIBIERE DN

National Center for High-performance Computing



Collaborators & Partners

SYSTEMS AND SOCIETY
% | ;
-~ ) oes 4
) i ,

Civil and
Environmental
A L I DS Engineering
Prof. Alexandre Bayen™ Eugene Vinitsky* Aboudy Kreidieh* Zee Yan Vindula Jayawardana

mIDSS 0SS 1T

} LABORATORY FOR INFORMATION AND DECISION SYSTEMS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

== Microsoft

D % NARLabs HEEABRREHRS:

FLOW '@ GER i S I

National Center for High-performance Computing

*=UC Berkeley

aws
=5 i B

Leah Dickstein® Ananth Kuchibhotla® Nathan Mandi* TAICHUNG CITY GOVERNMENT




Mixed Autonomy Traffic:
A Reinforcement Learning Perspective

 Deepreinforcement learning provides -
a pathway for understanding the impacts ‘l'
of mixed autonomy in urban systems

* Transfer learning across networks can improve
sample efficiency of RL to enable the analysis of larger
and more complex traffic scenarios

* Numerous opportunities to scale to high dimensional
control

 There'severything left todo




