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It is All About Robustness
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Model Predictive Control (MPC)

Predict system behavior, select best decision:
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I Constraint satisfaction

I Optimal performance

I Closed-form controller
not required

Standard MPC exhibits a pos-
sible lack of robustness to
perturbations and uncertainties.
[Grimm et al. 2004] [Tuna et al. 2007]
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Related Fields:

I Collision avoidance

I Set dynamical systems

I Uncertainty in MPC

[Chao et al. 2011], [Risso et al., 2016], [Raković et al., 2007.]

animation by animate[2017/05/18]

animation by animate[2017/05/18]



Background

Ricardo Sanfelice – University of California, Santa Cruz - 10/49

Related Fields:

I Collision avoidance

I Set dynamical systems

I Uncertainty in MPC

[Chao et al. 2011], [Risso et al., 2016], [Raković et al., 2007.]
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Related Fields:

I Collision avoidance

I Set dynamical systems

I Uncertainty in MPC

[Chao et al. 2011], [Risso et al., 2016], [Raković et al., 2007.]

Tube MPC formulates constraints with isotropic sets around states
and uses points to propagate dynamics and optimize trajectories
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Our Contribution, with Multiple Applications
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Robust optimization framework for dynamical systems that performs
optimization over a sequence of sets and can be used for

I Uncertainty propagation

I Reachable set computation

I Safety analysis

I Collision detection and evasion
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Our Contribution, with Multiple Applications
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Towards Set Dynamical Systems

Discrete-time system with state x, disturbance w on the dynamics,
and noise v on the state:

xj+1 = g(xj , wj)

=: G(Xj)

The measured state is x̂j = xj + vj .
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Set Dynamical Systems
Discrete-time system state evolution
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Set Dynamical Systems

Discrete-time set-valued state evolution
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Set Dynamical Systems
We consider dynamical systems of the form

X
+ = G(X)

Y = H(X)

X ⇢ D

where

I X ⇢ Rn is the set-valued state

I Y ⇢ Rm is the system’s output

I G: Rn ◆ Rn and H: Rn ◆ Rm are set-valued maps

I D ⇢ Rn defines a constraint that solutions to the system
must satisfy

Due to the set-valuedness of its solutions, we refer to this class of
systems as set dynamical systems.
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Set Dynamical Systems

Solution to a set dynamical system

A sequence of nonempty sets {Xj}Jj=0, J 2 domX, is a solution
to X

+ = G(X) if

Xj+1 = G(Xj) 8j 2 {0, 1, . . . , J � 1} \ N
Xj ⇢ D 8j 2 domX

where X0, is the initial set and domX = {0, 1, 2, . . . , J}\N is the
domain of definition of the solution. We say the solution is:

I trivial, if it has J = 0

I nontrivial, if it has J > 0

I maximal if it cannot be further extended.

X = S(X0): A solution that starts from the initial set X0 ⇢ Rn

We refer to the solution {Xj}Jj=0 as X along this presentation.
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Set Dynamical Systems
Reachability and Safety

Given the discrete time system x
+ = g(x), for a set of initial

conditions, determine where can the system’s states evolve. Are
there any potentially reachable unsafe configurations, given an
initial set?

reachjJ(X0) :=
[

j2domX

g(Xj)
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Set Dynamical Systems
Uncertainty Propagation

Given the discrete time system x
+ = g(x), initial conditions

X0 ⇢ Rn and the state-dependent bounded disturbances d1 and
d2, determine the worst case e↵ect of the uncertainty over the
system’s behavior.

G(X) =
[

x2X
{g(x, d1(x)B) + d2(x)B}
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Related Contributions

I Generalized pseudo-dynamical systems and stability results
Pelczar, Prace Matematyczne, 77

Sobanski, Zeszyty Naukowe III, Prace Mat, 78

I Set-dynamics framework for the invariance of sets under
output feedback

Artstein and Rakovic, International Journal of Systems Science, 11

I Dynamical properties of continuous-time systems with
set-valued solutions

I Calculus for set-valued maps and set-valued evolution
equations

Artstein, Set-Valued Analysis, 95
I Dynamics of sets defined by di↵erential inclusions

Panasyuk, Siberian Mathematical Journal, 86

We characterize the limiting properties of solutions to these
systems via tools from variational analysis, using

Rockafellar and Wets, Variational Analysis, Springer, 1998
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Distance Between Sets
Definition: Distance between Sets

The Hausdor↵ distance between two closed sets A1, A2 ⇢ Rn is
given by

d(A1,A2) = max

⇢
sup
x2A1

|x|A2 , sup
z2A2

|z|A1

�
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Asymptotic Stability
Definition: Asymptotic Stability of a Set

The closed set A ⇢ Rn is

I stable if for each ✏ > 0 there exists � > 0 such that each
solution X with d(X0,A)  � satisfies d(Xj ,A)  ✏ for all
j 2 dom X

I asymptotically stable if is stable and if there is ⇢ > 0 such
that for any compact set X0 ⇢ A+ ⇢B, X 2 S(X0) is
complete and satisfies lim

j!1
d(Xj ,A) = 0
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Regularity of the Data

Standing Assumption

The data (G,D) of the set dynamical system

X
+ = G(X) X ⇢ D

satisfies the following properties:

(A0) The set-valued map G : Rn ◆ Rn is outer semicontinuous,
locally bounded, and, for each x 2 D, G(x) is a nonempty
subset of Rn.

(A1) The set D ⇢ Rn is closed.
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Semi-group and Sequential Compactness
Theorem

The following properties hold for

X
+ = G(X) X ⇢ D

(B1) For any solution X and any j̄ 2 domX, we have that X given
by Xj = Xj+j̄ for each j 2 domX = {j : j + j̄ 2 domX }
is a solution to the set dynamical system.

(B2) Let {Xi
0}1i=0 be an eventually bounded sequence of sets

converging to a bounded set X0 and suppose {Xi}1i=0 is such
that Xi 2 S(Xi

0). Then, there exists a subsequence of

{Xi}1i=0

converging to
X 2 S(X0)
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Semi-group and Sequential Compactness
Proof sketch:

Since {Xi
0}1i=0 is eventually bounded, then

[

i�i⇤

X
i
0

for some i
⇤ 2 N, is bounded. Then, since {Xi

0}1i=0 converges to
X0, for each " > 0 there exists i⇤⇤ 2 N, i⇤⇤ � i

⇤, such that

X
i
0 ⇢ X0+"B 8i � i

⇤⇤ ) G(Xi
0) ⇢ G(X0+"B) 8i � i

⇤⇤

Note that Xi
1 = G(Xi

0) ⇢ D. Since G is locally bounded and X0

is bounded, G(X0 + "B) is bounded and

X
i
1 = G(Xi

0)

is bounded.
Then, {Xi

1}1i=0 has a subsequence {Xik
1 }1k=0 that converges to a

closed set satisfying
X1 := lim

k!1
X

ik
1 = G(X0)
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Definition: Inner and Outer Limit

Let {Ti}1i=0 be a sequence of sets in Rn

I Inner limit of the sequence {Ti}1i=0: lim infi!1 Ti,
is the set of all x 2 Rn for which there exist points xi 2 Ti,
i 2 N, such that limi!1 xi = x

I Outer limit of the sequence {Ti}1i=0, denoted lim supi!1 Ti,
is the set of all x 2 Rn for which there exist a subsequence
{Tik}1k=0 of {Ti}1i=0 and points xk 2 Tik , k 2 N, such that
limk!1 xk = x

If the inner and the outer limit coincide, the sequence is said to be
convergent, and its limit is given by

lim
i!1

Ti = lim inf
i!1

Ti = lim sup
i!1

Ti
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Theorem (Rockafellar and Wets, 98)

Every sequence of nonempty sets {Ti}1i=0 in Rn either escapes to
the horizon or has a subsequence converging to a nonempty set
T ⇢ Rn, i.e., there exists a subsequence {Tik}1k=0 of {Ti}1i=0 such
that limk!1 Tik = T .
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Limit for Decreasing V

Theorem (Convergence)

Let M ⇢ D be closed. Suppose there exist a continuous function
V : Rn ! R�0 and functions ↵1,↵2 2 K1 such that

↵1(|x|M)  V (x)  ↵2(|x|M) 8x 2 D [G(D)

V (⌘)� V (x)  0 8x 2 M, ⌘ 2 G(x)

V (⌘)  �V (x) 8x 2 D \M, ⌘ 2 G(x)

for some � 2 [0, 1).
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Limit for Decreasing V

Theorem (Convergence) (cont’d)

Let X0 ⇢ D be compact. Then, for each solution {Xj}Jj=0,
J 2 N [ {1} from X0 ⇢ D there exists a sequence of positive
numbers {✏j}Jj=0 such that

LV (cj+1) + ✏jB ⇢ LV (cj)

for all j 2 {0, 1, . . . , J � 1} \ N, where

cj = max
x2Xj

V (x)

Moreover, if J = 1 then

lim
j!1

LV (cj) = M

Given a function V and a constant c, LV (c) := {x 2 domV : V (x)  c }
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Towards Set Dynamical Systems with Inputs

disturbance w on the dynamics, and noise v on the state:

xj+1 = g(xj , uj , wj)

=: G(Xj , uj)

The measured state is x̂j = xj + vj .
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Towards Set Dynamical Systems with Inputs

disturbance w on the dynamics, and noise v on the state:

xj+1 2 g(x̂j + V , uj ,W )

=: G(Xj , uj)

The measured state is x̂j = xj + vj .
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Towards Set Dynamical Systems with Inputs

disturbance w on the dynamics, and noise v on the state:

xj+1 2 g(Xj , uj ,W ) =: G(Xj , uj)

The measured state is x̂j = xj + vj .
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Xj

G(Xj , uj) Xj+1

xj+1x̂j



Point-based vs. (Proposed) Set-based MPC

Ricardo Sanfelice – University of California, Santa Cruz - 28/49

I Point-based MPC optimizes over a sequence of points

I Set-based MPC optimizes over a sequence of sets.

Point-based
I Point-based dynamics

I x
+ = g(x, u)

I Point-based cost functional
I J(x, u) =PN�1

j=0 l(xj) + v(xN )

Set-Based
I Set-based dynamics

I X
+ = G(X,U)

I Set-based cost functional
I J(X,U) =PN�1

j=0 L(Xj) + V (XN )

animation by animate[2017/05/18]animation by animate[2017/05/18]



Optimization Problem in Set Based MPC
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Given an initial condition X0, minimize the cost functional

J (X?
, U

?) :=

0

@
N�1X

j=0

L(X?
j , U

?
j )

1

A+ V (X?
N )

subject to

I X
?
0 = X0

I X
?
j+1 = G(X?

j , U
?
j ) 8j 2 {0, 1, . . . , N � 1}

I (X?
j , U

?
j ) ⇢ D 8j 2 {0, 1, . . . , N � 1}

I X
?
N ⇢ XV

X
?
0

X
?
1

X
?
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X
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N
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Optimization Problem in Set Based MPC
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Given an initial condition X0, minimize the cost functional

J (X?
, U

?) :=

0

@
N�1X

j=0

L(X?
j , U

?
j )

1

A+ V (X?
N )

subject to

I X
?
0 = X0

I X
?
j+1 = G(X?

j , U
?
j ) 8j 2 {0, 1, . . . , N � 1}

I (X?
j , U

?
j ) ⇢ D 8j 2 {0, 1, . . . , N � 1}

I X
?
N ⇢ XV

*Real-valued
functions

where D ⇢ P(Rn ⇥ Rm) and XV ⇢ P(Rn).

X
?
0

X
?
1

X
?
...

X
?
N



Mixed Constraint Set for Collision Avoidance
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The mixed constraint set D is used to encode safety constraints.

D = {X ⇥ U ⇢ X ⇥ U : �(X,Xobst) � &}



Mixed Constraint Set for Collision Avoidance

Ricardo Sanfelice – University of California, Santa Cruz - 30/49

The mixed constraint set D is used to encode safety constraints.

D = {X ⇥ U ⇢ X ⇥ U : �(X,Xobst) � &}

I X , state constraint set

I U , input constraint set
I �(X,Xobst), minimum distance between X and Xobst

I & > 0, safety parameter
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Xj

Xobst
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Xj

Xobst

Xj+1
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Mixed Constraint Set for Collision Avoidance

Xj

Xobst

con(Xj [G(Xj , Uj))

Xj+1

Ricardo Sanfelice – University of California, Santa Cruz - 30/49

The mixed constraint set D is used to encode safety constraints.

D = {X ⇥ U ⇢ X ⇥ U : �(con(X [G(X,U)), Xobst) � &}



Computationally Tractable Set Dynamics
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Special case: sequences of compact convex polytopic sets

x
+ = g(x, u) = Ax+Bu+ w
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Special case: sequences of compact convex polytopic sets

If x 2 X, u 2 U , w 2 W all compact convex polytopes, then

X
+ = G(X,U) = AX +BU +W
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Special case: sequences of compact convex polytopic sets
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Special case: sequences of compact convex polytopic sets
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Determining Set Based Cost
Define cost function, constraint sets, and dynamics appropriately

I J (X,U) generates a cost associated with a target set
I “LQR” style cost with weighted state error

I A distance based metric for stage and terminal cost
I L(X) = V (X) = max

i=1,...,p
||xi � xtarget||

Ricardo Sanfelice – University of California, Santa Cruz - 32/49
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Case Study: Vehicle Dynamics
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Using Dubins model

q̇1 = v cos(✓)

q̇2 = v sin(✓)

✓̇ = (v/L) tan(�) := !

q1

q2

�

✓
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Using Dubins model

q̇1 = v cos(✓)

q̇2 = v sin(✓)

✓̇ = (v/L) tan(�) := !

q1

q2

�

✓

State x := (q1, q2, ✓) and input u := (v, T!/2)

x
+ = g(x, u, w) =

2

64
q1 + u1

2 cos(✓+u2) sin(u2)
!

q2 + u1
2 sin(✓+u2) sin(u2)

!
✓ + 2u2

3

75



Case Study: Set-Based Vehicle Dynamics
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To formalize the set dynamical
model, we assume

x 2 X := [q1
¯
, q̄1]⇥ [q2

¯
, q̄2]⇥ {✓}.
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¯
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To formalize the set dynamical
model, we assume

x 2 X := [q1
¯
, q̄1]⇥ [q2

¯
, q̄2]⇥ {✓}.

Polytope with vertices:

x
1 = (q1

¯
, q2
¯
, ✓) x

3 = (q̄1, q̄2, ✓)

x
2 = (q1

¯
, q̄2, ✓) x

4 = (q̄1, q2
¯
, ✓)

The dynamics of q1 and q2 are decoupled, so we can remove
redundant states to get a 5 dimensional system.

q̄2

q1
¯

q̄1

q2
¯

q2

q1



Selecting the Cost Function and Constraints

Cost Function

I L(X,U) =
Pp

i=1 |xi|Xtarget

I V (X) = c
Pp

i=1 |xi|Xtarget where c > 0

Constraints

I D = {X ⇥ U ⇢ X ⇥ U : �(con(X [G(X,U)), Xobst) � &}

I XV = P(R3)
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Static Obstacle Simulations
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Experimental Setup
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Static Obstacle Experiments
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Static Obstacle Experiments
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Computational Cost
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0.06

0.09

0.12

d[m]

tc[s]

I Circle - mean computation time

I Star - median computation time
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Predictive Control for Motion Planning
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Predictive Control for Robotic Manipulation
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Predictive Control for Motion Planning
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Predictive Control for Walking
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Predictive Control for Gaming
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Conclusion
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A Set-Based MPC framework for discrete-time systems.

I The optimization is performed directly over set-based trajectories.

I The scheme is applicable to reachability computation, safety
analysis, uncertainty propagation, and collision avoidance.



Conclusion

Ricardo Sanfelice – University of California, Santa Cruz - 48/49

A Set-Based MPC framework for discrete-time systems.

I The optimization is performed directly over set-based trajectories.

I The scheme is applicable to reachability computation, safety
analysis, uncertainty propagation, and collision avoidance.

Future work will include:

I controllability properties of set dynamical systems

I numerical tools for set-based optimization

I formal feasibility and stability guarantees
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