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Robust Perception,  
Localization and Mapping

High-level Scene 
Understanding (Spatial AI) Co-design

Lidar-
based 
SLAM 

Visual-inertial Navigation Kimera: Metrics-semantic SLAM

3D Dynamic Scene Graphs

• Computation-communication co-design

• Control and sensing co-design

Soft Drones and Soft Aerial Manipulation


Sensing Perception Autonomy and Robot Kinetics 

Certifiable 
Algorithms
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3[courtesy of Waymo]

Spatial perception

[iRobot] [Amazon] [Forbes]
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- Localization and mapping

- Object detection / pose estimation

- Object tracking

- Semantic understanding

- …



Opening the doors of perception
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Localization and Mapping  
[DARPA Subterranean Challenge]

2D Semantic Segmentation 
[Yolo]

Object Detection 
[Yolo]

2D Semantic Segmentation 
[Cityscape]

4Aptiv Skydio Oculus VR



With great power comes great responsibility
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Certifiable Perception Algorithms

Outline

Towards System-level Guarantees &  
Real-time High-level Understanding 
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Key takeaways of this talk

In order to get low failure rates and 
performance guarantees we need to 
rethink current perception algorithms

We need a theory of robust spatial 
perception: how to connect robust 
algorithms into a robust system?



Certifiable Perception Algorithms

Outline

Towards System-level Guarantees &  
Real-time High-level Understanding 
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Algorithm
Input Output
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RGB images: [Gu&Kanade, CVPR’06][Lin, ECCV’14][Zhou, CVPR’15][Pavlakos, ICRA’17][Yang, CVPR’20]
Point clouds: [PointNetLK, CVPR’19][DCP, ICCV’19][SmoothNet, CVPR’19][TEASER, RSS’19, TRO’20]

Feature detection
Model fitting/
Estimation

Image-based object localization
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Perception Front-end Perception Back-end

Feature detection
Model fitting/ 
Estimation

Object  
localization in  

images

(Generality)

Feature detection 3D registration

Object  
localization in  
point clouds 

SLAM 
(visual-inertial 

navigation,  
Structure from 

Motion)
Inertial 

Measurements
Camera 
images
Single	Camera	 Accelerometer	

&	Gyroscope	

Sensor 
Front-end

Factor  
Graph 

Optimization



ISSUE 1: front-end (hand-crafted or deep-learned) can produce 
many mis-detections (not uncommon to have >90% outliers)

Model fitting/ 
EstimationFeature detection

ISSUE 2: back-end may fail if there are many outliers

outliers

inliers
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RGB images: [Gu&Kanade, CVPR’06][Lin, ECCV’14][Zhou, CVPR’15][Pavlakos, ICRA’17][Xinke, RSS’19][Yang, CVPR’20]
Point clouds: [PointNetLK, CVPR’19][DCP, ICCV’19][SmoothNet, CVPR’19][TEASER, RSS’19, TRO’20]

Image-based object localization: perception issues
back-end
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EstimateSet of measurements Measurement “i”

Why does the  
back-end fail?

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017] 
[Barfoot. State Estimation for Robotics. Cambridge University Press 2017]

Residual
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Loss function

EstimateSet of measurements Measurement “i”

Why does the  
back-end fail?

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017] 
[Barfoot. State Estimation for Robotics. Cambridge University Press 2017]

Residual
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Why does the  
back-end fail?

M-estimation (robust loss)

Local solvers: 
- need initial guess

- brittle due to local convergence

- gradients?

RANSAC:

- fails with many outliers 

- does not scale to “large” problems

- non-deterministic

Consensus Maximization
Nonlinear Least Squares

not robust to outliers

- fail without notice - fails without notice

[Agarwal et al., ICRA’13] [Tavish and Barfoot, CRV’15]  
[Chin and Suter, LCV’17] [Izatt et al., ISRR’17]  
[Rosen et al., IJRR’18] [Doherty et al, ICRA’19]  

[Chebrolu et al., Arxiv’20]



A new perspective: Certifiable Algorithms
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Algorithm Output 
(estimate)

Input 
(measurements    )

Certifiable algorithms: fast (i.e., polynomial-time) algorithms that solve  
outlier rejection to optimality in virtually all problem instances  

or detect failure in worst-case problems
RANSAC

Flatten  
the 

curve!

Certifiable algorithms Good news: worst-
case instances are 
not commonly found 
in practice

Certifiably robust

Estimation contract: 
established for which 
input certifiable produce 
an output that is “close to” 
the ground truth quantity 
we want to estimate
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One ring to rule them all

Robust Estimation 
(non-convex, hard)

Optimization over  
the ring of polynomials  

(non-convex, hard)

Black-Rangarajan  
duality (IJCV 1996)

+clever choice of robust loss function 
(truncated least squares) 

+ leverage problem geometry

Semidefinite  
relaxation (convex)

Lasserre hierarchy 
of relaxations (2001)

+basis  
reduction

Optimality  
certificate

Fast certification techniques: 
✓check quality of given estimate 

(from RANSAC, local solvers, GNC)

Robust solvers: 
✓no initial guess

✓globally optimal

Theory enables: 
✓deterministic

✓ tolerate extreme outliers

✓detect failures

Estimation contracts: establish when global optimum recovers correct pose



TEASER++  
runs in 20ms

95.44% outliers97.37% outliers

96.87% outliers

TEASER and  
TEASER++ 
(proposed) are 
best approaches 

• RGB-D  
point cloud 
dataset 

• ~500 FPFH 
correspondences
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Teaser++ (proposed) RANSAC

TEASER++: Certifiable object localization in point clouds

16
[Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019] 

[Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Registration. TRO 2020]
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Green lines:  
inlier correspondences

Red lines:  
outlier correspondences

Fast multi-threaded open-source code:

https://github.com/MIT-SPARK/TEASER-plusplus 

[Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019] 
[Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Registration. TRO 2020]

• 3DMatch dataset, ~1000 deep-learned correspondences (using 3DSmoothNet)

Success rate

TEASER++: Certifiable object localization in point clouds

https://github.com/MIT-SPARK/TEASER-plusplus
https://github.com/MIT-SPARK/TEASER-plusplus


Estimation contract

Theorem (Exact Recovery): if the measurements (i) contain at least 3 noiseless 
and non-collinear inliers, (ii) the outliers are not adversarial, and (iii) the certificate 

of optimality holds, TEASER++ recovers the true object pose.

Theorem (Exact Recovery in Adversarial Setting): if the number of noiseless and 
non-collinear inliers is larger than the number of outliers (Nin>Nout + 3) and the 

certificate of optimality holds, TEASER++ recovers the true object pose. 

Algorithm
Output 

(estimate)
Input 

(measurements    ) x⋆x∘
TEASER++

18
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[Zhou, CVPR’15] RANSAC Shape#
RANSAC

70% outliers

• FG3DCar dataset 
• 300 car images 

with corresponding 
CAD models

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape 
Reconstruction from 2D Landmarks. CVPR 2020]

Shape# 
(proposed) is 
best approach

Proposed

Shape#: Certifiable object localization in images

Proposed
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Proposed

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks. CVPR 2020] 
[Yang and Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers, NeurIPS’20.]

Shape#: experimental results

• Certifiable spacecraft pose estimation 
• SPEED benchmarking dataset
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Towards certifiable localization and mapping
DARPA Subterranean Challenge - in collaboration with JPL & Caltech 

Simultaneous Localization and Mapping (SLAM)

Yang, Antonante, Tzoumas, Carlone. Graduated 
non-convexity for robust spatial perception: from 

non-minimal solvers to global outlier rejection. RAL 
2020. (best paper in robot vision at ICRA 2020) 

• Graduated Non-Convexity as a 
scalable (but not yet certifiable) 
tool for convexification



Certifiable Perception Algorithms

Outline

Towards System-level Guarantees &  
Real-time High-level Understanding 
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Robustness of human perception relies on simultaneously 
understanding geometry, semantics, physics, and relations in 3D 

Robust perception requires high-level 3D understanding
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2D understanding is doomed to fail

Robust perception requires: understanding  
geometry, semantics, physics, and relations in 3D 

[MaskRCNN]
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Releasing KimeraKimera: real-time 3D metric-semantic understanding

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]
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Releasing Kimera

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]

Kimera- 
VIO & Mesher

Kimera- 
RPGO

Kimera- 
Semantics

Fast multi-threaded open-source 
code: https://github.com/MIT-

SPARK/Kimera
• Insights: IMU preintegration, GTSAM, Pairwise 

Consistency Maximization, VoxBlox, SemanticFusion

Kimera: real-time 3D metric-semantic understanding

https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera


28[Rosinol, Gupta, Abate, Shi, Carlone. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans. RSS 2020]

Directed graph, where: 
• nodes are spatial concepts  
• edges represent  

spatio-temporal relations 
between concepts  
(e.g., inclusion at time t)

See also:  
• 3D Scene Graphs  

[Armeni et al., ICCV’19] 
[Kim et al., TC’19] 

• Intuitive physics 
[Tenenbaum, Fox] 

• Semantic linking maps 
[Zeng et al., ICRA’20] 

• Hierarchical maps 
[Chatila, Laumond, Burgard, 
Christensen, Kuipers, Thrun, …]

OPPORTUNITIES 
• reason over context and 

relations among objects to 
conclude on plausibility 

• bridge task planning  
and motion planning 

• human-robot interaction

3D Dynamic Scene Graphs
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- Goal: 3D Dynamic Scene Graph from visual-inertial data in a heavily populated environment 
- From SLAM algorithms to a Spatial Perception Engine, that infers geometry, semantics,  

a hierarchy of high-level spatial concepts and their relations 
29



• Getting low failure rates and performance guarantees  
in spatial perception requires rethinking current algorithms 
➡ Certifiable algorithms as a practical approach to get robust performance 

• We need a theory of how to connect robust algorithms into a robust system 
➡ 3D high-level understanding is key to true robustness  

(enabled by Kimera and 3D Dynamic Scene Graphs) 

• Open questions: 
‣ Certifiable algorithms for other problems 
‣ theory, implementations, learning 

‣ 3D Dynamic Scene Graphs 
‣ Tightly-coupled metric-semantic 
‣ Learning, physics, causality  

‣ Theory of robust perception systems 
‣

30

Conclusion

NeurIPS’20

Arxiv’20
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High-level understanding: 3D Dynamic Scene Graphs and Kimera

Certifiably robust perception algorithms and systems
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Thank 
you!
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