Certifiable Perception for Robots and Autonomous Vehicles: From Robust Algorithms to Robust Systems

Luca Carlone

IPAM - Workshop II: Safe Operation of Connected and Autonomous Vehicle Fleets

Assistant Professor Massachusetts Institute of Technology

Robust Perception, **Localization and Mapping**

Lidarbased SLAM

Certifiable Algorithms

Kimera: Metrics-semantic SLAM

Layer 5: Buildings

Layer 4 Rooms

Layer 3: Places and Structures

Layer 2: Objects and Agents

Layer 1: Metric-Semantic Mesh

High-level Scene Understanding (Spatial AI)

3D Dynamic Scene Graphs

Co-design

- Computation-communication co-design
- Control and sensing co-design

Soft Drones and Soft Aerial Manipulation 2

Spatial perception

- Localization and mapping
- Object detection / pose estimation
- Object tracking
- Semantic understanding

Opening the doors of perception

Localization and Mapping [DARPA Subterranean Challenge]

Object Detection

2D Semantic Segmentation [Cityscape]

With great power comes great responsibility

Images: Evtimov et al

Camouflage graffiti and art stickers cause a neural network to misclassify stop signs as speed limit 45 signs or yield signs.

Key takeaways of this talk

In order to get low failure rates and performance guarantees we need to rethink current perception <u>algorithms</u>

We need a theory of robust spatial perception: how to connect robust algorithms into a robust system?

Outline

Certifiable Perception Algorithms

Towards System-level Guarantees & Real-time High-level Understanding

Input

Algorithm

Output

Image-based object localization

RGB images: [Gu&Kanade, CVPR'06][Lin, ECCV'14][Zhou, CVPR'15][Pavlakos, ICRA'17][Yang, CVPR'20] Point clouds: [PointNetLK, CVPR'19][DCP, ICCV'19][SmoothNet, CVPR'19][TEASER, RSS'19, TRO'20]

(Generality)

Object **localization in** images

Object localization in point clouds

SLAM (visual-inertial navigation, **Structure from** Motion)

Image-based object localization: perception issues

ISSUE 1: front-end (hand-crafted or deep-learned) can produce many mis-detections (not uncommon to have >90% outliers)

ISSUE 2: back-end may fail if there are many outliers

RGB images: [Gu&Kanade, CVPR'06][Lin, ECCV'14][Zhou, CVPR'15][Pavlakos, ICRA'17][Xinke, RSS'19][Yang, CVPR'20] Point clouds: [PointNetLK, CVPR'19][DCP, ICCV'19][SmoothNet, CVPR'19][TEASER, RSS'19, TRO'20]

back-end

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017] [Barfoot. State Estimation for Robotics. Cambridge University Press 2017]

11

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017] [Barfoot. State Estimation for Robotics. Cambridge University Press 2017]

12

Why does the back-end fail?

Nonlinear Least Squares

o(r)

not robust to outliers

[Agarwal et al., ICRA'13] [Tavish and Barfoot, CRV'15] [Chin and Suter, LCV'17] [Izatt et al., ISRR'17] [Rosen et al., IJRR'18] [Doherty et al, ICRA'19] [Chebrolu et al., Arxiv'20]

- need initial guess
- brittle due to local convergence
- gradients?
- fail without notice

- fails with many outliers
- does not scale to "large" problems
- non-deterministic
- fails without notice

A new perspective: Certifiable Algorithms

Certifiably robust Certifiable algorithms: fast (i.e., polynomial-time) algorithms that solve outlier rejection to optimality in virtually all problem instances or detect failure in worst-case problems

14

One ring to rule them all

Estimation contracts: establish when global optimum recovers correct pose

TEASER++: Certifiable object localization in point clouds

• RGB-D point cloud dataset

• ~500 FPFH correspondences

96.87% outliers

97.37% outliers

95.44% outliers

[Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Registration. TRO 2020]

16

TEASER++: Certifiable object localization in point clouds

3DMatch dataset, ~1000 deep-learned correspondences (using 3DSmoothNet)

Success rate	Kitchen	Home 1	Home 2	Hotel 1	Hotel 2	Hotel 3	Study	MIT Lab
Scenes	(%)	(%)	(%)	(%)	(%)	(%)	Room (%)	(%)
RANSAC-1K	90.9	91.0	73.1	88.1	80.8	87.0	79.1	81.8
RANSAC-10K	96.4	92.3	73.1	92.0	84.6	90.7	82.2	81.8
TEASER++	97.7	92.3	82.7	96.9	88.5	94.4	88.7	84.4
TEASER++ (CERT)	99.2	97.5	90.0	98.8	94.9	97.7	94.8	93.9

Green lines: inlier correspondences

Red lines: outlier correspondences

[Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019] [Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Registration. TRO 2020]

Fast multi-threaded open-source code: https://github.com/MIT-SPARK/TEASER-plusplus

17

Estimation contract

Theorem (Exact Recovery in Adversarial Setting): if the number of noiseless and non-collinear inliers is larger than the number of outliers (N_{in} > N_{out} + 3) and the certificate of optimality holds, TEASER++ recovers the true object pose.

Theorem (Exact Recovery): if the measurements (i) contain at least 3 noiseless and non-collinear inliers, (ii) the outliers are not adversarial, and (iii) the certificate of optimality holds, TEASER++ recovers the true object pose.

Shape#: Certifiable object localization in images

[Zhou, CVPR'15]

- FG3DCar dataset
- 300 car images with corresponding CAD models

70% outliers

Altern+Robust

Convex+Robust

(a) Chevrolet Colorado LS 40% outliers.

(b) Chevrolet Colorado LS 70% outliers.

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks. CVPR 2020]

Shape#: experimental results

Altern+Robust

Convex+Robust

Proposed 4

(c) BMW 5-Series 40% outliers.

(d) BMW 5-Series 70% outliers.

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks. CVPR 2020] [Yang and Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers, NeurIPS'20.]

Certifiable spacecraft pose estimation SPEED benchmarking dataset

Towards certifiable localization and mapping DARPA Subterranean Challenge - in collaboration with JPL & Caltech

Simultaneous Localization and Mapping (SLAM)

Graduated Non-Convexity as a scalable (but not yet certifiable) tool for convexification

Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)

Outline

Certifiable Perception Algorithms

Towards System-level Guarantees & Real-time High-level Understanding

Robust perception requires high-level 3D understanding

understanding geometry, semantics, physics, and relations in 3D

24

2D understanding is doomed to fail

Robust perception requires: understanding geometry, semantics, physics, and relations in 3D

Kimera: real-time 3D metric-semantic understanding

First person view per-frame 3D mesh

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]

Kimera: real-time 3D metric-semantic understanding

• **Insights**: IMU preintegration, GTSAM, Pairwise Consistency Maximization, VoxBlox, SemanticFusion

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]

Absolute Translation Error RMSE: 5cm

Euroc V101

Fast multi-threaded open-source code: <u>https://github.com/MIT-</u> SPARK/Kimera

3D Dynamic Scene Graphs

B1

[Rosinol, Gupta, Abate, Shi, Carlone. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans. RSS 2020]

Directed graph, where:nodes are spatial concepts

 edges represent spatio-temporal relations between concepts (e.g., inclusion at time t)

OPPORTUNITIES

- reason over context and relations among objects to conclude on plausibility
- bridge task planning and motion planning
- human-robot interaction

RGB Frame

Conclusion

 Getting low failure rates and performance guarantees in spatial perception requires rethinking current algorithms

→ 3D high-level understanding is key to true robustness (enabled by Kimera and 3D Dynamic Scene Graphs)

Open questions:

- Certifiable algorithms for other problems
 - theory, implementations, learning
- ► 3D Dynamic Scene Graphs
 - Tightly-coupled metric-semantic
 - earning, physics, causality
- Theory of robust perception systems

- Certifiable algorithms as a practical approach to get robust performance
- We need a theory of how to connect robust algorithms into a robust system

One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers

Heng Yang and Luca Carlone Laboratory for Information and Decision Systems (LIDS) Massachusetts Institute of Technology {hankyang,lcarlone@mit.edu}

Monitoring and Diagnosability of Perception Systems

Pasquale Antonante

David I. Spivak

Luca Carlone

Massachusetts Institute of Technology Cambridge, MA 02139 {antonap, dspivak, lcarlone}@mit.edu

Arxiv'20

References

Certifiably robust perception algorithms and systems

- Yang and Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers, NeurIPS'20. Antonante, Spivak, Carlone, Monitoring and Diagnosability of Perception Systems, Arxiv'20.
- Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Registration. T-RO 2020.
- Yang, Antonante, Tzoumas, Carlone. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. RAL 2020. (best paper in robot vision at ICRA 2020)
- Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks. CVPR 2020. Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019.
- Yang and Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV 2019.
- Tzoumas, Antonante, Carlone. Outlier-robust spatial perception: Hardness, general-purpose algorithms, and guarantees. IROS 2019.
- Lajoie, Hu, Beltrame, Carlone, Modeling Perceptual Aliasing in SLAM via DCGM, RAL'19.

High-level understanding: 3D Dynamic Scene Graphs and Kimera

- Rosinol, Gupta, Abate, Shi, Carlone. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans. RSS 2020.
- Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020.

Heng Yang

Pasquale Antonante

Jingnan Shi

Vasileios Tzoumas

Antoni Rosinol

Marcus Abate

Arjun Gupta

Yun Chang

ARL

Luca Ballotta

Joshua Fishman

Andrew Violette

DARPA

