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Spatial perception

Localization and mapping

Object detection / pose estimation
Object tracking

Semantic understanding
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Opening the doors of perception

Fence
Person

Road Sidewalk  Car Pole | Building [Sign
Tram Vegetation Static Sky Dynamic
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With great power comes great responsibility

Images: Evtimov et al

Camouflage graffiti and art stickers cause a neural network to misclassify stop signs as
speed limit 45 signs or yield signs.
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Key takeaways of this talk

In order to get low failure rates and
performance guarantees we need to
rethink current perception algorithms

We need a theory of robust spatial
perception: how to connect robust
algorithms into a robust system?
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Image-based object localization

Model fitting/
Estimation

Feature detection

RGB images: [Gu&Kanade, CVPR’06][Lin, ECCV’14][Zhou, CVPR’15][Pavilakos, ICRA17][Yang, CVPR’20]
Point clouds: [PointNetLK, CVPR’19][DCP, ICCV’19][SmoothNet, CVPR19][TEASER, RSS’19, TRO’20]
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Image-based object localization: perception issues

Feature detection
f PP
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back-end

p outliers Model fitting/
Estimation

" inliers

ISSUE 1: front-end (hand-crafted or deep-learned) can produce
many mis-detections (not uncommon to have >90% outliers)

ISSUE 2: back-end may fail if there are many outliers

RGB images: [Gu&Kanade, CVPR’06][Lin, ECCV’14][Zhou, CVPR’15][Pavlakos, ICRA17][Xinke, RSS’19][Yang, CVPR’20]
Point clouds: [PointNetLK, CVPR’19][DCP, ICCV’19][SmoothNet, CVPR19][TEASER, RSS’19, TRO’20]
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Why does the
back-end fail?

Set of measurements Residual Estimate Measurement

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017/]
[Barfoot. State Estimation for Robotics. Cambridge University Press 2017]

kE37)
|
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Why does the
back-end fail? | oss function

min
reX |
1eM
Set of measurements  Residual Estimate  Measurement “i”

[Dellaert and Kaess, Factor Graphs for Robot Perception, FnT 2017/]
[Barfoot. State Estimation for Robotics. Cambridge University Press 2017]
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Consensus Maximization

probability of failure

not robust to outliers Local solvers:

- need Initial guess

- brittle due to local convergence
- gradients?

- fail without notice

[Agarwal et al., ICRA'13] [Tavish and Barfoot, CRV’'15]
[Chin and Suter, LCV’17] [lzatt et al., ISRR’17]
[Rosen et al., [URR’18] [Doherty et al, ICRA19]

[Chebrolu et al., Arxiv'20]

1

RANSAC failure ’rate (500 iter.)
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percentage of outliers (%)
RANSAC.:
- fails with many outliers
- does not scale to “large” problems
- hon-deterministic
- fails without notice 13



A new perspective: Certifiable Algorithms

Input - Output
(measurements y; ) Algorlth m (estimate)
ﬁ

— - .
min %\; p(r(x, y:))
Certifiably robust
Certifiabte/algorithms: fast (i.e., polynomial-time) algorithms that solve
outlier rejection to optimality in virtually all problem instances
or detect failure in worst-case problems

RANSAC Certifiable algorithms GOOd. news: worst-
4 ______ Lo ' case Instances are
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One ring to rule them all

Black-Rangarajan Lasserre hierarchy
duality (IJCV 1996) of relaxations (2001)

Semidefinite
relaxation (convex)

Robust Estimation Optimization over
(non-convex, hard) ' the ring of polynomials

(non-convex, hard)
w4
st. hi(x)=0,i=1,...,m,
gr(®) 2 0,k =1,....1, Qptimality
certificate
+ clever choice of robust loss function '
= \/ (truncated least squares) + basis
: 0 x + leverage problem geometry reduction
Robust solvers: v deterministic Fast certification techniques:
Theory enables: | vnoinitial guess v tolerate extreme outliers v check quality of given estimate

v globally optimal v detect failures (from RANSAC, local solvers, GNC)

Estimation contracts: establish when global optimum recovers correct pose

15



TEASER++: Certifiable object localization in point clouds

e RGB-D
point clou
dataset

e ~500 FPF
COrrespon

96.87% outlier

Teaser++ (proposed)

e “‘_\..‘_.,f .
v .

97.37% outliers 95.44% outliers o
[Yang and Carlone. A Polynomial-time Solution for Robust Registration-with Extreme Outlier
[Yang, Shi, Carlone. TEASER: Fast and Certifiable Point Cloud Regjstration: TRO 2020]

Rates. RSS 201 9;']':‘5' -i'}_-::-.;_ .

RANSAC
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TEASER++: Certifiable object localization in point clouds

e 3DMatch dataset, ~1000 deep-learned correspondences (using 3DSmoothNet)

Success rate Kitchen Home 1 Home 2 Hotel 1l Hotel 2 Hotel 3 Study MIT Lab
Scenes Y0 (%) (%) (%) (%) (%) Room (%) %0
RANSAC-1K 91.0 73.1 88.1 80.8 87.0 79.1
RANSAC-10K 92.3 73.1 92.0 84.6 90.7 82.2
TEASER++ 02.3 82.7 96.9 88.5 94 4 88.7
TEASER++ (CERT) 97.5 90.0 08.8 94.9 97.7 04 .8

Green lines: Red lines: Fast multi-threaded open-source code:
Inlier correspondences outlier correspondences hitps:github. comMIT-SPARKITEASER-plusplus

[Yang and Carlone. A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS 2019]
[Yang, Shi, Carlone. TEASER: Fast and Certitiable Point Cloud Registration. TRO 2020]

17


https://github.com/MIT-SPARK/TEASER-plusplus
https://github.com/MIT-SPARK/TEASER-plusplus

Estimation contract

TEASER++

Output
(estimate) >

Input
o (measurementsy;)

X —

Theorem (Exact Recovery): if the measurements (i) contain at least 3 noiseless
and non-collinear inliers, (ii) the outliers are not adversarial, and (iii) the certificate
of optimality holds, TEASER++ recovers the true object pose.

Theorem (Exact Recovery in Adversarial Setting): if the number of noiseless and
non-collinear inliers is larger than the number of outliers (Nin>Nout + 3) and the

certificate of optimality holds, TEASER++ recovers the true object pose.




Shape#: Certifiable object localization in images

[Zhou, CVPR’15] RANSAC Shape#

o FG3DCar dataset
e 300 car Images
with corresponding

CAD models
70% outliers
~—A Proysed Proposed
Altern+Robust Convex+Robust Shape# 5 | l l y
L = 1K i ¥ - 210" | Altern+Robust ‘
=, — Convex+Robust i +
2 — Shape# _
; ; E
- + :
O - 1
2 e &L | Ced | B =)
IS % %% L 1L L1 l% N
C 100 =" . + + + 3 +_:
10 20 30 40 50 60 70
Outlier Ratio [%] Shape#

(proposed) is
best approach

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape
(b) Chevrolet Colorado LS 70% outliers Reconstruction from 2D Landmarks. CVPR 2020] 19



Shape#: experimental results

Proposed 4\

Altern+Robust Convex+Robust Shape+#

e Certiflable spacecraft pose estimation
e SPEED benchmarking dataset

[Yang and Carlone. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks. CVPR 2020]
[Yang and Carlone, One Ring to Rule Them All: Certifiably Robust Geometric Perception with Outliers, NeurlPS'20. ]

(d) BMW 5-Series 70% outliers.
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Towards certifiable localization and mapping

PA Subterranean Challenge - in collaboration with JPL & Caltech
Simultaneous Localization and Mapping (SLAM)

DA

q

Robot Trajectory Reconstructed Map Top View

e (Graduated Non-Convexity as a
scalable (but not yet certifiable)
tool for convexification

(best paper in robot vision at ICRA 2020)

21



Outline

Certifiable Perception Algorithms
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Robust perception requires high-level 3D understanding

- VEHICLE WRAPS
-BANNERS & POSTE

- DISPLAY SYSTEM

',...#

| Robustness of human perception relies on simultaneously B
% understandlng geometry, semantics, physics, and relations in 3D -



2D understanding is doomed to falil

] .gﬁgm -
-DISPLAY 5YSTEMS

Iin

HEY WHITE
EVOQUE

IT'S NEVER
100 LAIE TO
CROSS OVER

geOFr%Ti)kiust percepltion requires: unerstanding
etry, semantics, physics, and relations in 3D
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Kimera: real-time 3D metric-semantic understanding

First person view
per-frame 3D mesh

deed x3

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]



Kimera: real-time 3D metric-semantic understanding
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e Insights: IMU preintegration, GTSAM, Pairwise Fast multi-threaded open-source
code: https://qgithub.com/MIT-

Consistency Maximization, VoxBlox, SemanticFusion SPARK/Kimera

[Rosinol, Abate, Chang, Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. ICRA 2020]



https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera
https://github.com/MIT-SPARK/Kimera

3D Dynamic Scene Graphs

Directed graph, where:

e nodes are spatial concepts

e edges represent
spatio-temporal relations
between concepts
(e.g., Inclusion at time t)

OPPORTUNITIES

® reason over context and
relations among objects to
conclude on plausibility

® bridge task planning
and motion planning

* human-robot interaction

[Rosinol, Gupta, Abate, Shi, Carlone. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans. RSS 2020] 28
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- Goal: 3D Dynamic Scene Graph from visual-inertial data in a heavily populated environment
- From SLAM algorithms to a Spatial Perception Engine, that infers geometry, semantics,

a hierarchy of high-level spatial concepts and their relations



Conclusion

e Getting low failure rates and performance guarantees
N spatial perception requires rethinking current algorithms

= Certifiable algorithms as a practical approach to get robust performance
e \\e need a theory of how to connect robust algorithms into a robust system

= 3D high-level understanding is key to true robustness
(enabled by Kimera and 3D Dynamic Scene Graphs)

One Ring to Rule Them All: Certifiably Robust

® 0 pe n q U eSt | ons. Geometric Perception with Outliers
» Certifiable algorithms for other problems NeurlPS'20
. . . Heng Yang and Luca Carlone
» theory, implementations, learning o s Tt of ooy

{hankyang,lcarlone@mit.edu}

» 3D Dynamic Scene Graphs
» Tightly-coupled metric-semantic o
Pasquale Antonante David I. Spivak Luca Carlone
4 Learﬂlrg, phyS|CS, Causallty Massachusetts Institute of Technology

Cambridge, MA 02139

» Theory of robust perception systems (antonsp, dspivak, Lcarlonebenic.od

Monitoring and Diagnosability of Perception Systems

Arxiv’20
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