Safety-Critical Control of Autonomous Systems

Aaron D. Ames Bren Professor Mechanical and Civil Engineering Control and Dynamical Systems California Institute of Technology

Caltech

IPAM Workshop Safe Operation of Connected and Autonomous Vehicle Fleets October 25th, 2020

Collaborators (Partial List)

Claudia Kann

Jenna Reher

Prithvi Akella **Eric Ambrose**

Drew Singletary

Ruzena Bajcsy Berkeley

Joel Burdick Caltech

Magnus Egerstedt Georgia Tech

Paulo Tabuada

UCLA

Yisong Yue Caltech

Maegan Tucker **Xiaobin Xiong**

Wenlong Ma

Reza Ahmadi

Yuxiao Chen

Ugo Rosolia

Autonomy in the real world is hard

71111

But: Pretty when it works...

 $-\Lambda B$

Stilling | wond

mannar manner marks kanner manner

AMBER

🗎 Ma, Kolathaya, Ambrose, Hubicki, Ames, HSCC 2017

таженининина 🕇 липпин

Ш

Question: How do we make safety guarantees?

Autonomy: The Big Picture

Plant

Control Lyapun	ov Functions	Control Lyapu
<i>Lyapunov</i> Problème ™ LA STABILITÉ D	y (1892) GÉNÉRAL H. MOHVEMENT.	
PAR M. A. LL	APOUNOFF.	• Dynamics: Fo
Systems & Control Letters 13 (1989) 117-123 North-Holland A 'universal' construction on nonlinear stabilization	(1989) ¹¹⁷ n of Artstein's theorem	$\dot{x} =$ • Lyapunov: V : $c_1 x ^2 \leq \inf_{u \in U}$
Eduardo D. SONTAG * Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, U.S.A. Received 7 March 1989	so that $ \inf_{u \in \mathbb{R}^{m}} \left\{ L_{f}V(x) + u_{1}L_{g_{1}}V(x) + \cdots + u_{m}L_{g_{m}}V(x) \right\} < 0 $ (2)	• Main idea: $\dot{V}(x,u) \leq -\alpha$

 $V(x(t)) \le e^{-\alpha t} V(x(0))$

- f(x) + g(x)u
- $\rightarrow \mathbb{R}_{\geq 0}$ satisfying:

 $(x) \le c_2 \|x\|^2$ $(x,u) \le -\alpha V(x)$

 \Rightarrow

```
(x)
```


Theorem

If there exists control Lyapunov function:

 $\inf_{u \in U} \left[\dot{V}(x, u) + \alpha V(x) \right] \le 0$

then for all feedback controllers:

$$u(x) \in \{u \in U : \dot{V}(x, u) \le -\alpha V(x)\}$$

$$\Downarrow \quad \dot{x} = f(x) + g(x)u(x)$$

$$x \rightarrow 0 Exponentially.$$

Control Lyapunov Functions $\dot{V}(x, u) \leq -\alpha V(x)$ • Affine Dynamics: $\dot{x} = f(x) + g(x)u$ • Affine Constraint: The input u is affine in \dot{V} : $\dot{V}(x, u) = \frac{\partial V}{\partial x}f(x, z) + \frac{\partial V}{\partial x}g(x, z)u \leq -\alpha V(x)$ • Synthesis: Closed form Controller: $m(x) = \begin{cases} -\frac{L_g V(x)^T (L_f V(x) + \alpha (V(x)))}{L_g V(x) L_g V(x)} & \text{if } L_f V(x) > -\alpha (V(x)) \\ 0 & \text{if } L_f V(x) \leq -\alpha (V(x)) \end{cases}$

- Dynamics: For $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$:
 - $\dot{x} = f(x) + g(x)u$
- Lyapunov: $V: X \to \mathbb{R}_{\geq 0}$ satisfying:

 $c_1 \|x\|^2 \le V(x) \le c_2 \|x\|^2$ $\inf_{u \in U} \dot{V}(x, u) \le -\alpha V(x)$

• Main idea:

 $\dot{V}(x,u) \le -\alpha V(x) \qquad \Rightarrow \qquad V(x(t)) \le e^{-\alpha t} V(x(0))$

Human-Like Walking

Lyapunov Controller

AMB

www.bipedalrobotics.com

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2}$$

s.t. $\dot{V}(x,u) \leq -\alpha V(x)$

+ Theorem ⇒ Stable Walking

Georgia Tech AA, TAC 2014
AA, Galloway, Sreenath, Grizzle, TAC 2014
Reher, Hereid, Kolathaya, Hubicki, AA, WAFR 2016

Calter

SRI Robotics

Application to Exoskeletons

Lyapunov Controller

$$u^*(x) = \operatorname*{argmin}_{(u,\delta)\in U imes \mathbb{R}} \|u - u_{\mathrm{des}}(x)\|^2$$

s.t. $\dot{V}(x,u) \leq -\alpha V(x)$

+ Theorem ⇒ Stable Walking

First dynamic walking (without crutches) for paraplegics

WANDERCRAFT ORDINARY LIFE FOR EXTRAORDINARY PEOPLE

🖹 Gurriet, Finet, Boeris, Hereid, Harib, Masselin, Grizzle, AA, ICRA 2018

Application to Quadrupeds

Lyapunov Controller

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2}$$

s.t. $\dot{V}(x,u) \leq -\alpha V(x)$

+ Theorem \Rightarrow Stable Walking

Safety-Critical Walking

🖹 Reher, Ma, AA, ECC 2019

Safety-Critical Control

Nagumo (1942)

Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen.

Von Mitio NAGEMO.

ttielosen um 16. Mai 1942.)

§1. Einleitung.

In dieser Note werden k-dimensionale Vektoren mit dieken en bezeighnet. Wir sollen also unter

Need something more general than Lyapunov

Prajna (2004) & Wieland (2007)

Safety Verification of Hybrid Systems Using Barrier Certificates

Stephen Prajna¹ and Ali Jadbabaie²

 ¹ Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125 - USA, prajna@cds.caltech.edu
 ² Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 - USA, jadbabai@seas.upenn.edu

AA, Coogan, Egerstedt, Notomista, Sreenath, Tabuada, ECC 2019 (includes brief history)

Ames, Tabuada, Grizzle (2014)

Altmont	alight of Bour Aret: Bas >0 # KETutles
ch &	B = dave & Juster.

AA, Tabuada Grizzle, CDC 2014
 AA, Xu, Tabuada Grizzle, TAC 2017

Control Barrier Functions

Provide necessary and sufficient conditions for set invariance, i.e., safety – *on the entire safe set*

- **Dynamics:** $\dot{x} = f(x) + g(x)u$
- Safe set C: defined by h:

$$\mathcal{C} = \{x \in \mathbb{R}^n : h(x) \ge 0\}$$

Control Barrier Function

For all $x \in \mathcal{C}$, there exists $u \in \mathbb{R}^m$ such that:

Here $\gamma : \mathbb{R} \to \mathbb{R}$ is an extended class \mathcal{K} function (strictly increasing with $\gamma(0) = 0$).

Fundemental Properties:

Lemma. Control barrier functions imply stability of the set C.

Control Barrier Function *h*: Yields a Lyapunov function for C:

$$V_{\mathbb{C}}(x) \triangleq \left\{ egin{array}{cc} 0 & ext{if} & x \in \mathbb{C} \ -h(x) & ext{if} & x \in \overline{\mathbb{C}} = \mathbb{R}^n - \mathbb{C} \end{array}
ight.$$

Theorem

Lyapunov is the special case of barriers for $\mathcal{C} = \{0\}$.

Walking Robots

Safety-Critical Controller

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2}$$

s.t. $\dot{h}(x,u) \ge -\gamma h(x)$

APPLICATIONS

Multi-Robot Systems

Automotive Systems

Collision Avoidance

Joint with: Egersted (GaTech), Tabuada (UCLA), Grizzle (UMich), Feron (GaTech), Xu (UW), Wandercraft, Hutter (ETH), Orosz (UMich)

Application to Automotive Systems

Adaptive Cruise Control (ACC)

- Safety Constraints: "half the speedometer" following rule
- Control Objectives: Achieve a desired speed.

Lane Keeping

- Safety Constraints: Stay in the lane for all time
- Control Objectives:
 Achieve reference signal

Safety-Critical Controller

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2} \quad \qquad \text{Existing (desired) controllers}$$

s.t. $\dot{h}(x,u) \geq -\gamma h(x) \quad \qquad \text{Safety (Barrier function) constraint}$

Yuxiao Chen (unpublished)

Safety-Critical Controller

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2}$$

s.t. $\dot{h}(x,u) \ge -\gamma h(x)$

Alan, Taylor, He, Orosz and AA, 2020 (In Preparation)

Joint work with: Orosz (UMich)

Multi-Robot Systems

Desired Controller: Go straight

Safety-Critical Controller

$$u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \quad \|u - u_{\operatorname{des}}(x)\|^{2}$$

s.t. $\dot{h}(x,u) \ge -\gamma h(x)$

Wang, AA, Egerstedt, TRO 2017 http://robotarium.github.io/ Admissible Control space

Joint work with: Egerstedt (GT)

 \mathbf{u}_i

Multi-Robot Systems

£1

Wang, AA, Egerstedt, ICRA 2017

Joint work with: Egerstedt (GT)

Obstacle Avoidance

Go to waypoint = u_{des}

Safety-Critical Controller $u^*(x) = \underset{(u,\delta) \in U \times \mathbb{R}}{\operatorname{argmin}} \|u - u_{\operatorname{des}}(x)\|^2$ s.t. $\dot{h}(x,u) \ge -\gamma h(x)$

Singletary, Klingebiel, Bourne, Browning, Tokumaru, AA, Submitted to RAL/ICRA 2020

Joint work with: AeroVironment

0

6

 $h(x) \geq 0$

Safe Set

Control Barrier Functions

Artificial Potential Fields

Theorem

Control Barrier Functions include Artificial Potential Fields as a special case.

Safety-Critical Controller
$$u_{des}(x) = \underset{(u,\delta) \in U \times \mathbb{R}}{\operatorname{argmin}} \|u - u_{des}(x)\|^2$$
 $u_{des}(x) = \nabla U_{att}(x)$ s.t. $\dot{h}(x, u) \ge -\gamma h(x)$ $h(x) = \frac{1}{1 + U_{rep}(x)} - \delta$

Singletary, Klingebiel, Bourne, Browning, Tokumaru, AA, Submitted to RAL/ICRA 2020 **Repulsive Potential** $U_{rep}(x)$: Blows up at obstacle:

$$U_{\rm rep}(x) \to \infty$$
 as $||x - x_{\rm obst}|| \to D_{\rm obst}$.

Attractive Potential $U_{\text{att}}(x)$: Positive definite about the goal:

$$\underline{c} \|x - x_{\text{goal}}\|^2 \le U_{\text{att}}(x) \le \overline{c} \|x - x_{\text{goal}}\|^2.$$

Artificial Potential: $U(x) = U_{rep}(x) + U_{att}(x)$: Yields:

$$u(x) = \nabla U(x) = \nabla U_{\text{rep}}(x) + \nabla U_{\text{att}}(x)$$

Robotic Walking

Desired Controller: Stable Walking

Safety-Critical Controller $u^*(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \|u - u_{\operatorname{des}}(x)\|^2$ s.t. $\dot{h}(x,u) \ge -\gamma h(x)$

Grandia, Taylor, AA and Hutter, RAL/ICRA 2020 (submitted)

Location of stepping stones = h(x)

00 60

Joint work with: Hutter (ETH)

Metabolic Cost Evaluated

Active Full Assistance

Passive

Full Assistance

Barriers on Exo

0.5

Passive Partial Assistan

Tubes around

Trajectories

Safety-Critical Controller

Subjects 1

 $u^{*}(x) = \underset{(u,\delta)\in U\times\mathbb{R}}{\operatorname{argmin}} \|u - u_{\operatorname{des}}(x)\|^{2}$

Gurriet, Pucker, Duburcq, Boeris, AA, RAL, 2020

s.t. $h(x, u) \ge -\gamma h(x)$

LeftSagittalKnee		
0.6	- Desired	
).55	-Bounds	
0.5		
).45		
0.4		
0.35		
0.3		
1 25		

1 Time (s)

1.5

Active Partial Assistance

LeftSagittalHip -Desired -Actual -Bounds -0.25 (rad) 5.0-0.35 -0.4 -0.45 -0.5 0.5 1.5 Time (s)

Back to the Big Picture

Ground Robots

Multi-Robot Coordination

Nilsson, Haesaert, Vasile, Thakker, Agha, Murray, AA, RSS 2018

High Level Specifications

Safe Multi-Robot Coordination

Safe Multi-Robot Coordination

Ahmadi, Jansen, Wu, Topcu, IEEE TAC 2020

Ahmadi, Singletary, Burdick and AA, CDC 2019

Safe Multi-Robot Coordination: Discrete Time Barriers

Caltech

Safe Multi-Robot Coordination: Composing Safe Sets

Caltech

Safe Multi-Robot Coordination: Safety Specifications

Caltech

Ahmadi, Singletary, Burdick and AA, CDC 2019

Safe Multi-Robot Coordination

Dynamics: $b^{t+1} = f(b^t), t \in \mathbb{N}_{\geq 0}.$ Safe Set: $C := \{b \in \mathcal{D} \mid h(b) \geq 0\}$ Specifications: $\Diamond(\text{GOAL}) \wedge_{i=1}^3 (\mathbb{P}_{\leq 0.05}(\text{OBS})_i)$

Safety-Critical POMDPs

 s_0

 a_1, z_2

0.7

0.6

 a_2, z_1

 $|s_2|$

0.2

0.1

 $|s_5|$

 a_1, z_2

 s_1

 s_4

Safe Multi-Robot Coordination

Both agents assigned to the task to increase the expected reward

-

Akella, Rosolia, Singletary and AA, CSL/ACC 2020 (submitted)

Chen, Rosoli and AA, RAL/ICRA 2020 (submitted)

High-level time

Segway MPC
 Wheeled bot MPC

Time [s]

4 4

Rosolia, Singletary, Chen and AA, RALVICRA 2020 (submitted)

Next Steps: Safe Multi-Robot Coordination

Conclusion: Safety-Critical Autonomy

Future Work:

- More underlying theory and synthesis
- Continue to apply experimentally
- Translate to real-world systems

Research supported by: NSF CPS, NSF NRI, AFOSR, DARPA, Wandercraft, Disney, JPL

Conclusions – Next Steps

Caltech

Goal: Robust Safety

CBFs with uncertainty

Robust CBFs with uncertainty Gurriet, Nilsson, Singletary, AA, ACC 2019, Actess (submitted)

------Learning + CBFs With Learning -0 1 00 Exploratory Control Experiment Data Process Learn \dot{h}_r Augment Controller h_r u_{des} Data **Derivative Estimation** Estimate Estimated 200 b 300 Estimated No Learning

Taylor, Singletary, Yue, AA, L4DC 2020

Autonomy on Legged Robots

🖹 Xiong, AA, IROS 2018

Top Speed: 1.04 m/s Xiong, Reher, AA, ICRA 2020 (submitted)

x0.4

t = 4.55s

Lyapunov Controller

$$u^*(x) = \operatorname*{argmin}_{(u,\delta)\in U imes \mathbb{R}} \|u - u_{\mathrm{des}}(x)\|^2$$

s.t. $\dot{V}(x,u) \leq -\alpha V(x)$

+ Theorem ⇒ Stable Walking

Reher, AA, RAL/ICRA 2020 (submitted)

Robotic Assistive Devices

Calte

RoAMS Initiative

Aaron Ames / AMBER Lab

.....

Learning + Control of Assistive Devices

RNN Control

 e_{pk}, \dot{e}_{pk} s e_{pa}, \dot{e}_{pa}

 $\theta^a_{nk}, \dot{\theta}^a_n$

Gao, Gehlhar, AA, Liu, Delbruck, ICRA 2020

Learning + Control of Assistive Devices

Tucker, Novoseller, Kann, Sui, Yue, Burdick, AA, ICRA 2020

Restoring Mobility

D

Caltech

