Sam Coogan

Electrical and Computer Engineering Civil and Environmental Engineering Georgia Tech October 27, 2020

Formal methods and Autonomous Control of Transportation Systems (FACTS) Lab

Analysis and control of flow networks

Multi-agent distributed control

Formal methods in control systems

Autonomous vehicles and ride-sharing

- Autonomous vehicles are likely to appear in ride-sharing/ride-hailing fleets first
- Anticipated benefits:
 - Decreased operating cost for same service (e.g., per trip)
 - Deployable to locations with increased demand
 - Do not require incentives to relocate (compared to, e.g., surge pricing)

To propose and analyze model for ride-sharing with autonomous vehicles (AVs) and human-driven vehicles (HVs)

- Multi-location network where operator/platform sets prices for riders, compensation to drivers of HVs, and operates AVs for fixed price
- Platform objective: profit maximization
- ► Focus on equilibrium condition

Q. Wei, R. Pedarsani, S. Coogan. "Mixed autonomy in ride-sharing networks". *IEEE Transactions on Control of Network Systems*, to appear.

- If both HV and AV are available to provide a ride, several reasonable resolutions are reasonable; surprisingly, all lead to same optimal profits
- Pransition from HV-only to AV-only can be abrupt or gradual, depending on network specifics
- **3** Transition occurs *strictly after* AVs reach operating cost parity; this is because there is additional overhead to operating AVs (*e.g.* must be dispatched to regions of high rider demand)

- 1 Definition of ride-sharing model with mixed autonomy
- ② Characterization of equilibria
- **3** Convex optimization problem for obtaining equilibria and implications
- **4** Specialization to star-to-complete network and example

- Network of n equidistant locations; in each time-step, a ride is possible between any two locations
- ▶ At each location, mass θ_i of potential riders, $i \in \{1, ..., n\}$
- Column-stochastic, $n \times n$ routing matrix A; A_{ij} is fraction of riders at i traveling to j
- A and θ assumed constant

Our model extends the model proposed in [Bimpikis et. al]¹to include AVs.

¹Bimpikis, Kostas, Ozan Candogan, and Daniela Saban. "Spatial pricing in ride-sharing networks." Operations Research 67.3 (2019): 744-769.

- ► After each time period, an HV exits the network with probability (1−β); expected lifetime of HV in the network is therefore (1−β)⁻¹
- Each driver has outside earning option of ω , and only participates if expected compensation exceeds ω

- \blacktriangleright Platform can choose to operate AV for fixed cost of s each time-step
- > AVs are in continual use and do not exit platform
- Introduce ratio

 $\kappa = \frac{s(1-\beta)^{-1}}{\omega} = \frac{\text{AV operating cost over expected HV lifetime}}{\text{outside earning option}}$

- ▶ Platform sets price p_i for a ride from location i
- > Platform compensates driver with c_i for providing ride at location i
- ▶ Rider willingness-to-pay cumulative distribution $F(\cdot)$: when confronted with price p, fraction 1 F(p) accept price, remaining F(p) balk without ride
- ▶ Then, effective demand at location *i* is $\theta_i(1 F(p_i))$

Number of riders willing to pay platform price may be <, =, or > total HVs+AVs.

If riders < total HVs+AVs, how should platform resolve this?

Three plausible options:

- 1 HV priority: Platform assigns rides to HVs first; keeps drivers happy and engaged
- **2** AV priority: Platform assigns rides to AVs first; platform views HVs as temporary supplement to full autonomy
- **③** Weighted priority: Rides assigned in proportion to availability of AVs and HVs

- 1 Definition of ride-sharing model with mixed autonomy
- ② Characterization of equilibria
- **3** Convex optimization problem for obtaining equilibria and implications
- **4** Specialization to star-to-complete network and example

Introduce some variables:

 \blacktriangleright $x_i = HVs$ at location i

• $y_{ij} = HVs$ at *i* that decide to relocate to *j* without providing a ride

$$\sum_{j=1}^{n} y_{ij} = \max \left\{ x_i - \underbrace{\theta_i(1 - F(p_i))}_{\text{effective demand at } i}, 0 \right\}.$$
 (equil-1)

$$\delta_i = \text{new drivers who enter platform at } i; \text{ at equilibrium, from conservation of mass,}$$

$$x_{i} = \beta \left[\underbrace{\sum_{j=1}^{n} A_{ji}}_{\text{demand served by HVs at } j} + \sum_{j=1}^{n} y_{ji} \right] + \delta_{i}. \quad (\text{equil-2})$$

Introduce some variables:

 \blacktriangleright $z_i = AVs$ at location i

▶ r_{ij} = AVs at *i* that relocate to *j* without providing a ride; at equilibrium,

$$z_{i} = \underbrace{\sum_{j=1}^{n} A_{ji} \underbrace{\min \{z_{j}, \max \{\theta_{j}(1 - F(p_{j})) - x_{j}, 0\}\}}_{\text{demand served by AVs at }j} + \sum_{j=1}^{n} r_{ji}. \quad (equil-3)$$

At equilibrium, relocating AVs satisfy

$$\sum_{j=1}^{n} r_{ij} = \max\left\{\underbrace{z_i - \max\left\{\theta_i(1 - F(p_i)) - x_i, 0\right\}}_{\text{Excess AVs at } i \text{ with no ride}}, 0\right\}.$$
 (equil-4)

Let V_i = expected future earnings of driver at location *i*; $\{V_i\}$ satisfies Bellman-type relationship:

$$V_{i} = \underbrace{\min\left\{\frac{\theta_{i}(1 - F(p_{i}))}{x_{i}}, 1\right\}}_{\text{likelihood of providing a ride}}\underbrace{\left(c_{i} + \sum_{k=1}^{n} A_{ik}\beta V_{k}\right)}_{\text{earnings if giving ride}} + \underbrace{\left(1 - \min\left\{\frac{\theta_{i}(1 - F(p_{i}))}{x_{i}}, 1\right\}\right)\beta\max_{j}V_{j}}_{\text{when no ride is given}}$$
(equil-5)

• Drivers only enter platform if
$$V_i \ge \omega$$

▶ Platform can always reduce c_i to avoid $V_i > \omega$ and achieve $V_i = \omega$

For some prices and compensations $\{p_i, c_i\}_{i=1}^n$, the collection $\{\delta_i, x_i, y_{ij}, z_i, r_{ij}\}_{i,j=1}^n$ is an equilibrium under $\{p_i, c_i\}_{i=1}^n$ for HV priority assignment if

- (equil-1)-(equil-4) is satisfied; and
- V_i as defined in (equil-5) satisfies $V_i = \omega$

for all $i = 1, \ldots, n$.

- For AV priority, equilibrium conditions are entirely dual
- For weighted priority, equilibrium conditions are similar in spirit

- 1 Definition of ride-sharing model with mixed autonomy
- ② Characterization of equilibria
- **③** Convex optimization problem for obtaining equilibria and implications
- **4** Specialization to star-to-complete network and example

Profit-maximization program and convexification

Theorem. Under a convexity assumption on riders' willingness-to-pay $F(\cdot)$, the original profit maximization problem for HV priority assignment can be recast into an equivalent convex optimization such that a solution to the original problem is recovered from a solution to the equivalent problem, and vice-versa.

Theorem. An equilibrium is optimal for one priority assignment if and only if it is optimal for all priority assignments. Therefore, all priority assignments achieve same optimal profits at equilibrium.

Explanation: At an optimal equilibrium, every location is served either by only HVs or only AVs regardless of priority scheme, and therefore the priority scheme becomes moot.

Proposition. If
$$\kappa = \frac{s(1-\beta)^{-1}}{\omega} > 1$$
, then it is optimal for the platform to only use HVs and no AVs.

- Above sufficient condition not very surprising
- It is surprising that the converse does not hold generally, i.e., it is not a necessary condition

Why not the converse? AVs and HVs do not operate equivalently; AVs must be routed to desired service locations. HVs can be motivated into service with compensations and leave service with rate β .

- 1 Definition of ride-sharing model with mixed autonomy
- ② Characterization of equilibria
- **③** Convex optimization problem for obtaining equilibria and implications
- **4** Specialization to star-to-complete network and example

Closed-form solution for star-to-complete networks

A *n*-location star-to-complete network parameterized by $\zeta \in [0,1]$ has adjacency matrix that is ζ -weighted average of complete equal-weight adjacency matrix and all-to-one star adjacency matrix

Theorem. For a star-to-complete network, two cases are possible, depending on relationship of ζ and β :

1 There exists $k_1 < 1$ such that: $k < k_1 \implies$ AV-only is optimal and

 $k > k_1 \implies$ HV-only is optimal (sudden change in optimality at $k = k_1$)

 2 There exists k₁ < k₂ < 1 such that: k < k₁ ⇒ AV-only is optimal; k₁ < k < k₂ ⇒ mixed deployment is optimal; k > k₂ ⇒ HV-only is optimal (gradual change in optimality)

All parameters available in closed-form.

3-location example

$$A = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.9 & 0 & 0.1 \\ 0.9 & 0.1 & 0 \end{bmatrix},$$

i.e., locations 2 and 3 have strong travel preference to location 1

Review of main findings

- If both HV and AV are available to provide a ride, several reasonable resolutions are reasonable; surprisingly, all lead to same optimal profits
- Pransition from HV-only to AV-only can be abrupt or gradual, depending on network specifics
- **3** Transition occurs *after* reaching cost parity (i.e., occurs for k < 1); this is because there is additional overhead to operating AVs (*e.g.* must be dispatched to regions of high rider demand)

Thank You Sam Coogan, coogan.ece.gatech.edu

Q. Wei, R. Pedarsani, S. Coogan. "Mixed autonomy in ride-sharing networks". *IEEE Transactions on Control of Network Systems*, to appear.