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M
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Research of the MVP Group

The Machine  Vision and 
Perception Group @TUM works 

on the aspects of visual 
perception and control in 
medical, mobile, and HCI 

applications

Visual navigation

Biologically motivated 
perception

Perception for manipulation

Visual Action AnalysisPhotogrammetric monocular 
reconstruction

Rigid and Deformable 
Registration



https://mvp.in.tum.de Machine Vision and Perception Group                                           IPAM Workshop I, Oct 7, 2020

Research of the MVP Group

Exploration of physical 
object properties

Sensor substitution

Multimodal Sensor 
Fusion

Development of new 
Optical Sensors

The Machine  Vision and 
Perception Group @TUM works 

on the aspects of visual 
perception and control in 
medical, mobile, and HCI 

applications
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Applications (past German Aerospace (DLR) collaborations)
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Coupling Alternatives for Perception Modules

M
M

Sensors
Camera,IMU,Laser
Structure-from-X

Actuators

Map-based action planning (not real-time)
(Metric Representation)

Reactive behavior(Instincts), e.g., Obstacle avoidance,…
(real-time for control)

do we really need metric representation here?
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Our Experimental Platform (RoboMobil DLR)
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Early Monocular Navigation Approaches VGPS (IROS 2003)

7
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Biology helps to increase robustness
Mair, Burschka

Mobile Robots Navigation, book chapter, In-Tech, 2010
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Can we navigate directly from monocular video?
(Zinf system, Burschka et al. 2008)
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Visual Static Modelling with a Drone (2007)

10

Mount for an 8MP
Digital Camera
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Real-Time Navigation Data from an Image Sequence

60 images taken with a standard low cost digital camera
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Estimation of the 6 Degrees of Freedom
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We used to reconstruct static scenes from monocular in 
2007… (with DLR)

13

Accuracy:1.5cm
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High Accuracy at Example of Light Section 3D Reconstruction

14
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http://www6.in.tum.de/burschka/                                                  Seminar, Oct 28, 2016 

Light Section Principle
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Accuracy of the system - Construction of 3D models (2008)

Camera localization
accuracy allows direct 
stiching of the line responses 
from the light-section system
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120fps Monocular Navigation from Sparse Optical Flow

16

GPU implementation of sparse flow (feature-based OpenCV) system 
using only 10% of the resources
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What can we do with the 3D PointClouds?

labeling motion parameters
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What is in the scene?  (labeling)
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ObjectRANSAC system fitting 3D models into 
cluttered scenes (Papazov et al. 2010)
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Deformable Registration from Generic Models 
(special issue SGP'11 Papazov et al.)

Matching of a detailed shape to  a 
primitive prior

The manipulation “heat map” from the generic 
model gets propagated

Deformation of the original 
model generates a deformation 
heat-map showing the 
similarities of object regions to
the model.
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Navigation for Control
VINS filter design [Schmid et al. IROS 2012]

Synchronization of real-time and non realtime modules by sensor hardware trigger

Direct system state:

High rate calculation by „Strap Down Algorithm“ (SDA)

Indirect system state: 

Estimation by indirect Extended Kalman Filter (EKF)
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70 m trajectory

Ground truth by 
tachymeter

5 s forced vision drop out 
with translational motion

1 s forced vision drop out 
with rotational motion

Estimation error < 1.2 m
Odometry error < 25.9 m
Results comparable to runs 
without vision drop outs

VINS-Systems
Fusion of heterogeneous data with varying latencies (with DLR)
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Navigation under strong illumination changes
• Autonomous indoor/outdoor flight 

of 60m

• Mapping resolution: 0.1m

• Leaving through a window

• Returning through door
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Collaborative Reconstruction with Self-Localization (CVP2008) 
Vision in Action: Efficient straegies for
cognitive agents in complex envirnments) 

4 Darius Burschka

Fig. 2. Collaborative 3D reconstruction from 2 independently moving cameras.

directional system with a large field of view.

Fig. 3. Single viewpoint
property.

We decided to use omnidirectional systems in-
stead of fish-lens cameras, because their single view-
point property [2] is essential for our combined
localization and reconstruction approach (Fig. 3).
This property allows an easy recovery of the viewing
angle of the virtual camera with the focal point F
(Fig. 3) directly from the image coordinates (ui, νi).
A standard perspective camera can be mapped on
our generic model of an omnidirectional sensor. The
only limitation of a standard perspective camera is
the limited viewing angle. In case of a standard per-
spective camera with a focal point at F, we can es-
timate the direction vector ni of the incoming rays
from the uni-focal image coordinates (focal length
of the camera f=1) (ui, νi) to

ni =
(ui, νi, 1)T

||(ui, νi, 1)T ||
. (2)

We rely on the fact that each camera can see the partner and the area that it
wants to reconstruct at the same time.

In our system, Camera 1 observes the position of the focal point F of Cam-
era 2 along the vector T , and the point P to be reconstructed along the vector V1

simultaneously (Fig. 2). The second camera (Camera 2) uses its own coordinate
frame to reconstruct the same point P along the vector V2. The point P observed
by this camera has modified coordinates [10]:

V2 = R ∗ (V1 + T ) (3)
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maintenance of the motion and scale data relative to a reference image without
the necessity of continued relative monitoring of the mutual position of the
agents. The drawback of that method is a cumbersome and difficult initialization
method which can be replaced by our robust 3D estimate described in section 2.1.
This mode is necessary in cases, where the required configuration of the cameras
causes occlusions between the agents although the target is still in view of both
cameras.

Our approach offers a robust initialization method for the system presented
in [3]. The original approach relied on an essential method to initialize the
3D structure in the world. Our system gives a more robust initialization method
minimizing the image error directly. The limited space of this paper does not
allow a detailed description of this part of the system. The recursive approach
from [3] is used to maintain the radial distance λx.

3 Results

Our flying systems use omnidirectional mirrors like the one depicted in Fig. 6

Fig. 6. Flying agent equipped with an omnidirectional sensor pointing upwards.

We tested the system on several indoor and outdoor sequences with two cam-
eras observing the world through different sized planar mirrors (Fig. 4) using a
Linux laptop computer with a 1.2 GHz Pentium Centrino processor. The system
was equipped with 1GB RAM and was operating two Firewire cameras with
standard PAL resolution of 768x576.

3.1 Accuracy of the Estimation of Extrinsic Parameters

We used the system to estimate the extrinsic motion parameters and achieved
results comparable with the extrinsic camera calibration results. We verified
the parameters by applying them to the 3D reconstruction process in (5) and
achieved measurement accuracy below the resolution of our test system. This
reconstruction was in the close range of the system which explains the high
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Fig. 2. Collaborative 3D reconstruction from 2 independently moving cameras.

directional system with a large field of view.

Fig. 3. Single viewpoint
property.

We decided to use omnidirectional systems in-
stead of fish-lens cameras, because their single view-
point property [2] is essential for our combined
localization and reconstruction approach (Fig. 3).
This property allows an easy recovery of the viewing
angle of the virtual camera with the focal point F
(Fig. 3) directly from the image coordinates (ui, νi).
A standard perspective camera can be mapped on
our generic model of an omnidirectional sensor. The
only limitation of a standard perspective camera is
the limited viewing angle. In case of a standard per-
spective camera with a focal point at F, we can es-
timate the direction vector ni of the incoming rays
from the uni-focal image coordinates (focal length
of the camera f=1) (ui, νi) to

ni =
(ui, νi, 1)T

||(ui, νi, 1)T ||
. (2)

We rely on the fact that each camera can see the partner and the area that it
wants to reconstruct at the same time.

In our system, Camera 1 observes the position of the focal point F of Cam-
era 2 along the vector T , and the point P to be reconstructed along the vector V1

simultaneously (Fig. 2). The second camera (Camera 2) uses its own coordinate
frame to reconstruct the same point P along the vector V2. The point P observed
by this camera has modified coordinates [10]:

V2 = R ∗ (V1 + T ) (3)
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Collaborative Exploration - Vision in Action 5

Since we cannot rely on any extrinsic calibration, we perform the calibration
of the extrinsic parameters directly from the current observation. We need to
find the transformation parameters (R, T ) in (3) defining the transformation
between the coordinate frames of the two cameras. Each camera defines its own
coordinate frame.

2.1 3D Reconstruction from Motion Stereo

In our system, the cameras undergo an arbitrary motion (R, T ) which results
in two independent observations (n1, n2) of a point P. The equation (3) can be
written using (2) as

λ2n2 = R ∗ (λ1n1 + T ). (4)

We need to find the radial distances (λ1, λ2) along the incoming rays to estimate
the 3D coordinates of the point. We can find it by re-writing (4) to

(−Rn1, n2)

(

λ1

λ2

)

= R · T
(

λ1

λ2

)

= (−Rn1, n2)−∗ ·R · T = D−∗ · R · T

(5)

We use in (5) the pseudo inverse matrix D−∗ to solve for the two unknown ra-
dial distances (λ1, λ2). A pseudo-inverse matrix to D can be calculated according
to

D−∗ = (DT · D)−1 ·DT. (6)

The pseudo-inverse operation finds a least square approximation satisfying the
overdetermined set of three equations with two unknowns (λ1, λ2) in (5). Due
to calibration and detection errors, the two lines V1 and V2 in Fig. 2 do not
necessarily intersect. Equation (5) calculates the position of the point along
each line closest to the other line.

We notice the similarity between the equations (1) and (5). Equation (1)
can be written to solve for the unknown distance Z from the image plane of the
coplanar binocular stereo system to:

Z =
B · f

px
·
1

d
= Ks ·

1

d
(7)

We see that, as one should expect, the baseline B seems to correspond to the
translation vector T which is divided by a disparity value d in binocular system.
The “disparity” in our system appears to be the change in the view direction in
both cameras (n1 → n2). The pseudo-inverse in (5) represents the division by d
in (7). The rotation matrix R rotates the direction vector n1 into the coordinate
frame of the second camera. We see that the radial distances (λ1, λ2) depend
on the distance T between the two camera views and is reciprocal proportional
to the change of view between them (Rn1 → n2). We know from previous
work in stereo reconstruction [8] that the accuracy of the 3D reconstruction de-
pends on the configuration between the cameras and the reconstructed point.
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Asynchronous Stereo for Dynamic Scenes

4 Darius Burschka

Fig. 2. Collaborative 3D reconstruction from 2 independently moving cameras.

directional system with a large field of view.

Fig. 3. Single viewpoint
property.

We decided to use omnidirectional systems in-
stead of fish-lens cameras, because their single view-
point property [2] is essential for our combined
localization and reconstruction approach (Fig. 3).
This property allows an easy recovery of the viewing
angle of the virtual camera with the focal point F
(Fig. 3) directly from the image coordinates (ui, νi).
A standard perspective camera can be mapped on
our generic model of an omnidirectional sensor. The
only limitation of a standard perspective camera is
the limited viewing angle. In case of a standard per-
spective camera with a focal point at F, we can es-
timate the direction vector ni of the incoming rays
from the uni-focal image coordinates (focal length
of the camera f=1) (ui, νi) to

ni =
(ui, νi, 1)T

||(ui, νi, 1)T ||
. (2)

We rely on the fact that each camera can see the partner and the area that it
wants to reconstruct at the same time.

In our system, Camera 1 observes the position of the focal point F of Cam-
era 2 along the vector T , and the point P to be reconstructed along the vector V1

simultaneously (Fig. 2). The second camera (Camera 2) uses its own coordinate
frame to reconstruct the same point P along the vector V2. The point P observed
by this camera has modified coordinates [10]:

V2 = R ∗ (V1 + T ) (3)
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Figure 2: Here: C0 and C1 are the camera centers of the
stereo pair, P0,P1,P2 are the 3D poses of the point at times
t0,t1,t2. Latter correspond to frame acquisition timestamps
of camera C0. P

⇤ is the 3D pose of the point at time t⇤,
which correspond to the frame acquisition timestamp of the
camera C1. Vectors v0,v1,v2, are unit vectors pointing from
camera center C0, to corresponding 3D points. Vector v⇤ is
the unit vector pointing from camera center C1 to pose P

⇤

and the unit vector v3 is the velocity direction vector.

Here a = acos(v0 ·v1) and b = acos(v2 ·v1). First
we write law of sines for the triangles 4P0COP1 and
4P1C0P2:

siny
C0P1

= sina
r

sinh
C0P1

= sinb
r

9
>=

>;
(2)

We divide the top part of Equation (2) by its bot-
tom one and, taking into account Equation (1), we can
write:

siny = K ⇤ sin(y+W) (3)
Since sin(A+B) = sinA⇤cosB+cosA⇤sinB, we

can write Equation (3) as:

siny = K ⇤ (siny⇤ cosW+ cosy⇤ sinW) (4)
If K ⇤ cosW 6= 1 and cosy 6= 0 we can find y by

dividing both sides of Equation (4) by cosy (Note,
that since W is known it is always possible to test if
y = p

2 , by plugging it into Equation (4)). Which will
result in:

y = atan

✓
K ⇤ sinW

1�K ⇤ cosW

◆
(5)

By plugging the value of y in to the third equation
of Equation (1) we determine h. Further we compute
the normal vector to the plane that passes through C0
and contains vectors v0 and v2:

n̂ =
v0 ⇥v2

||v0 ⇥v2||
(6)

Since the angle between the velocity direction
vector v3 and �v0 is y, v3 and v2 is h, and v2 and
n̂ is p

2 . We can compute the v3 by solving the follow-
ing equation:

2

4
�v0x �v0y �v0z

v2x v2y v2z

nx ny nz

3

5

2

4
v3x

v3y

v3z

3

5=

2

4
cosy
cosh

0

3

5

(7)

3.2 Path Reconstruction

In the second stage of proposed method we compute
the 3D pose P0. For reasons of simplicity we will
represent the poses (Pi (i = 0..2), P

⇤) depicted in Fig.
2 as:

Pi =

2

4
ai ⇤ zi

bi ⇤ zi

zi

3

5 P
⇤ =

2

4
m⇤ z

⇤
0 + tx

s⇤ z
⇤
0 + ty

q⇤ z
⇤
0 + tz

3

5 (8)

where tx,ty,tz are the x,y and z components of
the translation vector between the cameras, ai =

vix

viz
,

bi =
viy

viz
are the x and y components of the vi (i = 0..2)

direction vectors Figure 2, and:

2

4
m

s

q

3

5=

2

4
r11 r12 r13
r21 r22 r23
r31 r32 r33

3

5

2

64

v
⇤
x

v⇤z
v
⇤
y

v⇤z
1

3

75 (9)

where ri j (i= 1..3, j = 1..3) are the corresponding
elements of the rotation matrix between C0 and C1,
and [ v

⇤
x

v⇤z
,

v
⇤
y

v⇤z
,1]T is the normalized direction vector v⇤

(Figure 2). Further, we write the equations describing
the motion of the point in [t0,t⇤], [t0,t1] and [t0,t2]
time intervals:

P0 +x(t⇤ � t0)v3 = P
⇤

P0 +x(t1 � t0)v3 = P1
P0 +2x(t1 � t0)v3 = P2

(10)

where x is the magnitude of the velocity vector
of the moving point and v3 is the unit vector in the
direction of the velocity vector. Taking into account
Equation (8), Equation (10) can be written in matrix
notation:2

666666666664

a0 Dt1v3x �a1 0 0
b0 Dt1v3y �b1 0 0
1 Dt1v3z �1 0 0
a0 2Dt1v3x 0 �a2 0
b0 2Dt1v3y 0 �b2 0
1 2Dt1v3z 0 �1 0
a0 Dt2v3x 0 0 m

b0 Dt2v3y 0 0 s

1 Dt2v3z 0 0 1

3

777777777775

2

6664

z0
x
z1
z2
z
⇤
0

3

7775
=

2

666664

0
0
0
0
tx

ty

3

777775

(11)

Mkhitaryan, Burschka VISAPP 2014
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Back to Autonomous Vehicle Applications - Processing Units:
Local Feature Tracking Algorithms (AGAST, fastest keypoint detector part of 
OpenCV developed by us)

•Image-gradient based à Extended KLT (ExtKLT)
• patch-based implementation
• feature propagation
• corner-binding
+ sub-pixel accuracy
• algorithm scales bad with number 

of features
•Tracking-By-Matching à AGAST tracker
• AGAST corner detector
• efficient descriptor
• high frame-rates (hundrets of 

features in a few milliseconds)
+ algorithm scales well with number

of features 
• pixel-accuracy

8
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Hybrid High-Speed Stereo System
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Previous approach – Navigation from Optical Flow between 
images
Can motion be calculated directly a single image?
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What is the underlying principle?
Point Spread Function (PSF)

Horizontal motion
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Motion Blurr

Gaussian window to avoid artifacts in Cepstrum
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Coupling Alternatives for Perception Modules

M
M

Sensors

Camera,IMU,Laser
Structure-from-X

Actuators

Map-based action planning

Reactive behavior(Instincts)
e.g., Obstacle avoidance,…
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Navigation Strategies (metric vs. non-metric)

Vision-Based Control
the control signals are 
generated directly from the 
sensor perception

Map-based Navigation
the reconstructed data is stored 
in 3D maps to be used for 
obstacle avoidance and mission 
planning.
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Optimal Feature Selection

33

∆wt = (J t)−1·∆et, with (J t)−1 = (J tTJ t)−1J tT

(6)
The value ∆wt describes the error in the 3D position

that we use to generate the control signals for the robot.

III. SYSTEM ANALYSIS

The relative error in the solution caused by perturbations
of parameters can be estimated from the condition number
of the Image Jacobian matrix J. The condition number
is the ratio between the largest and the smallest singular
value of the matrix J.
The condition number estimates the sensitivity of solu-

tion of a linear algebraic system to variations of parame-
ters in matrix J and in the measurement vector b.
Consider the equation system with perturbations in

matrix J and vector b:

(J + εδJ )xb = b + εδb (7)

The relative error in the solution caused by perturbations
of parameters can be estimated by the following inequality
using the condition number κ calculated for J (see [5]):

||x − xb||
||x||

≤ κ
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ε
||δJ ||
||J ||

+ ε
||δb||
||b||

)

+ O(ε2) (8)

Therefore, the relative error in solution x can be as large
as condition number times the relative error in J and b. The
condition number together with the singular values of the
matrix J describe the sensitivity of the system to changes
in the input parameters.
In the following subsections we investigate the observ-

ability and accuracy of the output parameters (x, y, z)
from the input stream of the camera system (sec. III-
A) and the influence of the real sensor on the achievable
accuracy of the system (sec. III-B).

A. Optimal Landmark Configuration for the Image Jaco-
bian Matrix

The singular values can be obtained as positive square
roots of the eigenvalues of the matrix JT · J . With
yi∈{1,...,N} as heights of the tracked objects, αi∈{1,...,N}

as azimuth angles to them and βi∈{1,...,N} as their eleva-
tion angles. The resulting matrix for N landmarks has the
form shown in (9).
The system estimates three parameters (dx, dy, dΘ)

from the image positions (ui, vi) of all tracked primitives
(features) i ∈ {1, . . . , N} (4). Therefore, at least two fea-
tures are necessary to estimate all 3 position parameters.
Each feature contributes a measurement of a distance

∆ri from the robot to the feature in the ground plane and

an orientation ∆Θ relative to it. The equation (3) can then
be written in this case as:
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From the equation (10) we learn that an error ∆Θ is
directly forwarded to the output value αi, while the value
∆r, the error in the distance to the feature, is scaled with
the value

κr =

[

y ·

(
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(

ri

yi

)2
)]−1

(11)

Since in our case the measurement error is in the image
space, the resulting errors in the world are dependent on
the reciprocal values.
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We deduce from the above equation that the optimum
placement of the feature should maximize the above
expression to allow good observability of the position error
∆r. The optimal value can be estimated to
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that corresponds to an angle |βi| = 45◦.
It is shown that any linear system has at least one

solution component whose sensitivity to perturbations is
proportional to the condition number of the matrix, but
there may exist many components that are much better
conditioned [4]. The sensitivity for different components
of the solution changes depending on the configuration
of the landmarks and the relative position of the robot to
them.

based control problem. Section III describes the evaluation
of the system sensitivity to changes in the input parameters
and the expected input sensitivities of the camera systems.
Section IV presents numerical evaluation and experimental
results from a real system. We close with a discussion of
future work.

II. VISION-BASED CONTROL SYSTEM

As already described in [3] in more detail, the presented
navigation system operates in two steps. In a teaching
phase the user takes the robot for a walk. The robot
saves the image positions of selected tracking primitives
(e.g. color blobs, gray-scale patterns, etc.) to identify
positions in the world that later are used to repeat this path
autonomously in the replay phase. The control signals are
generated directly from the error signal in the image using
the Image Jacobian matrix described in Section II-B.

A. Spherical Image Projection

We assume a non-holonomic mobile system with unicy-
cle kinematics throughout the article. The system operates
in the (x, z, Θ) coordinates (Fig. 2).
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Fig. 2. Coordinate system used in the system.

We describe the imaging properties of the generic
sensor system depicted in Fig. 1 in spherical coordinates
(α - azimuth angle, β - elevation angle). The origin of the
robot coordinate system is assumed to be at the center of
rotation of the mobile system, the optical z axis points in
the “forward” direction of the robot motion, and the x axis
points to the “right” of the robot orientation (Fig. 2). A
point in space relative to the robot can then be described
by the triple (xi, yi, zi).
We define the spherical coordinates (αi, βi) in the

camera projection of an observed point Pi to

αi = arctan
xi

zi
∧ βi = arctan

yi
√

x2
i + z2

i

(1)

B. The Image Jacobian

Now, assuming holonomic motion in the plane, we can
compute the following Image Jacobian that relates the
change of angles in the image, (αi, βi), to changes in
position in the (x, z)-plane from (1):
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The dependency on the unknown position (xi, zi) of

the robot relative to the tracked landmark can be avoided
considering the geometry of the system to:
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Note in particular that the Image Jacobian is a function
of only one unobserved parameter, yi, the height of the
observed point. Furthermore, this value is constant for
motion in the plane. Thus, instead of estimating a time-
changing quantity as is the case in most vision-based
control, we only need to solve a simpler static estimation
problem. We refer to [3] for a detailed description of the
yi-estimation.
In the following text we assume that the system already

learned the positions of the tracked objects as columns
in a matrix Mp in the teaching phase [3]. In the replay
phase the valuesMp[t][i] representing the stored positions
for the tracker i at the time stamp t together with the
estimations of yi are used to calculate the position error
of the robot ∆wt = (dx, dz, dΘ)T .
For each tracked landmark we can write the dependency

of the observation error in the image ∆et
i on the position

error ∆wt using (2) to

∆et
i = J t

i · ∆wt, with ∆et
i = Mp[t][i] − pt

i. (4)

Since all observations depend on the same position error
∆wt and we are interested in estimation of the position
error ∆wt from the error in the camera image ∆et

i , we
need to invert the equation (4). It is not possible to estimate
all three values of ∆wt from one landmark (αi, βi) in the
image. We compute a “stacked” observation vector ∆et

using (4) to

∆et = J t · ∆wt, with

J t = (J t
1 , . . . ,J t

N )
T ∧ ∆et = (∆et

1, . . . , ∆et
N )

T

(5)
From (5) we can estimate ∆wt using the pseudo-

inverse (J t)−1 of the “stacked” Image Jacobian matrix
from (2) to

∆wt = (J t)−1·∆et, with (J t)−1 = (J tTJ t)−1J tT

(6)
The value ∆wt describes the error in the 3D position

that we use to generate the control signals for the robot.

III. SYSTEM ANALYSIS

The relative error in the solution caused by perturbations
of parameters can be estimated from the condition number
of the Image Jacobian matrix J. The condition number
is the ratio between the largest and the smallest singular
value of the matrix J.
The condition number estimates the sensitivity of solu-

tion of a linear algebraic system to variations of parame-
ters in matrix J and in the measurement vector b.
Consider the equation system with perturbations in

matrix J and vector b:

(J + εδJ )xb = b + εδb (7)

The relative error in the solution caused by perturbations
of parameters can be estimated by the following inequality
using the condition number κ calculated for J (see [5]):

||x − xb||
||x||

≤ κ

(

ε
||δJ ||
||J ||

+ ε
||δb||
||b||

)

+ O(ε2) (8)

Therefore, the relative error in solution x can be as large
as condition number times the relative error in J and b. The
condition number together with the singular values of the
matrix J describe the sensitivity of the system to changes
in the input parameters.
In the following subsections we investigate the observ-

ability and accuracy of the output parameters (x, y, z)
from the input stream of the camera system (sec. III-
A) and the influence of the real sensor on the achievable
accuracy of the system (sec. III-B).

A. Optimal Landmark Configuration for the Image Jaco-
bian Matrix

The singular values can be obtained as positive square
roots of the eigenvalues of the matrix JT · J . With
yi∈{1,...,N} as heights of the tracked objects, αi∈{1,...,N}

as azimuth angles to them and βi∈{1,...,N} as their eleva-
tion angles. The resulting matrix for N landmarks has the
form shown in (9).
The system estimates three parameters (dx, dy, dΘ)

from the image positions (ui, vi) of all tracked primitives
(features) i ∈ {1, . . . , N} (4). Therefore, at least two fea-
tures are necessary to estimate all 3 position parameters.
Each feature contributes a measurement of a distance

∆ri from the robot to the feature in the ground plane and

an orientation ∆Θ relative to it. The equation (3) can then
be written in this case as:
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From the equation (10) we learn that an error ∆Θ is
directly forwarded to the output value αi, while the value
∆r, the error in the distance to the feature, is scaled with
the value

κr =

[

y ·
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)]−1

(11)

Since in our case the measurement error is in the image
space, the resulting errors in the world are dependent on
the reciprocal values.
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We deduce from the above equation that the optimum
placement of the feature should maximize the above
expression to allow good observability of the position error
∆r. The optimal value can be estimated to
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that corresponds to an angle |βi| = 45◦.
It is shown that any linear system has at least one

solution component whose sensitivity to perturbations is
proportional to the condition number of the matrix, but
there may exist many components that are much better
conditioned [4]. The sensitivity for different components
of the solution changes depending on the configuration
of the landmarks and the relative position of the robot to
them.
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form shown in (9).
The system estimates three parameters (dx, dy, dΘ)

from the image positions (ui, vi) of all tracked primitives
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We deduce from the above equation that the optimum
placement of the feature should maximize the above
expression to allow good observability of the position error
∆r. The optimal value can be estimated to
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that corresponds to an angle |βi| = 45◦.
It is shown that any linear system has at least one

solution component whose sensitivity to perturbations is
proportional to the condition number of the matrix, but
there may exist many components that are much better
conditioned [4]. The sensitivity for different components
of the solution changes depending on the configuration
of the landmarks and the relative position of the robot to
them.
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form shown in (9).
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We deduce from the above equation that the optimum
placement of the feature should maximize the above
expression to allow good observability of the position error
∆r. The optimal value can be estimated to
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that corresponds to an angle |βi| = 45◦.
It is shown that any linear system has at least one

solution component whose sensitivity to perturbations is
proportional to the condition number of the matrix, but
there may exist many components that are much better
conditioned [4]. The sensitivity for different components
of the solution changes depending on the configuration
of the landmarks and the relative position of the robot to
them.
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Capturing Motion Properties of Large Dynamic Scenes

Cars in distances over 50m are only a 
few pixels large



https://mvp.in.tum.de Machine Vision and Perception Group                                           IPAM Workshop I, Oct 7, 2020

Are lab approaches transferrable to automobile and avionic 
applications?

Sensitivity increase:
• Larger baseline (B)  

• Longer focal length (f) 
� field of view

• Smaller pixelsize (px) �
“pixel explosion”

d p=
B ⋅ f
px

⋅
1
z
pixel[ ]
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Direct Mapping of Point Motion on Image 
Observation

6 Darius Burschka

Dynamic Obstacle Avoidance

Our preliminary work shows that if a task can be defined closer to a sensor repre-
sentation than the system becomes robust against calibration parameters and often
monocular approaches can be used instead of error-sensitive binocular setups. Once
the 3D information in the sensor is not necessary, other image properties of the sen-
sor signal can be used directly to monitor the task. Suddenly, the missing scale in the
monocular setups does not pose a problem anymore, because in case of a collision
time representation, the collision time information can be calculated directly from
the pixel changes in monocular sequences. This makes navigation approaches with
monocular systems possible.

In [9], an example of state estimation for single points in the images from monoc-
ular images is presented. It estimates collision relations directly for any single point
in the image. It is just one possible way, how such exchange between the sensor and
the actuator may be accomplished. Here, the pixel information is used directly to
estimate the collision property.

A three-dimensional point Pi travels with an arbitrary constant velocity vector vgi
in Fig. 5. This motion results in a trace of tracked points pi in consecutive image
frames for time steps t={0,1,2}. The vector vgi defines a plane containing Pi. We
call this a collision plane which sweeps through the focal point of the camera after
some. The collision time can be estimated from the trace of the point [9].

t=0
t=1

t=2

k vgi

Vgi

PI

Ei

PI

Vgi

H

H

H

Fig. 5 A 3D point Pi travels in three frames t=0,1,2 with a velocity vgi. The vector vgi with the
point Pi defines a gray collision plane with vgi as its normal vector.
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Detection of Independent Motion Groups from Optical Flow
• Our goal is a robust detection of motion direction

and collision times from a monocular uncali-
brated camera sequence.

• Representation of the dynamic scene ordered by
collision times instead of Cartesian coordinates
aenables monocular processing (no scale neces-
sary) and better priorisation of collision candidates
than in conventional methods

• Independent estimation of motion direction and
collision time allows collision categorization in
large distances from the camera Schaub et al., Journal ITSC 2017

Burschka, BMVC 2017
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Obstacle Avoidance in Dynamic Spaces
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Novel Control Design for Non-metric Control from Monocular
(Schaub&Burschka)

•  Matlab simulation with 3 
objects (C is on collision 
course) 

 
•  Non-Linear Gradient-

Descent with an Adaptive 
Lagrange Interpolation 
Search (ALIS) 

 
•  Weights: 
 
 

  

Results: Optimization 

DLR.de  •  Chart 10 > ICSTCC15 > Alexander Schaub  •  Reactive Avoidance of Dynamic Obstacles through Optimization of their Epipoles > 14.10.15 

Δ"↓.  

•  Good performance: 2 Steps to reach the optimum 

•  Realtime implementation with 25 Hz 

Δ"↓-  

• Planning space represented as
collision times for different
velocities

New Controller is necessary for the non-
metric input:
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Navigation based on Pixel-Information from Monocular View 
Concept: Shifting the optical flow epipole
out of the object’s boundaries
à no collision

Planar motion of the objects  (P ∈
ℝ!{%, ', ( = *})

Effect of the relative velocity - = {-" , -#}
on the Epipole’s 2D image position (., /)
à find:  Δ1$ = f(Δ-" , Δ-#) :

Horizontal shift of the Epipole 4
5

%

Schaub, Burschka   ITSCC 2015
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Application in Autonomous Driving (Schaub&Burschka(

41
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Novel Non-Cartesian Map Structure (IROS 2019)

42

Map is indexed by the azimuth angle of the relative 
velocity vector and the time until the plane with the velocity 
vector as a normal passes the focal point TTC

This makes the map content static in dynamic environments. Merely a TTC counter 
scrolls the grid during the operation but no changes of the grid information is necessary!
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temporal evolution of a scenario. In section IV, we present
the validation of the approach based on real-world examples
from the Cityscapes dataset. We conclude with a review of
our approach and discuss the future work.

II. RELATED WORK

There had been several approaches to tackle different parts
of the pedestrian intention and prediction problem, mostly
using a new approach for one of the problems.

Many studies have been conducted in the field of driver-
pedestrian interaction which focused on different aspects of
these encounters. The authors in [7], [8] and [9] analyze
crossing behavior including human factors as risk-taking
or gap acceptance including frameworks for simulation and
analysis. Rasouli et al. [11] built a huge labeled video data
set in which pedestrians interact with vehicles including
gestures and situation, focusing on nonverbal communica-
tion. Katrakazas et al [13] compare multiple state-of-the-
art approaches on obstacle prediction and cover different
aspects of decision making for motorists to be used in real-
time motion planning. Schneemann and Gohl [17] analyze
how behaviors influences decision making of both parties,
where changes in velocity are used to signal awareness and
cooperation in the interaction. They extend the work [18]
to determine crossing intention with SVM in a monocular
camera system with lane detection in which pedestrians may
or may not cross from a sidewalk, but limited to a subgroup
of possible interactions.

Time To Collision (TTC) from imagery was done first by
Hayward [14] in 1972 as an easy approach for determination
of collision courses, with Lee [15] researching acceptable
gaps and braking parameters connected to TTC. Anvari et al.
[16] did a similar approach to ours with the use of the social
force model. They use a method similar to epipolar geometry
to identify collision courses. Neither topological information
nor temporal analysis is influencing the decisions made by
the approach, though.

In the field of pedestrian prediction, lots of aspects and
methods have been tried and verified. Ridel et al. [22]
did a thorough literature review recently, providing a good
summary of the topic. These include works from Schneider et
al. [23] about recursive bayesian filters which detect typical
pedestrian behaviors, e.g. bending into a road from the
sidewalk. Kooji et al. [24] use Dynamic Bayesian Networks
for accurate predictions, but are limited to a time horizon of
around 1s. Ziebart et al. [25] use goal-directed trajectories,
but are researching robots interacting with people inside
of buildings. A solution with Deep neural Networks is
presented by Rehder et al. [27] for a time horizon of up
to three seconds. Bonnin et al. [28] predict interaction types
from additional knowledge, as they research around zebra
crossings Schulz et al. [29] combine pedestrian detection and
path prediction into one approach, not considering topology
or behavior. Karasev et al. [30] use goal-driven behavior
modeling with Markov processes for long-term motion pre-
diction for different traffic participants.

Kitani et al. [26] infer future long-term walking paths
from the physical world with obstacles and preferred areas as
sidewalks but do not analyze temporal evolution after initial
estimation like this approach.

Fig. 2. Map data is enriched by interaction regions(orange) caused by static
POI (entrances to shops, narrows) (green), dynamic intersection regions

(blue) based on intersecting trajectories. Pictured area of second example.

III. APPROACH

Our approach is divided into three parts: First, a static
map of Points and Areas of Interest (POI/AOI) is computed
offline beforehand (Figure 2), which is used for local
search of possible long term goals in a given scenario. It is
extended on-line if temporary changes occur in a scenario,
e.g. construction works on or next to the street.

Second, possible dynamic areas of interaction are calcu-
lated on-line with possible paths and occupation times for
each segment (e.g. Figure6) when a pedestrian comes into
sight. The same calculation in the manner of a topographical
path planner is performed for the vehicle. In this step,
possible outcomes and predicted behavior for each outcome
is defined by a decision tree. For each possible outcome a
behavior profile is created which consists predicted changes
in the observed variables.

Third, the temporal evolution of motion and changes in
measured behavior is compared to each prediction to identify
the best match. If changes in behavior occur, the predicted
outcome changes accordingly, which may create or solve a
collision situation.

By this separation, the algorithm is able to quickly esti-
mate encounters with pedestrians long-term (> 3s, in cases
> 10s). This enables a future path planning algorithm to
include trajectories for possibly dangerous scenarios and not
just react to imminent danger when courses intersect shortly
(< 1�2s). Naturally, the first prediction is rather an options
list of possible encounter points and outcomes, as precise
intentions are unknown and may change over time. Temporal
analysis is then permanently checking for better matches in
behavior profiles to adjust the prediction.

A. Map of Interests

Static base for probable trajectories is a map with Points of
Interest (POI) and possible goal destinations is calculated. It
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Pedestrian Intention Detection as a Resource Competition Challenge

Peter Gawronski1 Darius Burschka2

Abstract— We propose an approach to classify possible in-
teraction types between autonomous vehicles and pedestrians
based on the idea of resource competition in shared spaces.
Autonomous vehicles are more challenged in urban traffic
scenarios as lots of uncertainties influence the current world
model. Urban environments impose very little constraints on
the motion of pedestrians. This creates the demand for an
approach to determine intentions for each pedestrian as far
ahead as possible and to react to changes early. A motion model
based on goal-driven pedestrian movement shows a set of most
likely planned trajectories. These are analyzed for overlapping
occupation times in road segments, thus interactions with the
vehicle. The output is an early estimation which suggests most
probable interaction types and places. From this estimation,
current trajectory of the pedestrian is used to refine the
prediction of the most probable intention of interaction place
and type. In the end the algorithm combines topological and
behavioral input to infer and validate long term intention
of interaction type before being able to actually infer the
interaction from current dynamics.

In terms of a proof-of-concept, the applicability of the ap-
proach is validated on real world scenarios from the Cityscapes
data set.

I. INTRODUCTION

Autonomous cars are currently challenged by driving
safely in urban environments. Compared to highway driving,
there are far more interactions with all kinds of other traffic
participants. The interaction with pedestrians is especially
critical, as they are the more vulnerable other party in any
collision. 23% of all casualties in traffic accidents worldwide,
around 310.000, are pedestrians [1], most accidents between
vehicles and pedestrians happen while they cross the road
[2], [3]. This creates the need for a solution to identify dan-
gerous interactions with pedestrians ahead of time. Currently
deployed assistant systems warn and try to stop a vehicle if
it is about to crash into a pedestrian [4], [5], but these just
react when the pedestrian is already in or near the direct
trajectory of the vehicle.

Main problem of any prediction of trajectory is the multi-
tude of inputs which can change the outcome of a situation:

1. The topologies of the road, as crosswalks, junctions,
mixed traffic zones which lead to different right of way
situations.

2. The assertiveness and activeness of both parties in
an encounter. The pedestrian being the weaker part will
not likely jump in front of an oncoming car, a vehicle or
pedestrian may slow down to emphasize a yield intention
early on.

1P. Gawronski is with Department of Informatics, Technical University
Munich, Germany peter.gawronski@tum.de

2D.Burschka is is with Department of Informatics, Technical University
Munich, Germany burschka@tum.de

Fig. 1. Person starting to run towards an intersection: Changes in behavior
indicate a change of mind and thus a new interaction type. Highlighted
interaction area based on the temporal resource competition analysis.
Scenario 3, cutout of frame 19997

3. Very similar behavior can have different causes and
outcomes, as pedestrian movement is not limited very much,
thus changes in trajectory and intention happen very quickly.

4. Traffic participants in a scene influence each other by
changes in behavior so that most often a seamless interaction
is achieved, sometimes aided by visual clues.

There is a lot of research for solutions to estimate pedestri-
ans’ intentions beforehand as it is a necessary factor for safe
driving in urban environments. One aspect of research is path
prediction using different approaches, from bayesian filters
[23] or networks [24], pedestrian goal driven approaches [25]
or context-based models [28]. Another aspect are possible
trajectories of the pedestrian, including obstacles and safe
paths like sidewalks in static scenes and the likelihood of
traversal of each path [26].

Main problem of these solutions is that they either focus
on a short horizon (< 2s, often < 1s) and thus are limited in
their use for Advanced Driver Assistance Systems (ADAS)
or give a general idea about possible paths of a possible
interaction between a pedestrian and the vehicle but lack the
temporal evolution and analysis of new input.

Our approach fills this gap by combining static knowledge
of topology with quick long-term rough estimations if an
interaction is possible and plausible, namely when arrival
times at a shared resource as a road or crosswalk overlap. If
such a case is found, the resulting prediction is handled to
the third stage of the approach which predicts most likely,
normal behavior but also considers changing behavior which
could indicate both cooperative or disruptive behavior. In the
end, the approach predicts if an encounter with a pedestrian
is considered safe or not, depending if both parties behave
as expected or still may be on a collision course.

The paper is structured as follows. Section II presents the
related work. In section III, we present our approach how
to identify static and dynamic interaction areas based on
surrounding points of interests (POIs) and how to analyze
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includes a road network to identify intersections of roads at
which interactions between motorists will occur most likely,
but is feasible for pedestrian movement as to determine
movement across the road. Furthermore, static infrastructure
can be plotted into the database such as crosswalks, sig-
nalized crossings or narrow passages in low density urban
areas. It is merged with destinations of travel in the scene
as crossroads to another street, entries to parking lots shops
or areas of shared space, e.g. a pedestrian headed towards a
crosswalk.

a) Influences of topology: Figure 3 shows some typical
topologies and how they influence behavior. In all scenarios,
the hypothetical arrival and occupation time is calculated for
the pedestrian as depicted on the left. The vehicle is limited
to the road, but may change lanes or turn.
A long term goal may influence behavior and trajectory of
a pedestrian, as different paths lead to the same goal and
non-interference with cars may be intended. Third example
includes crosswalk and thus creates a strong goal as crossing
is safer there and makes jaywalking less probably.
The last example shows a possible situation at a corner.
Arrival time of the pedestrian is identical for both crossings,
an interaction with the vehicle depending on the unknown
goal. Temporal analysis is needed to evaluate further.

Fig. 3. Schematic overview of influences of POI to pedestrian movement:
Possible walking paths for a pedestrian (orange) and the ego vehicle (purple)
and found POI in range (green). LTR: no POI in area; possible paths to
cross the road; introducing crosswalks/right of way; different options create
different situations

b) Occupation times: To compensate for input noise
and the fact that the whole area must be cleared of obstruc-
tions before safe passage is possible, some buffer around
arrival times must be considered. Direct collision is consid-
ered at �TTA  0.5s, close calls at �TTA  2s, both of
which are to be avoided.

B. Initial Prediction of Interaction

It is based on several input vectors: Time to Arrival (TTA)
for the ego vehicle to the interaction region, �TTA =
TTAV eh � TTAP ed, ROW as a trigger of right of way
and vP ed, vV eh as the velocities of the pedestrian and vehi-
cle.These values may influence each other, but the separation
into parts makes observation of changes in behavior and by
this classification of behavior clearer.

a) Resource competition: An interaction between traf-
fic participants is equivalent to a competition for the shared

resource, e.g. an area at which trajectories meet, as simul-
taneous usage is not possible, shown in Figure 1 in red.
This limitation is used for behavior prediction as some form
of reaction is needed to avoid a collision, either by change
of velocity or direction by one or more of the participants
involved. A planned solution may exist, as with right-of-
way, but changes in behavior may solve these differently than
anticipated, e.g. the yielding object accelerating to avoid the
yield situation, as in scenario 3.

Fig. 4. Schematic behavior patterns in a interaction scenario: 1/2: vehicle
passing behind/in front of the pedestrian from a collision situation, 3:
passive pedestrian; 4: assertive crossing; 5/6/7: changes in velocity which
may influence outcome, 8/9: pedestrian turning away/towards the road as
indicators against/for crossing intention. Details in chapter III-C.

C. Temporal Analysis of Behavior

A temporal analysis is performed to analyze the behavior
and predict which of previously estimated probable actions
is performed. Both objects involved use nonverbal commu-
nication in form of clear changes in TTA by changes in
velocity and/or direction to clear an interfering situation.
Pedestrians may give visual clues to a driver [11], but as
these are not always clear, especially in-camera due to low
resolution, and also they can go unnoticed or misinterpreted
by an algorithmic detector, they are not taken into account
in this work.

In situations of clear legislation, the expected output is
anticipated. Unexpected behavior can have multiple causes
by means of aggressiveness or situation awareness, but
can also be a sign of distraction from the situation. Open
situations can have several outcomes, so the analysis of
movement behavior can pinpoint the moment a decision is
made, especially for the yielding party.

The main information gain is obtained from changes in
velocity, as both responses of acceleration and deceleration
change the arrival time TTA of the moving object, solving
the interference and signaling the other participant that a
decision has been made.

Figure 4 includes all possible changes after the initial
estimation: On the left, possible changes in �TTA are
evaluated: If |DeltaTTA| < 2, one or the other participant
needs to give way to pass each other safely. The algorithm
predicts that the vehicle without right of way will yield, so
the value of �TTA is predicted to change accordingly. Plots
1: Vehicle passes before pedestrian and vice versa for plots
2. These can be either achieved by the yielding party to slow
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or areas of shared space, e.g. a pedestrian headed towards a
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topologies and how they influence behavior. In all scenarios,
the hypothetical arrival and occupation time is calculated for
the pedestrian as depicted on the left. The vehicle is limited
to the road, but may change lanes or turn.
A long term goal may influence behavior and trajectory of
a pedestrian, as different paths lead to the same goal and
non-interference with cars may be intended. Third example
includes crosswalk and thus creates a strong goal as crossing
is safer there and makes jaywalking less probably.
The last example shows a possible situation at a corner.
Arrival time of the pedestrian is identical for both crossings,
an interaction with the vehicle depending on the unknown
goal. Temporal analysis is needed to evaluate further.

Fig. 3. Schematic overview of influences of POI to pedestrian movement:
Possible walking paths for a pedestrian (orange) and the ego vehicle (purple)
and found POI in range (green). LTR: no POI in area; possible paths to
cross the road; introducing crosswalks/right of way; different options create
different situations

b) Occupation times: To compensate for input noise
and the fact that the whole area must be cleared of obstruc-
tions before safe passage is possible, some buffer around
arrival times must be considered. Direct collision is consid-
ered at �TTA  0.5s, close calls at �TTA  2s, both of
which are to be avoided.

B. Initial Prediction of Interaction

It is based on several input vectors: Time to Arrival (TTA)
for the ego vehicle to the interaction region, �TTA =
TTAV eh � TTAP ed, ROW as a trigger of right of way
and vP ed, vV eh as the velocities of the pedestrian and vehi-
cle.These values may influence each other, but the separation
into parts makes observation of changes in behavior and by
this classification of behavior clearer.

a) Resource competition: An interaction between traf-
fic participants is equivalent to a competition for the shared

resource, e.g. an area at which trajectories meet, as simul-
taneous usage is not possible, shown in Figure 1 in red.
This limitation is used for behavior prediction as some form
of reaction is needed to avoid a collision, either by change
of velocity or direction by one or more of the participants
involved. A planned solution may exist, as with right-of-
way, but changes in behavior may solve these differently than
anticipated, e.g. the yielding object accelerating to avoid the
yield situation, as in scenario 3.

Fig. 4. Schematic behavior patterns in a interaction scenario: 1/2: vehicle
passing behind/in front of the pedestrian from a collision situation, 3:
passive pedestrian; 4: assertive crossing; 5/6/7: changes in velocity which
may influence outcome, 8/9: pedestrian turning away/towards the road as
indicators against/for crossing intention. Details in chapter III-C.

C. Temporal Analysis of Behavior

A temporal analysis is performed to analyze the behavior
and predict which of previously estimated probable actions
is performed. Both objects involved use nonverbal commu-
nication in form of clear changes in TTA by changes in
velocity and/or direction to clear an interfering situation.
Pedestrians may give visual clues to a driver [11], but as
these are not always clear, especially in-camera due to low
resolution, and also they can go unnoticed or misinterpreted
by an algorithmic detector, they are not taken into account
in this work.

In situations of clear legislation, the expected output is
anticipated. Unexpected behavior can have multiple causes
by means of aggressiveness or situation awareness, but
can also be a sign of distraction from the situation. Open
situations can have several outcomes, so the analysis of
movement behavior can pinpoint the moment a decision is
made, especially for the yielding party.

The main information gain is obtained from changes in
velocity, as both responses of acceleration and deceleration
change the arrival time TTA of the moving object, solving
the interference and signaling the other participant that a
decision has been made.

Figure 4 includes all possible changes after the initial
estimation: On the left, possible changes in �TTA are
evaluated: If |DeltaTTA| < 2, one or the other participant
needs to give way to pass each other safely. The algorithm
predicts that the vehicle without right of way will yield, so
the value of �TTA is predicted to change accordingly. Plots
1: Vehicle passes before pedestrian and vice versa for plots
2. These can be either achieved by the yielding party to slow
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• Non-metric navigation allows operations directly in camera images 
without the necessity of metric scale

• Temporal representation helps to assess  and predict behaviors

• Learning approaches are based on similarity search and, therefore, built 
for segmentation and labeling – not for metric measurements

• Scene understanding from single images reconstruct only spatial but no 
temporal relations

• Early data abstraction loses often important information from the sensor 

• Driving can be modelled as resource competition on the road


