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Research of the MVP Group
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Applications (past German Aerospace (DLR) collaborations)
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Coupling Alternatives for Perception Modules

Map-based action planning (not real-time)
(Metric Representation)

Sensors Actuators

Camera,IMU,Laser
Structure-from-X

[oertial

Meaoxwemeon

Uniz AXA0

Reactive behavior(Instincts), e.g., Obstacle avoidance,...
(real-time for control)
do we really need metric representation here?
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Our Experimental Platform (RoboMobil DLR) T
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Early Monocular Navigation Approaches VGPS (IROS 2003) T
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Tum
Biology helps to increase robustness

Mair, Burschka
Mobile Robots Navigation, book chapter, In-Tech, 2010
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Can we navigate directly from monocular video?
(Zinf system, Burschka et al. 2008)
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Tm
Visual Static Modelling with a Drone (2007)

Mount for an SMP
Digital Camera
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Real-Time Navigation Data from an Image Sequence
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Estimation of the 6 Degrees of Freedom
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We used to reconstruct static scenes from monocularin  TUTI
2007 ... (with DLR)

Accuracy:1.5cm
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High Accuracy at Example of Light Section 3D Reconstruction

i
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Accuracy of the system - Construction of 3D models (2008) T

Camera localization
accuracy allows direct
stiching of the line responses
from the light-section system

online visual  Jaser-
localization ofi
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TUTI
120fps Monocular Navigation from Sparse Optical Flow

GPU implementation of sparse flow (feature-based OpenCV) system
using only 10% of the resources
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What can we do with the 3D PointClouds?
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What is in the scene? (labeling)

Indexing of the Atlas information from 3D perception

Object container

' parametric grasp  actions and
SMP2  gescripon  points  handing

mel-

scene setup

input point cloud

recognized models
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ObjectRANSAC system fitting 3D models into
cluttered scenes (Papazov et al. 2010)
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Deformable Registration from Generic Models TUT

(special issue SGP'11 Papazov et al.)

Deformation of the original
model generates a deformation
heat-map showing the
similarities of object regions to
the model.

The manipulation “heat map” from the generic
Matching of a detailed shape to a model gets propagated
primitive prior
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Navigation for Control
VINS filter design
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4 Estimation by indirect Extended Kalman Filter (EKF)
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TUTI

[Schmid et al. IROS 2012]
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VINS-Systems
Fusion of heterogeneous data with varying latencies (with DLR)
- 70 m trajectory

g — ~~—= Estimation error < 1.2 m
- Ground truth by 2 :L’ y— S g -~ Odometry error < 25.9 m
tachymeter 50 4d ] ~ Results comparable to runs
0 20 40 60 80 100 without vision drop outs
- 5 s forced vision drop out tin s

with translational motion

- 1 s forced vision drop out
with rotational motio
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« Autonomous indoor/outdoor flight
of 60m

« Mapping resolution: 0.1m
* Leaving through a window

« Returning through door
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Collaborative Reconstruction with Self-Localization cve200s) Tum

Vision in Action: Efficient straegies for
cognitive agents in complex envirnments)
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Asynchronous Stereo for Dynamic Scenes
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Back to Autonomous Vehicle Applications - Processing Units: TUTI
Local Feature Tracking Algorithms (AGAST, fastest keypoint detector part of
OpenCV developed by us)

-Image-gradient based - Extended KLT (ExtKLT)

- patch-based implementation
- feature propagation

- corner-binding

+ sub-pixel accuracy

- algorithm scales bad with number
of features

-Tracking-By-Matching > AGAST tracker
« AGAST corner detector
- efficient descriptor
- high frame-rates (hundrets of
features in a few milliseconds)
+ algorithm scales well with number
of features
-_pixel-accuracy
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Hybrid High-Speed Stereo System

Standard-Camera
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TUTI

Previous approach — Navigation from Optical Flow between
Images
Can motion be calculated directly a single image?
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What is the underlying principle?
Point Spread Function (PSF)
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Motion Blurr

https://mvp.in.tum.de
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Gaussian window to avoid artifacts in Cepstrum
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Coupling Alternatives for Perception Modules

Map-based action planning

Sensors Actuators

Camera,IMU,Laser
Structure-from-X

~
Cilr=-
Meaoxwemeon

Uniz AXAO
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Reactive behavior(Instincts)
e.g., Obstacle avoidance,...
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Navigation Strategies (metric vs. non-metric)

TUTI

Map-based Navigation

Vision-Based Control

the reconstructed data is stored

. the control signals are
in 3D maps to be used for '9
) . generated directly from the
obstacle avoidance and mission .
. sensor perception
planning.
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Optimal Feature Selection

Consider the equation system with perturbations in
matrix J and vector b:

(J +edT )y = b+ edb (7)

The relative error in the solution caused by perturbations
of parameters can be estimated by the following inequality
using the condition number x calculated for J (see [5]):
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Capturing Motion Properties of Large Dynamic Scenes

Cars in distances over 50m are only a
few pixels large

RN 0,
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TUTI
Are lab approaches transferrable to automobile and avionic

applications?
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Direct Mapping of Point Motion on Image
Observation
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Detection of Independent Motion Groups from Optical Flow

« Our goal is a robust detection of motion direction
and collision times from a monocular uncali-
brated camera sequence.

» Representation of the dynamic scene ordered by
collision times instead of Cartesian coordinates
aenables monocular processing (no scale neces-
sary) and better priorisation of collision candidates
than in conventional methods %

* Independent estimation of motion direction and
collision time allows collision categorization in
large distances from the camera

Schaub et al., Journal ITSC
Burschka, BMVC 2017
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Obstacle Avoidance in Dynamic Spaces
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TUTI

Novel Control Design for Non-metric Control from Monocular

New Controller is necessary for the non- AlY
metric input: !

(Schaub&Burschka)
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TLTI
Navigation based on Pixel-Information from Monocular View

Concept: Shifting the optical flow epipole Schaub, Burschka ITSCC 2015
out of the object’s boundaries
- no collision

Planar motion of the objects (P € ~ | =
R3{X,Y,Z = c}) ' FERE-ES-EEeT i
E‘l‘ = Cx + fsl;—‘}); B 7 MWW R N Roae \
Ey = ¢y s
. : i L !
Effect of the relative .veloc;|ty % = {vy, vy} : [12 M
on the Epipole’s 2D image position (x, y) b L I I L

9 f|nd AEx = f(Avx,Avy):

A, = Ey(v+ Av) - By(v) = f,-
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Application in Autonomous Driving (scasssurserka
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Novel Non-Cartesian Map Structure (IROS 2019) T

-
Map is indexed by the azimuth angle of the relative /. .
velocity vector and the time until the plane with the velocity éé, 2 E
vector as a normal passes the focal point TTC \v‘ ¥,
(V,a.. B \
/ A &
[N = TTI ot - — —= 0
0 >
TTI

This makes the map content static in dynamic environments. Merely a TTC counter
scrolls the grid during the operation but no changes of the grid information is necessary!
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LT
|dentification of Interaction Regions in the Scene
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Extraction of map-based POI
static |dentification of overlapping "resource” allocation (competition
for POIl)  dynamic
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Estimation of Intention of the Traffic Agents T

Changes in the temporal interaction with agents can be used for behavior analysis
(IV 2019)
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. ) time time
Static and dynamic POI allow a better
prediction of intentions Temporal evolution of TTC at the resource
allows to assess passivity of aggressivity of

the traffic partner

https://mvp.in.tum.de Machine Vision and Perception Group IPAM Workshop I, Oct 7, 2020 44



Conclusions

Machine Vision and Perception

Temporal representation helps to assess and predict behaviors

Learning approaches are based on similarity search and, therefore, built

for segmentation and labeling — not for metric measurements

Scene understanding from single images reconstruct only spatial but no

temporal relations

Early data abstraction loses often important information from the sensor
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