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Confidence / Uncertainty Estimates for Neural 
Networks

• When a neural network makes a classification, we want to estimate the uncertainty.

• What is the (estimated) probability correct?

• For deep neural networks, this area is still evolving quickly.

with Tiago Salvador, postdoc, and Alex Iannantuono, undergrad, now MSc UBC



Background story on uncertainty

• There is a lot of confusion about uncertainty for neural network computations. 

• Practice: neural networks outputs vector of probabilities coming from softmax.   Use these values as 
class probabilities.

• First glance: this doesn’t make sense.

• Why? For traditional machine learning models, outputs are class probabilities.

• E.g. Spam detection, use conditional probabilities based on appearance of certain words.  Bayesian.  

• But this is not the case for neural networks.

• Theory: Dropout in Neural Networks: Yarin Gal, Zoubin Ghahramani.  Wiggle the parameters of 
neural network.  Then average the p-values over multiple inferences.  Works better when tuned.  
Bayesian theoretical interpretation(?).  I’m confused. 



Background story on uncertainty 2

• Using softmax values as class probabilities seems gives overconfident 
results, even on test set.

• We proposed to fix this, using simple statistical binning method: 
converts softmax values into calibrated probabilities.

• I presented this recently at a workshop.  Ok.

• But what people really seemed to want was to predict class 
probabilities on out of distribution (corrupted data) that the network 
has never seen in training.



Background story on uncertainty 3

• How can we expect performance on unseen corrupted data?  Seems impossible.

• E.g. ImageNet-C images.  Corrupted with different levels and different types of corruptions.

• indeed performance degrades severely on these.

• Good contributions (e.g.) AugMix, try to train network with corrupted data.

• helps, but inevitable trade-offs (worse) on test data. 



Background story on uncertainty 4

• Could imagine a complicated workflow, which 

• detects level of corruption, 

• deploys one of several models, each 
designed to be tunes to the level of 
corruption

• yields most accurate result, based on 
detection.

• But people find this too unwieldy. 

• Our results: Can obtain the benefits of this complex idea for free.

• Simple enhancement of our basic (in-distribution) calibration method

• Beat benchmark results on ImageNet-C,  across methods and intensity levels

• Didn’t have to retrain any models - just a short lookup table, based on statistical method



Neural Networks are over-confident

• Typically the neural networks are over-confident 
(even though accuracy is high)

• They are even more over-confident when they 
are starting to make mistakes/on OOD data

• Calibration error: binning data into predicted 
confidence, and counting actual errors, shows the 
overconfidence gap (blue vs. brown). 

• different from Adversarial attacks - images designed to fool neural networks. 

Confidence (blue) and actual (brown) 
probability correct for model on shifted 
distributions.

Overconfidence



Confidence / Uncertainty Estimates for Neural 
Networks

• Increasingly, models are beings asked to perform on datasets which are different 
form training datasets:  Out of distribution (OOD) data.

• Neural Networks do not perform as well as expected on OOD data



What is Calibration Error?

• Bin images with predicted and actual probability correct.  Average error.

• Calibrated: I say 50% chance or rain, and half the time it rains.  

• mis-calibrated: I say image is a dog with prob 98%, and it’s from the wrong dataset.

• A calibrated model does a good job of predicting uncertainty.

• Note: Model can be accurate, and poorly calibrated, and vice versa.

well-calibrated: CIFAR model with baseline accuracy .94 poorly-calibrated CIFAR model



Benchmarking Methods

• Methods:

• Basic Idea: use the outputs of network as probabilities.

• Bayesian Dropout. wiggle the network, average p-values

• Ensemble methods: take a poll of a few networks, average the p-values

• (Industry: train an auxiliary network to predict errors)

• Problem: values are not calibrated, and get worse on OOD data.



New Benchmark dataset (Ovadia 2019/12) 

• ImageNet with distribution Shift, using 16 types of data corruptions, and 5 different intensities

• Findings: Calibration error gets worse under distributional shift



Better calibration 

• Calibration error plots: left benchmark method is over confident (ECE = 11%)

• Middle & right, our methods are better calibrated (ECE 3.7 / 2.8 %)

• Our work, led by postdoc Tiago Salvador, beats the benchmark, using simple statistical methods. 

• We reduce calibration error, across mild to intense corruption levels



Beating the benchmark 

• Figure Mean ECE: benchmark vs. our methods

• The improvement is consistent across methods, with greater improvement at higher corruption 
levels.

• * Ensemble/Dropout improvement is less, but benchmark dataset provided only summary (average) 
information, which hindered our calibration methods. 



Whisker plot showing means and spread

• This figure shows the distribution of ECE across different corruptions.

• Compares benchmark with our models.

Figure from benchmark paper



What’s the idea of the method?

• Previous models have been trained a particular dataset (usually clean 
images).

• But they are calibrated to the dataset they have seen, so they will be 
overconfident on corrupted images.

• Our idea is to represent dataset shift, but model output (pmax) shift.

• Expose a model to corrupted images at different intensities, and 
calibrated each one. 

• more corrupted images, have a shift down of pmax values.

• Then, given a single image, estimate the level of corruption 
(conditional probability) by the pmax value.

• choose the appropriate calibration set, and recalibrate based on that 
set.

• with multiple images, can better estimate the level of corruption

• [Optional: slow down for algorithm details]



Deterministic Certified Robust Networks

• Neural Networks vulnerable to adversarial attacks

• Can train network to be more robust (but lose accuracy) 

• Certified networks are guaranteed to be robust to a certain norms: but they have 
trade-offs:

• stochastic: require averaging multiple evaluations with noise added. 

• require training new models from scratch

• Our work reduces the trade-off of these certified networks

with Chris Finlay PhD, now at Deep Render,
and Ryan Campbell MSc.



Intro: Adversarial Attacks

Small (visually imperceptible) perturbations of an image lead to 
misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow



Attacks on road sign 

Left: real graffiti on a stop sign, something that most humans would not 
think is suspicious. Right: a physical perturbation applied to a stop sign.  
Models classify the sign on the right as a Speed Limit: 45 mph sign! 
Source: Robust Physical-World Attacks on Deep Learning Visual Classification.



Madry: Defence by adversarial training

Aleksander Mądry

• Simple idea: train network replacing original images 
with attacked images (still using correct labels).

• Now when someone attacks the images, the model 
has already been trained to recognize them.

• Benefits: improved adversarial robustness

• Problem: loss of accuracy (say from 4% to 12% on 
CIFAR 10).



Arms race of attack methods and defences

Error curve: probability an 
image misclassified as a 
function of adversarial attack 
vector norm. 

Error curve for an 
undefended model
for different attacks.

Practical attacks: attack an image until misclassification occurs.  Record 
distance.   What is the difference between the more and less vulnerable 
images?



Certified Models

we want a smoother classification boundary

• Empirically models are not smooth 
enough

• The model in this form, convolution 
with a Gaussian, is smoothed.

• But we don’t know how to do Gaussian 
convolution in high dimensions, so need 
to sample



Challenges with Certification

• Once we know the model is smooth, can certify by sampling the base model (many, 
many times) in a neighborhood.  

• If the majority of the base values agree with classification, can then compute a 
certified bound for the smoothed model.

• Costs: inference is costly 30X.  Certification is costly 1000X.

• Also: lose accuracy when you add Gaussian noise.  

• So need to train a model from scratch to be resilient to Gaussian noise. What if we 
could train a model to be smooth?

• Bottom line: certified models still far from practical.



What if we could train a model to be 
smooth?

• Essentially, we want to train a model to be the Gaussian convolution of the 
base model.

• Do this by proposing a loss which is equivalent to Gaussian convolution.

• Previously models were trained with noise to add a regularization.  

• We go the other direction: add regularization to obtain a smoother model.

• use a modified loss for efficiency



Gaussian smoothing via PDE regularization

• using PDE fact that Gaussian convolution is equivalent to heat equation.

• use a modified loss for efficiency

• Can start with a pre-trained model, and retrain for 1 epoch (much less)



Results

• Faster to train, faster to evaluate.

• Certified



Results 2

• Better certified bounds that existing models. 

• Can smooth an adversarially trained model, and get 4X certified bounds



Implementation details

• Training models with gradient regularization would normally be very costly.

• We use two ideas to make it faster:

• Finite differences for the gradient (so no double back-propagation):detach 
this term from the automatic differentiation computation graph

• The full model gradient is high dimensional, we approximate it with 
random projections, using concentration of measure.



Part 2 :Faster Training of Neural ODEs using OT 
regularization

How to train your neural ODE: the world of Jacobian and kinetic regularization, ICML 2020

- Chris Finlay, Postdoc McGill, now at DeepRender

- Levon Nurbekyan, Postdoc McGill, now postdoc UCLA w. Stan Osher

- Jorn-Henrik Jacobsen, Vector Institute, University of Toronto, now Senior Research Scientist at Apple. 

• Background: 

• Generative Models Results

• Neural ODEs

• Regularization

• Improvements to Training Time

• Example Images



Background: Density Estimation and Generative 
Models (GANs)

• GANs (Goodfellow) 21,000 
citations since 2014!

• First method to generate realistic 
looking new images from large 
sample of images. 

Images from NVIDIA GAN 2018



Neural ODEs for generative models

• GANs: High quality images, but suffer from 
“mode collapse”, in worst case, can just 
memorize samples.  W-GANs: enforce 1-
Lipschitz, but still not onto.

• Alternative: use an invertible network

• train by mapping images to noise

• generate by mapping noise to images. 

• Normalizing flows:  E. Tabak (Courant Math), 
2013, 

• Neural ODEs (classification), Duvenaud, 2018 
(Vector Inst, Toronto) and Haber Ruthotto, 
2018 (math).

• FFJORD: (neural ODEs for generative models) 
Duvenaud, ICLR 2019. Generative Neural 
ODEs 



Neural ODEs for Generative Models

• Math Involved:

• ODE architecture 
(adaptive ResNet)

• Invertible network

• Divergence computation 
in high dimensions

• Appealing architecture:  
more mathematical, more 
abstract.



Good idea: ODEs for architecture. 
Missing idea: penalize large Lipschitz constants.

Notes: no control on paths means no control on  Lipschitz constant.  
Result: more steps needed for ODE, slower network, and longer training times.  



Add regularization to obtain the OT map



Connection with Optimal Transportation

• Benamou-Brenier formulation of Optimal Transportation in 
Lagrangian coordinates 

• Our loss, with empirical measures, and a weak form of the 
push-forward condition 



What is the effect?  Faster Training

• Image classification networks which have lots of (heuristic) regularization 
built in, so the effects of regularization are marginal.

• For neural ODEs, bottleneck was training time.  In this case regularization 
solved the bottleneck.   First in class to train on ImageNet. 
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