
Contributions to deep learning using
a mathematical approach:

improved model uncertainty, certified robust models, and faster training of
Neural ODEs.

Adam Oberman, McGill

Workshop I: Individual Vehicle Autonomy: Perception and Control
Part of the Long Program

Mathematical Challenges and Opportunities for Autonomous Vehicles

Confidence / Uncertainty Estimates for Neural
Networks

• When a neural network makes a classification, we want to estimate the uncertainty.

• What is the (estimated) probability correct?

• For deep neural networks, this area is still evolving quickly.

with Tiago Salvador, postdoc, and Alex Iannantuono, undergrad, now MSc UBC

Background story on uncertainty

• There is a lot of confusion about uncertainty for neural network computations.

• Practice: neural networks outputs vector of probabilities coming from softmax. Use these values as
class probabilities.

• First glance: this doesn’t make sense.

• Why? For traditional machine learning models, outputs are class probabilities.

• E.g. Spam detection, use conditional probabilities based on appearance of certain words. Bayesian.

• But this is not the case for neural networks.

• Theory: Dropout in Neural Networks: Yarin Gal, Zoubin Ghahramani. Wiggle the parameters of
neural network. Then average the p-values over multiple inferences. Works better when tuned.
Bayesian theoretical interpretation(?). I’m confused.

Background story on uncertainty 2

• Using softmax values as class probabilities seems gives overconfident
results, even on test set.

• We proposed to fix this, using simple statistical binning method:
converts softmax values into calibrated probabilities.

• I presented this recently at a workshop. Ok.

• But what people really seemed to want was to predict class
probabilities on out of distribution (corrupted data) that the network
has never seen in training.

Background story on uncertainty 3

• How can we expect performance on unseen corrupted data? Seems impossible.

• E.g. ImageNet-C images. Corrupted with different levels and different types of corruptions.

• indeed performance degrades severely on these.

• Good contributions (e.g.) AugMix, try to train network with corrupted data.

• helps, but inevitable trade-offs (worse) on test data.

Background story on uncertainty 4

• Could imagine a complicated workflow, which

• detects level of corruption,

• deploys one of several models, each
designed to be tunes to the level of
corruption

• yields most accurate result, based on
detection.

• But people find this too unwieldy.

• Our results: Can obtain the benefits of this complex idea for free.

• Simple enhancement of our basic (in-distribution) calibration method

• Beat benchmark results on ImageNet-C, across methods and intensity levels

• Didn’t have to retrain any models - just a short lookup table, based on statistical method

Neural Networks are over-confident

• Typically the neural networks are over-confident
(even though accuracy is high)

• They are even more over-confident when they
are starting to make mistakes/on OOD data

• Calibration error: binning data into predicted
confidence, and counting actual errors, shows the
overconfidence gap (blue vs. brown).

• different from Adversarial attacks - images designed to fool neural networks.

Confidence (blue) and actual (brown)
probability correct for model on shifted
distributions.

Overconfidence

Confidence / Uncertainty Estimates for Neural
Networks

• Increasingly, models are beings asked to perform on datasets which are different
form training datasets: Out of distribution (OOD) data.

• Neural Networks do not perform as well as expected on OOD data

What is Calibration Error?

• Bin images with predicted and actual probability correct. Average error.

• Calibrated: I say 50% chance or rain, and half the time it rains.

• mis-calibrated: I say image is a dog with prob 98%, and it’s from the wrong dataset.

• A calibrated model does a good job of predicting uncertainty.

• Note: Model can be accurate, and poorly calibrated, and vice versa.

well-calibrated: CIFAR model with baseline accuracy .94 poorly-calibrated CIFAR model

Benchmarking Methods

• Methods:

• Basic Idea: use the outputs of network as probabilities.

• Bayesian Dropout. wiggle the network, average p-values

• Ensemble methods: take a poll of a few networks, average the p-values

• (Industry: train an auxiliary network to predict errors)

• Problem: values are not calibrated, and get worse on OOD data.

New Benchmark dataset (Ovadia 2019/12)

• ImageNet with distribution Shift, using 16 types of data corruptions, and 5 different intensities

• Findings: Calibration error gets worse under distributional shift

Better calibration

• Calibration error plots: left benchmark method is over confident (ECE = 11%)

• Middle & right, our methods are better calibrated (ECE 3.7 / 2.8 %)

• Our work, led by postdoc Tiago Salvador, beats the benchmark, using simple statistical methods.

• We reduce calibration error, across mild to intense corruption levels

Beating the benchmark

• Figure Mean ECE: benchmark vs. our methods

• The improvement is consistent across methods, with greater improvement at higher corruption
levels.

• * Ensemble/Dropout improvement is less, but benchmark dataset provided only summary (average)
information, which hindered our calibration methods.

Whisker plot showing means and spread

• This figure shows the distribution of ECE across different corruptions.

• Compares benchmark with our models.

Figure from benchmark paper

What’s the idea of the method?

• Previous models have been trained a particular dataset (usually clean
images).

• But they are calibrated to the dataset they have seen, so they will be
overconfident on corrupted images.

• Our idea is to represent dataset shift, but model output (pmax) shift.

• Expose a model to corrupted images at different intensities, and
calibrated each one.

• more corrupted images, have a shift down of pmax values.

• Then, given a single image, estimate the level of corruption
(conditional probability) by the pmax value.

• choose the appropriate calibration set, and recalibrate based on that
set.

• with multiple images, can better estimate the level of corruption

• [Optional: slow down for algorithm details]

Deterministic Certified Robust Networks

• Neural Networks vulnerable to adversarial attacks

• Can train network to be more robust (but lose accuracy)

• Certified networks are guaranteed to be robust to a certain norms: but they have
trade-offs:

• stochastic: require averaging multiple evaluations with noise added.

• require training new models from scratch

• Our work reduces the trade-off of these certified networks

with Chris Finlay PhD, now at Deep Render,
and Ryan Campbell MSc.

Intro: Adversarial Attacks

Small (visually imperceptible) perturbations of an image lead to
misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow

Attacks on road sign

Left: real graffiti on a stop sign, something that most humans would not
think is suspicious. Right: a physical perturbation applied to a stop sign.
Models classify the sign on the right as a Speed Limit: 45 mph sign!
Source: Robust Physical-World Attacks on Deep Learning Visual Classification.

Madry: Defence by adversarial training

Aleksander Mądry

• Simple idea: train network replacing original images
with attacked images (still using correct labels).

• Now when someone attacks the images, the model
has already been trained to recognize them.

• Benefits: improved adversarial robustness

• Problem: loss of accuracy (say from 4% to 12% on
CIFAR 10).

Arms race of attack methods and defences

Error curve: probability an
image misclassified as a
function of adversarial attack
vector norm.

Error curve for an
undefended model
for different attacks.

Practical attacks: attack an image until misclassification occurs. Record
distance. What is the difference between the more and less vulnerable
images?

Certified Models

we want a smoother classification boundary

• Empirically models are not smooth
enough

• The model in this form, convolution
with a Gaussian, is smoothed.

• But we don’t know how to do Gaussian
convolution in high dimensions, so need
to sample

Challenges with Certification

• Once we know the model is smooth, can certify by sampling the base model (many,
many times) in a neighborhood.

• If the majority of the base values agree with classification, can then compute a
certified bound for the smoothed model.

• Costs: inference is costly 30X. Certification is costly 1000X.

• Also: lose accuracy when you add Gaussian noise.

• So need to train a model from scratch to be resilient to Gaussian noise. What if we
could train a model to be smooth?

• Bottom line: certified models still far from practical.

What if we could train a model to be
smooth?

• Essentially, we want to train a model to be the Gaussian convolution of the
base model.

• Do this by proposing a loss which is equivalent to Gaussian convolution.

• Previously models were trained with noise to add a regularization.

• We go the other direction: add regularization to obtain a smoother model.

• use a modified loss for efficiency

Gaussian smoothing via PDE regularization

• using PDE fact that Gaussian convolution is equivalent to heat equation.

• use a modified loss for efficiency

• Can start with a pre-trained model, and retrain for 1 epoch (much less)

Results

• Faster to train, faster to evaluate.

• Certified

Results 2

• Better certified bounds that existing models.

• Can smooth an adversarially trained model, and get 4X certified bounds

Implementation details

• Training models with gradient regularization would normally be very costly.

• We use two ideas to make it faster:

• Finite differences for the gradient (so no double back-propagation):detach
this term from the automatic differentiation computation graph

• The full model gradient is high dimensional, we approximate it with
random projections, using concentration of measure.

Part 2 :Faster Training of Neural ODEs using OT
regularization

How to train your neural ODE: the world of Jacobian and kinetic regularization, ICML 2020

- Chris Finlay, Postdoc McGill, now at DeepRender

- Levon Nurbekyan, Postdoc McGill, now postdoc UCLA w. Stan Osher

- Jorn-Henrik Jacobsen, Vector Institute, University of Toronto, now Senior Research Scientist at Apple.

• Background:

• Generative Models Results

• Neural ODEs

• Regularization

• Improvements to Training Time

• Example Images

Background: Density Estimation and Generative
Models (GANs)

• GANs (Goodfellow) 21,000
citations since 2014!

• First method to generate realistic
looking new images from large
sample of images.

Images from NVIDIA GAN 2018

Neural ODEs for generative models

• GANs: High quality images, but suffer from
“mode collapse”, in worst case, can just
memorize samples. W-GANs: enforce 1-
Lipschitz, but still not onto.

• Alternative: use an invertible network

• train by mapping images to noise

• generate by mapping noise to images.

• Normalizing flows: E. Tabak (Courant Math),
2013,

• Neural ODEs (classification), Duvenaud, 2018
(Vector Inst, Toronto) and Haber Ruthotto,
2018 (math).

• FFJORD: (neural ODEs for generative models)
Duvenaud, ICLR 2019. Generative Neural
ODEs

Neural ODEs for Generative Models

• Math Involved:

• ODE architecture
(adaptive ResNet)

• Invertible network

• Divergence computation
in high dimensions

• Appealing architecture:
more mathematical, more
abstract.

Good idea: ODEs for architecture.
Missing idea: penalize large Lipschitz constants.

Notes: no control on paths means no control on Lipschitz constant.
Result: more steps needed for ODE, slower network, and longer training times.

Add regularization to obtain the OT map

Connection with Optimal Transportation

• Benamou-Brenier formulation of Optimal Transportation in
Lagrangian coordinates

• Our loss, with empirical measures, and a weak form of the
push-forward condition

What is the effect? Faster Training

• Image classification networks which have lots of (heuristic) regularization
built in, so the effects of regularization are marginal.

• For neural ODEs, bottleneck was training time. In this case regularization
solved the bottleneck. First in class to train on ImageNet.

Generated Images

Images

Thanks!

