Workshop I: Individual Vehicle Autonomy: Perception and Control
Part of the Long Program
Mathematical Challenges and Opportunities for Autonomous Vehicles

Contributions to deep learning using
a mathematical approach:

improved model uncertainty, certified robust models, and faster training of
Neural ODEs.

Adam Oberman, McGill



Confidence / Uncertainty Estimates for Neural
Networks

with Tiago Salvador, postdoc, and Alex lannantuono, undergrad, now MSc UBC

® VWhen a neural network makes a classification, we want to estimate the uncertainty.
® What is the (estimated) probability correct?

® For deep neural networks, this area is still evolving quickly.
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(Example output of a YOLO object detection network, with the probability estimates. Image source:
Analytics Vidhya.)



Background story on uncertainty

® There is a lot of confusion about uncertainty for neural network computations.

® Practice: neural networks outputs vector of probabilities coming from softmax. Use these values as
class probabilities.

® First glance: this doesn’t make sense.
® Why! For traditional machine learning models, outputs are class probabilities.

® E.g. Spam detection, use conditional probabilities based on appearance of certain words. Bayesian.

® But this is not the case for neural networks.

® Theory: Dropout in Neural Networks:Yarin Gal, Zoubin Ghahramani. Wiggle the parameters of

neural network. Then average the p-values over multiple inferences. Works better when tuned.
Bayesian theoretical interpretation(?). I’'m confused.

www.reddit.com » MachineLearning » comments» p_h... ¥

[P] How to deal with overconfidence in neural nets ... - Reddit

Uncertainty Quantification with Statistical Guarantees in End-to-End iral nets? Project. I'm using an ANN built in Keras
Autonomous Driving Control come. | have a large ...
/10/20
% Deep neural network controllers for autonomous driving have recently benefited from
significant performance improvements, and have begun deployment in the real world. Prior to
their widespread adoption, safety guarantees are needed on the controller behaviour that
. properly take account of the uncertainty within the model as well as sensor noise. Bayesian
" neural networks, which assume a prior over the weights, have been shown capable of




Background story on uncertainty 2

Ovadia et al

Using softmax values as class probabilities seems gives overconfident
results, even on test set.

07 wmm calibration
Test

We proposed to fix this, using simple statistical binning method:
converts softmax values into calibrated probabilities.

| presented this recently at a workshop. Ok.

But what people really seemed to want was to predict class
probabilities on out of distribution (corrupted data) that the network

has never seen in training. 00 02 04 06 08 1
ECE = 10.938%
Brier = 0.178

ICML 2020 Workshop on

Uncertainty & Robustness in

Deep Learning

July 17, 2020




Background story on uncertainty 3

® How can we expect performance on unseen corrupted data! Seems impossible.

® E.g.ImageNet-C images. Corrupted with different levels and different types of corruptions.
® indeed performance degrades severely on these.

® Good contributions (e.g.) AugMix, try to train network with corrupted data.

® helps, but inevitable trade-offs (worse) on test data.
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Figure S3: Examples of 16 corruption types in ImageNet-C images, at corruption intensity 3 (on a
scale from 1-5). The same corruptions were applied to CIFAR-10. Figure 2 and Section C show
boxplots for each uncertainty method and corruption intensity, spanning all corruption types.



Background story on uncertainty 4

® Could imagine a complicated workflow, which

® detects level of corruption, &=
=
® deploys one of several models, each Boe ot
designed to be tunes to the level of
corruption

H / ‘

Ddd amgc (s)

® yields most accurate result, based on
detection.

=

® But people find this too unwieldy.

® Our results: Can obtain the benefits of this complex idea for free.
® Simple enhancement of our basic (in-distribution) calibration method
® Beat benchmark results on ImageNet-C, across methods and intensity levels

® Didn’t have to retrain any models - just a short lookup table, based on statistical method



Neural Networks are over-confident

® Typically the neural networks are over-confident
(even though accuracy is high)

® They are even more over-confident when they
are starting to make mistakes/on OOD data

® (Calibration error: binning data into predicted
confidence, and counting actual errors, shows the
overconfidence gap (blue vs. brown).
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® different from Adversarial attacks - images designed to fool neural networks.



Confidence / Uncertainty Estimates for Neural
Networks

® Increasingly, models are beings asked to perform on datasets which are different
form training datasets: Out of distribution (OOD) data.

® Neural Networks do not perform as well as expected on OOD data

Variable generalization performance of a deep learning
model to detect pneumonia in chest radiographs: A cross-
sectional study

John R. Zech , Marcus A. Badgeley , Manway Liu, Anthony B. Costa, Joseph J. Titano, Eric Karl Oermann

Published: November 6, 2018 e« https://doi.org/10.1371/journal.pmed.1002683

Abstract

Background

There is interest in using convolutional neural networks (CNNs) to analyze medical imaging to provide computer-aided diagnosis
(CAD). Recent work has suggested that image classification CNNs may not generalize to new data as well as previously believed.
We assessed how well CNNs generalized across three hospital systems for a simulated pneumonia screening task.



What is Calibration Error?

® Bin images with predicted and actual probability correct. Average error.
® (Calibrated: | say 50% chance or rain, and half the time it rains.

® mis-calibrated: | say image is a dog with prob 98%, and it’s from the wrong dataset.
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® A calibrated model does a good job of predicting uncertainty.

® Note: Model can be accurate, and poorly calibrated, and vice versa.



Benchmarking Methods

® Methods:
® Basic Idea: use the outputs of network as probabilities.
® Bayesian Dropout. wiggle the network, average p-values
® Ensemble methods: take a poll of a few networks, average the p-values
® (Industry: train an auxiliary network to predict errors)

® Problem: values are not calibrated, and get worse on OOD data.

e (Vanilla) Maximum softmax probability (Hendrycks & Gimpel, 2017)
e (Temp Scaling) Post-hoc calibration by temperature scaling using a validation set (Guo et al., 2017)
e (Dropout) Monte-Carlo Dropout (Gal & Ghahramani, 2016; Srivastava et al., 2015) with rate p

e (Ensembles) Ensembles of M networks trained independently on the entire dataset using random
initialization (Lakshminarayanan et al., 2017) (we set M = 10 in experiments below)

e (SVI) Stochastic Variational Bayesian Inference for deep learning (Blundell et al., 2015; Graves,
2011; Louizos & Welling, 2017, 2016; Wen et al., 2018). We refer to Appendix A.6 for details of
our SVI implementation.

e (LL) Approx. Bayesian inference for the parameters of the last layer only (Riquelme et al., 2018)



New Benchmark dataset (Ovadia 2019/12)

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia* Emily Fertig* Jie Ren'
Google Research Google Research Google Research
yovadia@google.com emilyaf@google.com jjren@google.com
Zachary Nado D Sculley Sebastian Nowozin
Google Research Google Research Google Research
znado@google.com dsculley@google.com nowozin@google.com
Joshua V. Dillon Balaji Lakshminarayanan® Jasper Snoek!
Google Research DeepMind Google Research
jvdillon@google.com balajiln@google.com jsnoek@google.com
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Figure S3: Examples of 16 corruption types in ImageNet-C images, at corruption intensity 3 (on a
scale from 1-5). The same corruptions were applied to CIFAR-10. Figure 2 and Section C show
boxplots for each uncertainty method and corruption intensity, spanning all corruption types.

® ImageNet with distribution Shift, using 16 types of data corruptions, and 5 different intensities

® Findings: Calibration error gets worse under distributional shift
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Better calibration
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Calibration error plots: left benchmark method is over confident (ECE = 1 1%)

Middle & right, our methods are better calibrated (ECE 3.7 / 2.8 %)
Our work, led by postdoc Tiago Salvador, beats the benchmark, using simple statistical methods.

We reduce calibration error, across mild to intense corruption levels



Beating the benchmark
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® Figure Mean ECE: benchmark vs. our methods

® The improvement is consistent across methods, with greater improvement at higher corruption
levels.

e * Ensemble/Dropout improvement is less, but benchmark dataset provided only summary (average)
information, which hindered our calibration methods.



Whisker plot showing means and spread
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® This figure shows the distribution of ECE across different corruptions.

® Compares benchmark with our models.



What'’s the idea of the method?

® Previous models have been trained a particular dataset (usually clean
o pmax distribution
ImageS). I simple calibration set

5 augmented calibration set

B test set

® But they are calibrated to the dataset they have seen, so they will be
overconfident on corrupted images.

® Our idea is to represent dataset shift, but model output (pmax) shift.

® Expose a model to corrupted images at different intensities, and
calibrated each one.

® more corrupted images, have a shift down of pmax values.

® Then, given a single image, estimate the level of corruption
(conditional probability) by the pmax value.

® choose the appropriate calibration set, and recalibrate based on that
set.

® with multiple images, can better estimate the level of corruption

® [Optional: slow down for algorithm details]



Deterministic Certified Robust Networks

with Chris Finlay PhD, now at Deep Render,
and Ryan Campbell MSc.

® Neural Networks vulnerable to adversarial attacks
® Can train network to be more robust (but lose accuracy)

® Certified networks are guaranteed to be robust to a certain norms: but they have
trade-offs:

® stochastic: require averaging multiple evaluations with noise added.
® require training new models from scratch

® QOur work reduces the trade-off of these certified networks



Intro: Adversarial Attacks

gradient vector from a particular

x
“panda” “nematode” “gibbon”
57.7% confidence 8.29% confidence 99.3 % confidence

Small (visually imperceptible) perturbations of an image lead to

misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow



Attacks on road sign

Left: real graffiti on a stop sign, something that most humans would not
think is suspicious. Right: a physical perturbation applied to a stop sign.
Models classify the sign on the right as a Speed Limit: 45 mph sign!

Source: Robust Physical-World Attacks on Deep Learning Visual Classification.



Madry: Defence by adversarial training

® Simple idea: train network replacing original images
with attacked images (still using correct labels).

® Now when someone attacks the images, the model
has already been trained to recognize them.

® Benefits: improved adversarial robustness

® Problem: loss of accuracy (say from 4% to 12% on
CIFAR 10).

Aleksander qury



Arms race of attack methods and defences

ResNeXt34, CIFAR-10
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Practical attacks: attack an image until misclassification occurs. Record
distance. What is the difference between the more and less vulnerable
images!



Certified Models

Given an input x, the model f is certified to £ norm r at x if it gives the same classification
on f(x + n) for all perturbation n with norm up to r,

argmax f(x +n) = argmax f(z), forall |n|s <7 (1)

Cohen et al. (2019) and Salman et al. (2019) certify models by defining a “smoothed” model,
fsmooth which is the expected Gaussian average of our initial model f at a given input

example z,
femeoth (z) ~ Ey [f (z + )] (2)

where the perturbation is sampled from a Gaussian, n ~ N (0,02I). Cohen et al. (2019) used

® Empirically models are not smooth *
enough 05|

® The model in this form, convolution
with a Gaussian, is smoothed. %

® But we don’t know how to do Gaussian 5!
convolution in high dimensions, so need

to sample

-1 -0.5 0 0.5 1

we want a smoother classification boundary



Challenges with Certification

Once we know the model is smooth, can certify by sampling the base model (many,
many times) in a neighborhood.

If the majority of the base values agree with classification, can then compute a
certified bound for the smoothed model.

Costs: inference is costly 30X. Certification is costly 1000X.

Also: lose accuracy when you add Gaussian noise.

So need to train a model from scratch to be resilient to Gaussian noise.VWWhat if we
could train a model to be smooth?

Bottom line: certified models still far from practical.



What if we could train a model to be
smooth!?

® Essentially, we want to train a model to be the Gaussian convolution of the
base model.

® Do this by proposing a loss which is equivalent to Gaussian convolution.

Theorem 1. (Bishop, 1995) Training a feed-forward neural-network model using the
quadratic (or mean-squared error) loss, with added Gaussian noise of mean 0 and vari-
ance o to the inputs, is equivalent to training with

E; [IIf(z) —yl* + o*[VF ()] (4)

up to higher order terms.
® Previously models were trained with noise to add a regularization.
® We go the other direction: add regularization to obtain a smoother model.

® use a modified loss for efficiency

1

Ez | =
2

2
Hsoftmax (fsm""th(:c)) — softmax (f(x)) HZ — % Hmesmo‘)th(x) Hz



Gaussian smoothing via PDE regularization

Theorem 2. (Strauss, 2007) Let f be a bounded function, x € R¢, and n ~ N (0,021 )
Then the following are equivalent:

1. E, [f(x +n)], the expected value of Gaussian averages of f at .

2. (f*N(0,0%1)) (), the convolution of f with the density of the N'(0,0%I) distribu-
tion evaluated at x.

3. The SOZUtiOTL 0’ the heat equation,
8t ’ 2 ’

at time t = 1, with initial condition f(x,0) = f(x).

® using PDE fact that Gaussian convolution is equivalent to heat equation.
® use a modified loss for efficiency

® Can start with a pre-trained model, and retrain for | epoch (much less)

1

Ez | =
2

2
Hsoftmax (fsm""th(x)) — softmax (f(x)) ||§ + % ||fosm°0th(az) ||z



Results

® Faster to train, faster to evaluate.

® Certified

Table 1: A comparison of robust models. Stochastic smoothing arises from methods like the ones
presented in Cohen et al. (2019) and Salman et al. (2019). Adversarial training from Madry et al.

(2018).
Model Can be obf:amed from Evaluation in one Is cortified?
any pretrained model forward pass
Deterministic Smoothing (ours)
Stochastic Smoothing X X
Adversarial Training X X

Table 2: Average classification inference time (seconds)

Model CIFAR-10 ImageNet-1k
CPU GPU CPU GPU
Deterministic (ours) 0.0049 0.0080 0.0615 0.0113

Stochastic (Cohen et al., 2019) 0.0480 0.0399 0.1631 0.0932




100 100

~

o0
o
1
0
o
1

-~
~—
-~
\‘
-~

60 A

[=)]
o
1

40 -

B
o
1

- paseline

+4 ===+ stochastic (Cohen et al.)
=+ stochastic (Salman et al.)
== deterministic (ours)

- baseline
20 1 =+ stochastic (Cohen et al.)
=+ stochastic (Salman et al.)
== deterministic (ours)

{, certified accuracy (Top-1)
S

{, certified accuracy (Top-5)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.0 0.1 0.2 0.3 0.4 0.5 0.6
{5 radius > radius

(a) CIFAR-10 top-1 certified accuracy, o = 0.10 (b) ImageNet top-5 certified accuracy, o = 0.25

Figure 1: Certified accuracy as a function of £2 radius.

® Better certified bounds that existing models.

® Can smooth an adversarially trained model, and get 4X certified bounds

Table 4: /> certified radit summary statistics for robust models on ImageNet-1k

Model ¢5 radius

median mean max.

Certified adversarially trained 0.4226 0.4193 0.6158
Adversarially trained 0.0790 0.1126 0.6158
Undefended baseline 0.0 0.1446 0.6158




Implementation details

® Training models with gradient regularization would normally be very costly.
® VWe use two ideas to make it faster:

® Finite differences for the gradient (so no double back-propagation):detach
this term from the automatic differentiation computation graph

® The full model gradient is high dimensional, we approximate it with
random projections, using concentration of measure.

Note that the ||V, f "”m""th(x)Hz term in (3) requires the computation of a Jacobian matrix
norm. In high dimensions this is computationally expensive. To approximate this term, we
make use of the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984; Vempala,

2005) followed by the finite difference approximation from Finlay and Oberman (2019).

We are able to approximate HV femooth H2 by taking the average of the product of
the Jacobian matrix and Gaussian noise vectors. Jacobian-vector products can be easily
computed via reverse mode automatic differentiation, by moving the noise vector w inside:

w- (Vzv(z)) = Vo (w - v(2)) ()



Part 2 :Faster Training of Neural ODEs using OT
regularization

How to train your neural ODE: the world of Jacobian and kinetic regularization, ICML 2020
- Chris Finlay, Postdoc McGill, now at DeepRender
- Levon Nurbekyan, Postdoc McGill, now postdoc UCLA w. Stan Osher

- Jorn-Henrik Jacobsen,Vector Institute, University of Toronto, now Senior Research Scientist at Apple.

® Background:
® Generative Models Results
® Neural ODEs
® Regularization
® |[mprovements to Training Time

® Example Images



Background: Density Estimation and Generative
Models (GANSs)

GANs (Goodfellow) 21,000
citations since 2014!

First method to generate realistic

looking new images from large
sample of images.
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Verified email at cs.stanford.edu - Homepage

Deep Learning
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Generative adversarial nets
| Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...
Advances in neural information processing systems, 2672-2680
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Neural ODEs for generative models

GANs: High quality images, but suffer from
“mode collapse”, in worst case, can just
memorize samples. W-GANs: enforce |-
Lipschitz, but still not onto.

Alternative: use an invertible network
® train by mapping images to noise

® generate by mapping noise to images.

Normalizing flows: E.Tabak (Courant Math),

2013,

Neural ODEs (classification), Duvenaud, 2018

(Vector Inst, Toronto) and Haber Ruthotto,
2018 (math).

FFJORD: (neural ODEs for generative models)

Duvenaud, ICLR 2019. Generative Neural
ODEs

‘%s:\ David Duvenaud v
o % @DavidDuvenaud

Neural ODEs: Instead of updating hiddens layers by
layer, we specify their derivative wrt depth with a neural
network. An ODE solver adaptively computes the output.
By amazing students @rtqichen @YuliaRubanova
@JesseBett.

arxiv.org/abs/1806.07366
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Neural ODEs for Generative Models

Density estimation
To learn the distribution py, solve the following log-likelihood
optimization problem

-
® Math Involved: meaxz log pa(zi(T)) + /0 div (v) (zi(s),s) ds
® ODE architecture
(adaptive ResNet) where z;(s) satisfies the ODE
® |nvertible network zi(s) = wo(zi(s), s)
Z,'(O) = X

® Divergence computation
in high dimensions Generation

® Appealing architecture: Sample z ~ N, and solve

more mathematical, more _
x(s) = —vp(x(s), s)
x(0) ==z

abstract.

le, x=z+ f;)- vg(z(s),s)ds



Good idea: ODEs for architecture.
Missing idea: penalize large Lipschitz constants.

target
. ODE Network FFJORD is promising, but there are no
f constraints placed on the paths the particles
4 # take
& » As long as source (data) distribution is
- 3 mapped to target (normal) distribution,
;l + the log-likelihood is maximized
2 : : .
+ # » ie solutions are not unique
1 ? ¢ » |f the particle paths are “wobbly” the
adaptive ODE solver has to take many

0—= 5 z /\/ \/ \ tiny steps, with many function

Input/Hidden/Output " evaluations. This is time consuming
source

Notes: no control on paths means no control on Lipschitz constant.
Result: more steps needed for ODE, slower network, and longer training times.




p(z(x, T))

Add regularization to obtain the OT map

target

source

Add two terms to the objective to encourage
regularity of trajectories:

> fOT Ivg(x(s), s)||? ds, the kinetic energy.
This is closely related to the Optimal
Transport cost between distributions

(Benamou-Brenier)

> [ 1 [ Vxve(x(s),s)]|% ds, a Frobenius
norm penalty on the Jacobian

» Frobenius norms can be computed again
with trace estimate:

|} = Te(ATA) = E, [n" AT A1
= E [||An||?]




Connection with Optimal Transportation

® Benamou-Brenier formulation of Optimal Transportation in
Lagrangian coordinates

T
min / / I£(2(x, £), 1) 2p(x) dxdt  (192)
0
subject to z(x,t) = f(z(x,1),t), (19b)
z(x,0) = x, (19¢)
2( T)ip = g. (19d)

® Our loss, with empirical measures, and a weak form of the
push-forward condition

b\ N T 1 N
~ |f(z(xi,t), )| dt — — > log pe(x:)
v N 2



What is the effect? Faster Training
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® |mage classification networks which have lots of (heuristic) regularization
built in, so the effects of regularization are marginal.

® For neural ODEs, bottleneck was training time. In this case regularization
solved the bottleneck. First in class to train on ImageNet.
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Thanks!



