Data, detection and metrics
for autonomous vehicles

.



Motional Structure

*APTIV:

HYUNDAI

MOTOR GROUP

L4 / L5 automated driving software
» 250+ patents and applications
» ~700 FTEs — including 300 Engineers

* $1.6bn in cash
« $400m in-kind contributions:
*VVehicle Modification Services; 155 vehicles

* Global footprint (Boston, Pitt, LV, SM, SGP) WOFSGUES IESISE © U= PEEnS

*70 R&D personnel for 3 years
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Our Autonomous Driving Trajectory

o~ s

2013 2015 2017 2019
+ Ottomatika founded + Aptiv acquires + nuTonomy launches AVs on + nuScenes by Aptiv dataset release
out of Carnegie Ottomatika Boston roads + Aptiv publishes Safety First for
Mellon University + First U.S. cross country + Aptiv acquires nuTonomy Automated Driving white paper
+ nuTonomy founded drive by Ottomatika and + Expansion into Shanghai
out of MIT Aptiv + 70k commercial rides
2014 2016 2018
+ Aptiv makes strategic + nuTonomy launches world's + First commercial AV September 2019

+ Aptiv + Hyundai Motor

investment in Ottomatika first public AV demo in deployment
+ nuTonomy tests fully Singapore + Grand opening of Las ?or::lupr: ;‘: ::3:: é:lnt
gti::onomous taxi service in Vegas Tech Center global deployment of
gapore

autonomous driving

4*_7 _]/\r vehicles




Careers in AV

Research & Software Infrastructure Software

e Planning e Simulation

e Controls e Cybersecurity

e Machine Learning e Tools

e Localization e DevOps

e Perception e Middleware
Program & Product Management Validation & Testing
Hardware Engineering Vehicle & Prototyping

Safety Engineering Systems Engineering



Our Offices

Pittsburgh Boston Singapore

e Core AV R&D e Core AV R&D e Core AV R&D
e Commercialization e Product and marketing e Mobility cloud
e Safety and security e Safety and security
e \/ehicle conversion usiness head
Seoul
e Collaboration
Las Vegas with HMC

e Commercial deployment

Los Angeles
e Machine learning focus
e Core AV R&D
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Multi modal object detection

e Input:
o Image: (nRows, nCols, nChannels) tensor.
o PointCloud: ((x, Y, z, i), nPoints) matrix.
e Output:
o List of 3d bounding boxes: (size, center, orientation)




Vision and lidar fusion: opportunities

Camera | X 2D X

Lidar 3D ) ¢ X




Benefits of fusion has been slow to materialize

e Lidar only methods outperform the fusion methods on the Kitti benchmark (!)

e Does this mean lidar makes vision redundant for 3D object detection? Surely not!

v

v



So why has fusion been so elusive?

Bird’s eye view Front view

One explanation is view-point:

Lidar

e The 2d conv layer is the workhorse of
spatial DL but world is 3d.
o How to project out data?
o Front-view or Bird's-eye view?
e Bird’s eye view (BEV) dominant:
o Lack of scale ambiguity.
o Minimal occlusions. Image

o Hard to project images to BEV.

e  Structure from
e So whatto do? motion

e Dense depth




Literature review

Previous fusion methods can be characterized into:

e Front-view fusion

e Object-centric fusion

e Continuous feature fusion

e Transform images to bird’s-eye view & perform fusion there

e Use image based 2D detections to seed the 3D detector



Front-view fusion

® P rOS Depth Map Depth Map (Convolved)

o Front-view natural for images &

point-clouds.

Pseudo-LIDAR

e Cons
o Depth maps suffer from blurring.

o Scale and occlusions.

o Harder to incorporate aux. inputs
Fig from PseudolLidar

like map layers.

e Tend not to do well on benchmarks

i


https://arxiv.org/abs/1812.07179

Object Centric Fusion

3 Proposal Network Region-based Fusion Network

e Different backbones for FV and BEV.

e Fusion happens at the object proposal
level by applying ROI pooling.

Tmage Input . -

e Allows end to end optimization but slow =g el )
e B -
and cumbersome. . e -

BEV Input BEV Feature Maps AVO D

Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xi
” Joint 3D Proposal Generation and Object Detection from View Aggregation Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, Steven Waslander


https://arxiv.org/abs/1611.07759
https://arxiv.org/abs/1712.02294
https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Ma%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Wan%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Li%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Xia%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Ku%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Mozifian%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harakeh%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Waslander%2C+S

Continuous Feature Fusion

e Allows features to be shared across
all strides of image and lidar
backbones. Comers v

Fusion Layers

e Drawback: feature blurring.

e ContFuse tries to remedy this based = uowse
on kNN, bilinear interpolation and a ContFuse
learned MLP but the problem still
persists.

” Deep Continuous Fusion for Multi-Sensor 3D Object Detection Ming Liang, Bin Yang, Shenlong Wang, Raquel Urtasun


http://openaccess.thecvf.com/content_ECCV_2018/papers/Ming_Liang_Deep_Continuous_Fusion_ECCV_2018_paper.pdf?utm_campaign=affiliate-ir-Optimise%20media%28%20South%20East%20Asia%29%20Pte.%20ltd._156_-99_national_R_all_ACQ_cpa_en&utm_content=&utm_source=%20388939

Lidar points in particular x-y

Feature blurring explained ground plane bin

front-view RGB image

project




Back bone feature layer

Feature blurring explained

front-view RGB image

project?




Transform Image to BEV

e Use dense depth estimation to
transform images to a BEV
representation and do fusion there

e Performance falls short of SOTA and
requires several expensive steps of
preprocessing to build the pseudo
pointcloud.

Dense Pseudo-LIDAR Point Cloud

-

Sparse LIDAR Point Cloud

Dense Predicted Depth Map

Pseudo-Lidar++

Pl

Corrected Pseudo-LiDAR Peint Cloud


https://arxiv.org/abs/1906.06310

Using 2D detection seeding

Semantics extracted from image used to seed
detection in pointcloud

e Frustum PointNet and ConvNet use 2D
detections to limit search space inside the
frustrum

e |POD uses semantic segmentation to seed
the 3D proposal

2D region (from CNN) to 3D frustUm/C_{f.__,..-

Frustum PointNet

Point-Based
Proposal

Generation

PointNet++
Feature
Extractor

(B,N, 4) (B.N,C)

Drawback: Imposes an upper bound on recall. Also,
computationally expensive.

> 200


https://arxiv.org/abs/1711.08488
https://arxiv.org/abs/1812.05276

PointPainting: sequential fusion for 3d object detection

e New method for lidar and vision fusion.
e Sequential and combines 3d lidar detectors and image semantic segmentation.

e Improves 3d detection across classes, datasets and detection methods.

/ ?\\%&"i

” Sourabh Vora, Alex H. Lang, Bassam Helou, Oscar Beijbom, “PointPainting: Sequential Fusion for 3D Object Detection”, CVPR 2020.



Algorithm 1 PointPainting(L, S, T, M)
. . . . Tnputs:
P t P t . AI th Lidar point cloud L € RV-? with N points and D > 3.
0 I n a I n I n g . g 0 rI I I | Segmentation scores S € RY#:C with C classes.
Homogenous transformation matrix 7' € R**,
Camera matrix M € R3%,

Output:
Painted lidar points P € RN.D+C

for ['c L do
fimagc = PROJECT(J‘/I, T1 rzyz) > [i'mage € ]Rz
§= S[Enmge[olq Exxxagc[ll, 5] >§E R€
7 = Concatenate(l, 5) > 5 RP+C
end for

Lidar

Point Detector
Painting
e.g.
Point-RCNN
PointPillars

efc

Point Painting




Comparison with literature

Addresses the shortcomings of the previous methods

e Does not add any restriction on the 3D detection architecture
e Does not suffer from feature or depth blurring
e Does not require a pseudo-pointcloud to be computed

e Does not limit the maximum recall

i



KITTI Results (val set)

mAP Car Pedestrian Cyclist
Mod. || Easy | Mod. | Hard || Easy | Mod. | Hard || Easy | Mod. | Hard

PointPillars [ '] 73.78 || 90.09 | 87.57 | 86.03 || 71.97 | 67.84 | 62.41 | 85.74 | 65.92 | 62.40
Painted PointPillars | 76.27 || 90.01 | 87.65 | 85.56 || 77.25 | 72.41 | 67.53 || 81.72 | 68.76 | 63.99

IR T —

Method

Delta +2.50 || -0.08 | 008 | -047 || +5.28 | +4.57 | +5.12 || -4.02 | +2.84 | +1.59

VoxelNet [, 7] 71.83 || 89.87 | 87.29 | 86.30 || 70.08 | 62.44 | 55.02 | 85.48 | 65.77 | 58.97
Painted VoxelNet 73.55 || 90.05 | 87.51 | 86.66 || 73.16 | 65.05 | 57.33 || 87.46 | 68.08 | 65.59

Delta +1.71 || +0.18 | +0.22 | +0.36 || +3.08 | +2.61 | +2.31 || +1.98 | +2.31 | +6.62

PointRCNN [ 1] 72.42 || 89.78 | 86.19 | 85.02 | 68.37 | 63.49 | 57.89 || 84.65 | 67.59 | 63.06
Painted PointRCNN | 75.80 || 90.19 | 87.64 | 86.71 || 72.65 | 66.06 | 61.24 || 86.33 | 73.69 | 70.17

ST S Y SRR g =

Delta +337 || +0.41 | +1.45 | +1.69 || +4.28 | +2.57 | +3.35 || +1.68 | +6.10 | +7.11

Table 1. PointPainting applied to state of the art lidar based object detectors. All lidar methods show an improvement in bird’s-eye view
(BEV) mean average precision (mAP) of car, pedestrian, and cyclist on KITTI val set, moderate split.

o



KITTI Results (test set)

: mAP Car Pedestrian Cyclist
Mefiice Modality Iyod. [ Easy | Mod. | Hard || Easy | Mod. | Hard || Easy | Mod. | Hard
MV3D[3] L&l | N/A | 8662 | 7893 | 6980 || N/A | N/A | N/A || NJA | N/A | N/A
AVOD-FPN[9] L&I | 6407 || 90.99 | 84.82 | 79.62 || 5849 | 50.32 | 46.98 || 69.39 | 57.12 | 51.09
IPOD[30] L&I | 64.60 || 89.64 | 84.62 | 79.96 || 60.88 | 49.79 | 4543 || 78.19 | 59.40 | 51.38
F-PointNet[17] L&I | 6520 || 91.17 | 84.67 | 74.77 || 57.13 | 49.57 | 4548 || 77.26 | 61.37 | 53.78
F-ConvNet[25] L&l | 67.89 || 9151 | 85.84 | 76.11 || 57.04 | 48.96 | 44.33 || 84.16 | 68.88 | 60.05
MMF[12] LI&M | N/A || 93.67 | 8821 | 8199 || NJA | N/A | N/A | NJA | N/A | N/A
LaserNet[16] T N/A || 79.19. | 7452 | 6845 || N/A | N/A | N/A | N/A | N/A | N/A
SECONDI[28] L 61.61 | 89.39 | 83.77 | 78.59 || 55.99 | 45.02 | 4093 || 765 | 56.05 | 49.45
PointPillars[10] L 6598 || 90.07 | 86.56 | 82.81 || 57.60 | 48.64 | 45.78 || 79.90 | 62.73 | 55.58
STD[31] L 68.38 || 94.74 | 89.19 | 86.42 || 60.02 | 48.72 | 44.55 || 81.36 | 67.23 | 59.35
PointRCNN[20] L 66.92 || 92.13 | 87.39 | 82.72 || 54.77 | 46.13 | 42.84 || 82.56 | 67.24 | 60.28
Painted PointRCNN | L &1 | 69.86 || 92.45 | 88.11 | 83.36 || 58.70 | 49.93 | 4629 || 83.91 | 71.54 | 62.97
_____ Delta | AT | +294 | +032 | +0.72 | +0.64 || +3.93| +3.80 | +3.45 || +1.35 | +4.30 | +2.69 |

Table 2. Results on the KITTI test BEV detection benchmark. The modalities are lidar (L), images (I), and maps (M). The delta is the
difference due to Painting, ie Painted PointRCNN minus PointRCNN.

_



nuScenes Results (test set)

| Methods | mAP | Car | Truck | Bus | Trailer | Ctr. Vhl. | Ped. | Motorcycle | Bicycle | Tr. Cone | Barrier |
PointPillars [10, 1] 305 | 684 | 23.0 | 28.2 234 4.1 59.7 274 11 30.8 38.9
PointPillars+ 40.1 | 76.0 | 31.0 | 32.1 36.6 11.3 64.0 34.2 14.0 45.6 56.4

| Painted PointPillars+ | 464 | 77.9 | 358 | 361 | 373 | 158 |733) 415 _ ) _ 41 _| 624 | 602_|
Delta +63 | +1.9 | +48 | +3.9 | +0.7 +4.5 +9.3 +7.3 +10.1 +16.8 +3.8

Table 3. Per class nuScenes performance. Evaluation of detections as measured by average precision (AP) or mean AP (mAP) on nuScenes
test set. Abbreviations: construction vehicle (Ctr. Vhl.), pedestrian (Ped.), and traffic cone (Tr. Cone).



PointPainting: Ablation Study

Better image based semantic
segmentation model => better 3D
results from PointPainting

Oracle: Use GT 3D boxes to paint all
points (instead of using predicted
semantic segmentation scores). Used
to simulate perfect semantic
segmentation.

BEV Detection (mAP)

w H wun (@)
o O o o
1 1 1 ]

N
o

0 20 40 60
Segmentation Quality (mIOU)

Oracle



PointPainting: Latency Analysis

e Latency can be minimized by pipelining thereby making the runtimes of
‘painted’ methods similar to its lidar only baseline.

Method Matching NDS mAP Latency Concurrent Matching Consecutive Matching
: , . Images —|—|—l—|—>Time Images —H—l—l—bTime
Painted Time (PointPillars)

PointPillars | Concurrent | 463 1 33.9 1, 1ine (Img. Seg.) i I i I \\\\
Painted Point ||||I Point |||||
ainte Consecutive | 46.4 | 33.9 | Time (PointPillars) | Clouds Clouds

PointPillars

-
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(Non-public) datasets

o

Building data-engines a core part of applied ML.

Most critical and nerve wracking part of building a ML stack!
How to mine for the right data?

How to annotate large amounts of data cheaply?

How to define the right taxonomy?

Good news is that we have done the hard work
for you!



nuScenes: a multimodal dataset for autonomous driving

e 1000 20-second scenes

e Synced sensors w/ 360 view
e High-def maps

e Fully annotated in 3D

e Free for research

Map

"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"

https://www.nuscenes.org/

” Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan,
Oscar Beijbom, “nuScenes: A multimodal dataset for autonomous driving”, CVPR 2020.



nuScenes: diversity

Interesting maneuvers and rare classes

4 diverse locations in Boston and Singapore
Left-hand vs. right-hand driving

Different vehicle and vegetation types
Night-time and rainy data

Downward
@® Upward

— X-axis
Y-axis
— Z-axis




nuScenes: friends and followers

Ditiget Ve Sce- Size RGB PCs PCs Ann. 3D Night / Map Clas- Liesitioha
nes (hr) imgs lidar'?| radar | frames | boxes Rain layers ses

CamVid [8] 2008 4 04 18k 0 0 700 0 No/No 0 32 Cambridge
Cityscapes [19] 2016 n/a - 25k 0 0 25k 0 No/No 0 30 50 cities
Vistas [33] 2017 n/a - 25k 0 0 25k 0 Yes/Yes 0 152 Global
BDDI100K [85] 2017 100k 1k 100M 0 0 100k 0 Yes/Yes 0 10 NY, SF
ApolloScape [41] 2018 - 100 144k 0** 0 144k 70k Yes/No 0 8-35 4x China
D2City [11] 2019 kT - 700k " 0 0 700k T 0 No/Yes 0 12 5x China
KITTI [32] 2012 22 1.5 15k 15k 0 15k 200k No/No 0 8 Karlsruhe
AS lidar [54] 2018 - 2 0 20k 0 20k 475k -/- 0 6 China
KAIST [17] 2018 - - 8.9k 8.9k 0 8.9k 0 Yes/No 0 3 Seoul
H3D [61] 2019 160 0.77 83k 27k 0 27k 1.1IM No/No 0 8 SF
nuScenes 2019 1k 5.5 1.4M 400k 1.3M 40k 1.4M Yes/Yes 11 23 Boston, SG
Argoverse [10] 2019 1137 | 0.67 | 490kT 44k 0 22kt 993kT | Yes/Yes 2 15 Miami, PT
Lyft L5 [45] 2019 366 2.5 323k 46k 0 46k 1.3M No/No 7 9 Palo Alto
Waymo Open [76] | 2019 1k 5.5 IM 200k 0 200kt | 12M* | Yes/Yes 0 4 3x USA
A*3D [62] 2019 n/a 55 39k 39k 0 39k 230k Yes/Yes 0 7 SG
A2D2 [34] 2019 n/a - - - 0 12k - -/- 0 14 3x Germany

s

Table 1. AV dataset comparison. The top part of the table indicates datasets without range data. The middle and lower parts indicate
datasets (not publications) with range data released until and after the initial release of this dataset. We use bold highlights to indicate the
best entries in every column among the datasets with range data. Only datasets which provide annotations for at least car, pedestrian and
bicycle are included in this comparison. (") We report numbers only for scenes annotated with cuboids. (*) The current Waymo Open
dataset size is comparable to nuScenes, but at a 5x higher annotation frequency. (7) Lidar pointcloud count collected from each lidar.
(**) [41] provides static depth maps. (-) indicates that no information is provided. SG: Singapore, NY: New York, SF: San Francisco, PT:
Pittsburgh, AS: ApolloScape.



nuScenes: experiments

e Larger datasets are needed

70% relative improvement with Pointpillars vs. KITTI amounts of training data

20- |
1
_15- i
R :
D_ ]
- 0 i —— SSD+3D
5- ] —— PointPillars
: —— OFT
0- -~ i | | |
20 40 60 80 100

” % Training data used



nuScenes: experiments

e Multiple lidar sweeps drastically improve performance

e Pre-training on KITTI / ImageNet only gives a small improvement

Lidar sweeps|Pretraining NDS (%) mAP (%) /mAVE (m/s)
1 KITTI 31.8 21.9 1.21
5 KITTI 42.9 27.7 0.34
10 KITTI 44.8 28.8 0.30
10 ImageNet 44.9 28.9 0.31
10 None 44.2 27.6 0.33

Table 3. PointPillars [5 | ] detection performance on the val set. We
can see that more lidar sweeps lead to a significant performance
increase and that pretraining with ImageNet 1s on par with KITTIL



nuScenes: expansions

e nulmages
o 100k images with 800k 2d boxes and
masks
o Depth maps
o Temporal images and ego-poses

e nuScenes-lidarseg '
o 40k keyframes with point-level labels for P
1.1 Billion points |
o Go beyond bounding boxes; focus on
stuff classes (road, sidewalk, building)




nuScenes lidarseg



https://docs.google.com/file/d/1D_vVB-O-orGPzYLT9ngrE62v87wRUH8Y/preview
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NN's will learn what you ask them to learn: no more, no less

0 2200 400 600 800 1000 1200
Pedstrian height (pixels)

Prototype image detector had solid mAP & did well on small objects, but missed nearby objects!



The AV objective function

o

Need function f(w): scenario -> score.

@)

©)

To optimize our stack

For retrospection if incidents happen.

Not obvious what f should look like!

O

©)

Legal, ethics, culture all impose constraints.

Often conflicting.

The “Rulebooks” idea address this.

O

O

Each aspect encoded as a “rule”

Partial ordering across rules.

Liability, Ethics, and Culture-Aware Behavior Specification using Rulebooks

Safety of humans

Not at fault

Safety of property

E]BE

Operation Ilmlts

|Iane directionl |drivab|e areasl E

r

Physical interaction
Written rules
Unwritten Right of way -
oce ===
rules Signalling animals
B
Helping flow of traffic
— Victimless violations — Perception of safety
Speed limits| ... | ]
Stopping rules E] Predictability
Parking rules

Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry Yershov, Scott

Pendleton, James Fu, Emilio Frazzoli

Passenger comfort

|Own progress towards goal|



https://arxiv.org/search/cs?searchtype=author&query=Censi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Slutsky%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Wongpiromsarn%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Yershov%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Pendleton%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Pendleton%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Fu%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Frazzoli%2C+E

Rule R3a: Stay in drivable area

Variables (in addition to those from A1): Rule satisfied

dtot oft - maximum infringement of the ego to the left Non drivable area

boundary of the drivable area

dtot,right : maximum infringement of the ego to the right

boundary of the drivable area

Parameters:
W, .4 road width multiplied by a coefficient

Non drivable area
Violation metric at each time: Non drivable area

Q(t)= ( dtot,left(t) * dtot,right(t) ) / VVroad

Rule violated

Violation metric over time for each instance:
0 =(11T) [y 7 o)

dtot! ght Non drivable area

o



But how to combine the rules?

“So what would a lawyer say about all of this?”
"An AV would need to internalize what a reasonable person would do.”
-- Emilio Frazzoli’

o



The reasonable crowd

e Show pairs of videos and ask what a “reasonable” driver would do.
e Learn a mapping from rules to human preferences.
e f(w) score of scenario w.

o f(w) = f_crowd(f_rules(w))

o f_rules(w) is an explicit rulebooks encoding

o f_crowd is learned from data.

Use data to model complex relationship. Linear function allows inspection

’ ‘ Bassam Helou, Anne Collin, Radboud Tebbens, Calin Belta, Nok Wongpiromsarn, Oscar Beijbom, In submission



Pilot study

o

30 scenarios (map + agents).

A total of 147 trajectories & 376 unique
trajectory pairs.

Median trajectory length is 9s. There is a total
of ~ 24 mins of driving time.

Each trajectory pair is annotated 6 times.

No stop signs or traffic lights



https://docs.google.com/file/d/1ianrYIgwvYMknW6BF7j8cHhj0pBibxdB/preview
https://docs.google.com/file/d/1Z_VcY5pt3_mv_AI-5lO_K36rojK0zwHW/preview
https://docs.google.com/file/d/1x0HUH5D0LgpqXFMYaJP_XK9w9NbGrB-2/preview

Insight #1: Workers agree and a linear model can model this

Our best model would be
2nd worst worker :P

Model name test accuracy /

Logistic regression = 81.4%

Linear SVM 80.5%
rbF SVM 79.7% ]
MLP 77.9% o 77.5 80'.0 82.5 85.0 87'5 90.0' 92.5 95.0
Worker agreement with gt labels in %
Random Forest 72% Worker agreement with ground truth labels (median = 91%)

i



Insight #2: Example rankings for Logistic Regression (LR)

Track id % LR rank
preferred
19-1-5 100 1
19-1-2 77 2
19-1-3 70 3
19-1-4 44 4
19-1-1 41 5
19-1-7 13 6

o


https://docs.google.com/file/d/1g1B1WUhFAIUBmIyQTDi3vX8ASuJmYmmM/preview

Pilot 3 ML results: Importance of different rules

o

Rule Name

No Collision

Pedestrian clearance off road

Parked car clearance

Pedestrian clearance on road

Stay on drivable area

Stay in lane

Crosswalk with vulnerable road users
Max speed

Drive smoothly

Logistic Regression Weight

16.1%
14.9%
13.1%
11.9%
10.8%
10%
9.5%
8.8%

5%



Input data:

s,: Camera

r,: % corrupted pixels
R: Testin a calibration
room against gt images

Images

s,: LIDAR

r,: avg distance error
R,: Testin a calibration
room against gt object
distances

PointClouds _|

s, Image object detector
r; (MAP, attributes’
recall, confusion matrix)
R, Run on a collection

of annotated images ag
compare to gt

s, Maps database

r;: % corrupted locations
R, query database and
compare map to gt map

2
%
(3
[®)
%
»

Maps

s: LIDAR Semantics
Network

r;: (MAP, avg orientation
error, confusion matrix)
Rs: Run on a collection
of annotated pointclouds
and compare to gt

s, Tracker

r,: (Clear MOT, recall)
R.: Run on a collection
of annotated images and
pointclouds and compare
to gt

Mapping back to sub-systems (ongoing work: let’s chat later)

Map with
objects and
their tracks

Segmentation
mask

4

s, Ego vehicle Location
estimator

r,: avg distance error in
location

R, Run on perfect
pointclouds, masks and

maps, and compare to gt

Maps

rg sonable crowd
rating)
Rg: Run on a collection
of traffic scenarios and

obtain rules’ scores




Thanks to all co-authors and colleagues!

Interested in a position?
https://motional.com/careers/
lisa.kattan@motional.com

Get started with R&D?
WWww.nuscenes.org
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