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Secure Learning in Adversarial
Environments



Machine Learning is Ubiquitous

2

Autonomous Driving

Malware Classification

Smart CityHealthcare

Fraud Detection Biometrics Recognition



Security & Privacy Problems
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Trading Bot Crashes
The Market

Privacy Concerns



We Live in an Adversarial Environment
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Perils of Stationary Assumption

Traditional machine learning approaches assume

Training Data

≈
Testing Data
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Robust physical world attacks against
different sensors

Potential defenses against adversarial
behaviors based on intrinsic learning
properties



Adversarial Perturbation In Digital World
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Deep Neural Networks

Gradient Descent

min
✓

J(✓, x, y)

Model parameters Input feature
vector

label

max
✏

J(✓, x+ ✏, y)

Adversarial perturbation

How to solve the adversary strategy
Local search
Combinatorial optimization
Convex relaxation



Physical Attacks In Practice

Physical attack: Sharif et al., “Accessorize to a crime: real and stealthy attacks on state-of-the-art
face recognition,” CCS 2016



However, What We Can See Everyday…



The Physical World Is… Messy

Varying Physical Conditions (Angle, Distance, Lighting, …) Physical Limits on Imperceptibility

Fabrication/Perception Error (Color Reproduction, etc.) Background Modifications*

Digital Noise
(What you want)

What is 
printed

What a camera 
may see
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Image Courtesy, 
OpenAI



An Optimization Approach To Creating 
Robust Physical Adversarial Examples
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Perturbation/Noise Matrix

Lp norm (L-0, L-1, L-2, …) Loss Function

Adversarial Target Label



Optimizing Spatial Constraints 
(Handling Limits on Imperceptibility)
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Subtle Poster

Camouflage Sticker

Mimic vandalism

“Hide in the human 
psyche”
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Subtle Poster Subtle Poster Camo Graffiti Camo Art Camo Art

Lab Test Summary
(Stationary)

Target Class: Speed Limit 45



Art Perturbation
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Subtle Perturbation
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Physical Attacks Against Detectors
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Physical Attacks Against Detectors

17



18

Physical Adversarial Stop Sign in the
Science Museum of London



Physical Adversarial Attacks
Against Sensor Fusion

Goal: we aim to generate physical adversarial object against 
real-world LiDAR system.

LiDAR

LiDAR-based perception



Challenges
• Physical LiDAR equipment
• Multiple non-differentiable pre/post-processing stages

• Manipulation constraints
– Limited by LiDAR
– Keeping the shapeplausible and smooth adds additional constraints 

• Limited Manipulation Space
– Consider the practical size of the object versus the size of the scene that is 

processed by LiDAR, the 3D manipulation space is rather small (< 2% in our 
experiments)

LiDAR



Pipeline of LiDAR-adv
• Input: a 3D mesh + shape perturbations
• Non-differentiable Pre/Post Processing
• Target: fool a machine learning model to ignore the object

and keep the shape printable
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Physical Experiments
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Physical Experiments
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Physical World MSF-based Attacks
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https://aisecure.github.io/BLOG/MRF/Home.html

https://aisecure.github.io/BLOG/MRF/Home.html


Takeaways
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Adversarial perturbations are possible in physical
world under different conditions and viewpoints,
including the distances and angles.



Attacking Deep Reinforcement
Learning



A3C: A Deep Policy on Pong
Reinforcement learning algorithms:

• Actor – policy network to predict the 
action based on each frame

• Critics – value function to predict the 
value of each frame, and the action is 
chosen to maximize the expected 
value

• Actor-critics (A3C) – combine value 
function into the policy network to 
make prediction



Agent in Action: attack the policy 
network

Original Frames Adversarial perturbation 
injected into every frame



Agent in Action: attack the value 
function

Original Frames Adversarial perturbation 
injected into every other 10 
frames





Takeaways

• Reinforcement learning systems (e.g., robotics, 
self-driving systems) are also vulnerable to 
adversarial examples

• To attack a reinforcement learning system, 
adversarial perturbations need not be injected to 
every frame.



Numerous Defenses Proposed

Ensemble

Normalization

Distributional detection

PCA detection

Secondary classification

Stochastic

Generative

Training process

Architecture

Retrain

Pre-process input

Detection

Prevention



Robust physical world attacks against
different sensors

Potential defenses against adversarial
behaviors based on intrinsic learning
properties



Beyond the Min-max Game

• Will it help if we have more knowledge about
our learning tasks?
– Properties of learning tasks or data
– General understanding about ML models
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Characterize Adversarial Examples Based on Spatial 
Consistency Information for Semantic Segmentation 
• Attacks against semantic segmentation

– State-of-the-art attacks against segmentation: Houdini [NIPS2017],
DAG [ICCV 2017]

– We design diverse adversarial targets: hello kitty, pure color, a real
scene, ECCV, color shift, strips of even color of classes

– Cityscapes and BDD datasets
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Benign

Adversarial Examples



Spatial Context Information
• Spatial consistency is a distinct property of image 

segmentation
• Perturbation at one pixel will potentially affect the prediction 

of surrounding pixels
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For each pixel m, we select its
neighbor pixels and calculate the
entropy of their predictions for m



mIOU

mIOU

Random Patch Selection Spatial Consistency

Pipeline of spatial consistency based detection for adversarial examples on
semantic segmentation



Detecting adversarial instances based on
spatial consistency information

• Both the spatial consistency based detection and the scaling
based baseline achieve promising detection rate on different
attacks

• The scaling based baseline fails to detect strong adaptive
attacks while the spatial based method can
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Takeaways

Spatial consistency information can be
potentially applied to help distinguish benign
and adversarial instances against segmentation
models.
Temporal consistency?
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Attacks on
segmentation  

Attacks on pose
estimation

Attacks on object
detection

Adversarial Frames In Videos



Defensing Adversarial behaviors in
Videos – Temporal Dependency
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• The results show that choosing more random patches can improve detection
rate while k=5 is enough to achieve AUC 100%

• The spatial consistency based detection is robust against strong adaptive
attackers due to the randomness in patch selection
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Temporal Consistency Based Analysis

• “Yanny” or “Laurel”? – adversarial audio

44[ICLR 2019]



Temporal Consistency (TD) Based
Detection
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TD achieves high detection rate for adversarial audio



Certified Robustness for Sensing-
Reasoning ML Pipelines
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Conclusions
• ML models are vulnerable to sophisticated

adversarial attacks (e.g. evasion, poisoning)
• Any ML models can be adversarially attacked
• Lead board of the certified robustness:

https://github.com/AI-secure/Provable-
Training-and-Verification-Approaches-
Towards-Robust-Neural-Networks

• First certified robustness against backdoor
attacks: https://arxiv.org/abs/2002.11750
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https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-Neural-Networks
https://arxiv.org/abs/2002.11750




Robust Smart Home

Large-Scale Auditing Game With
Human In the Loop

Thank You!
Bo Li

lbo@illinois.edu

http://boli.illinois.edu/
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Privacy-Preserving Data Analysis

Privacy Protected Mobile
Healthcare

Topic of Workflow Analysis
Game Theoretic Auditing System

for EMR

Robust Face Recognition
Against Poisoning Attack

Robust Learning


