Secure Learning in Adversarial Environments

Bo Li

Assistant professor University of Illinois at Urbana-Champaign

Machine Learning is Ubiquitous

Autonomous Driving

Healthcare

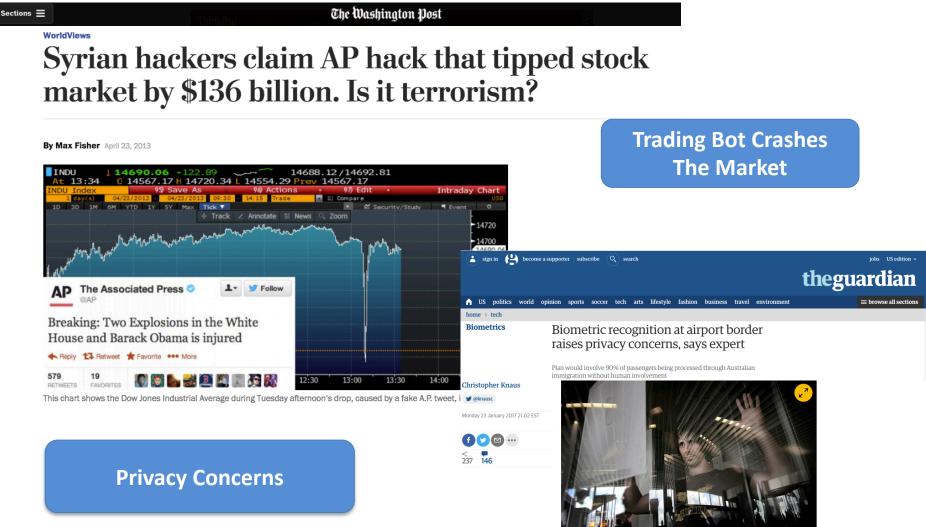
Smart City

Malware Classification

Fraud Detection

Biometrics Recognition

Security & Privacy Problems

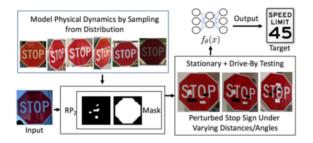


We Live in an Adversarial Environment

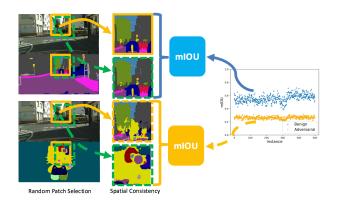


Perils of Stationary Assumption

Traditional machine learning approaches assume

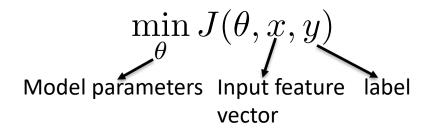


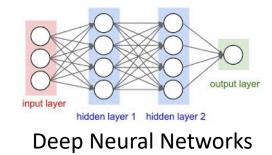
Robust physical world attacks against different sensors

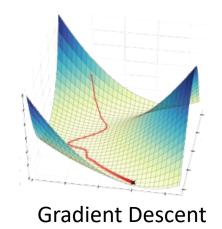


Potential **defenses** against adversarial behaviors based on intrinsic learning properties

Adversarial Perturbation In Digital World







$$\max_{\epsilon} J(\theta, x + \epsilon y)$$

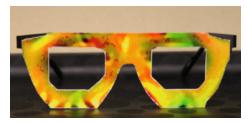
Adversarial perturbation

How to solve the adversary strategy

Local search

- Combinatorial optimization
- Convex relaxation

Physical Attacks In Practice



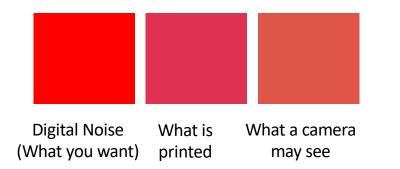
Physical attack: Sharif et al., "Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition," CCS 2016

However, What We Can See Everyday...

The Physical World Is... Messy

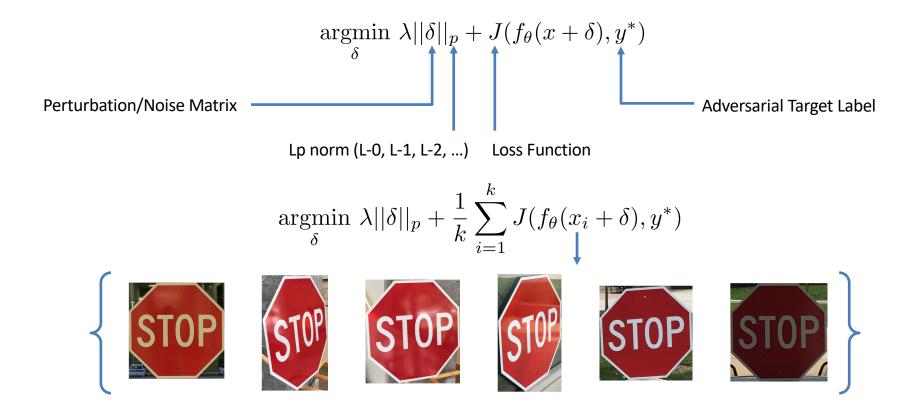
Varying Physical Conditions (Angle, Distance, Lighting, ...) Physical Limits on Imperceptibility

Fabrication/Perception Error (Color Reproduction, etc.)



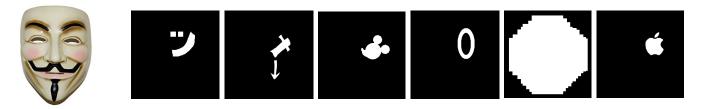
Background Modifications* OpenAl

An Optimization Approach To Creating Robust Physical Adversarial Examples



Optimizing Spatial Constraints (Handling Limits on Imperceptibility)

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_{x} \cdot \delta ||_{p} + \frac{1}{k} \sum_{i=1}^{k} J(f_{\theta}(x_{i} + M_{x} \cdot \delta), y^{*})$$



Subtle Poster

Camouflage Sticker

Mimic vandalism

"Hide in the human psyche"

Subtle Poster

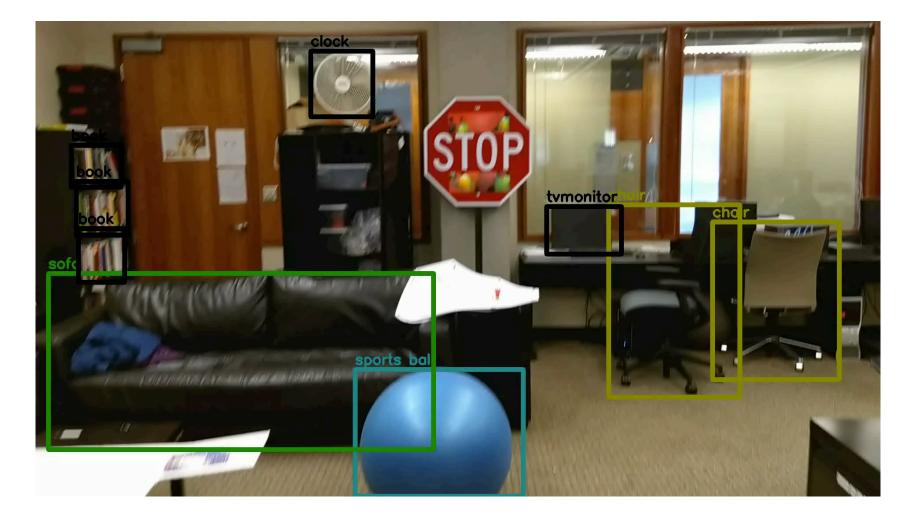
Lab Test Summary (Stationary)

Target Class: Speed Limit 45

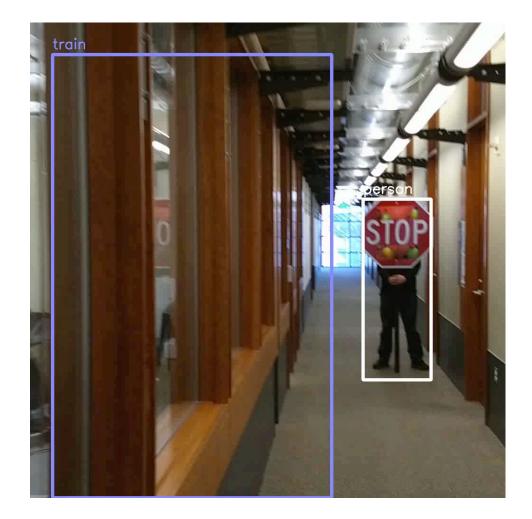
Art Perturbation

Subtle Perturbation

Physical Attacks Against Detectors



Physical Attacks Against Detectors



Physical Adversarial Stop Sign in the Science Museum of London

Physical Adversarial Attacks Against Sensor Fusion

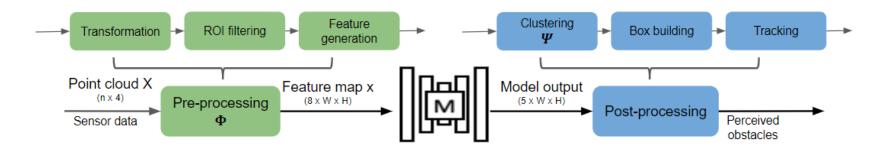
Goal: we aim to generate physical adversarial object against real-world LiDAR system.

LiDAR-based perception

Challenges

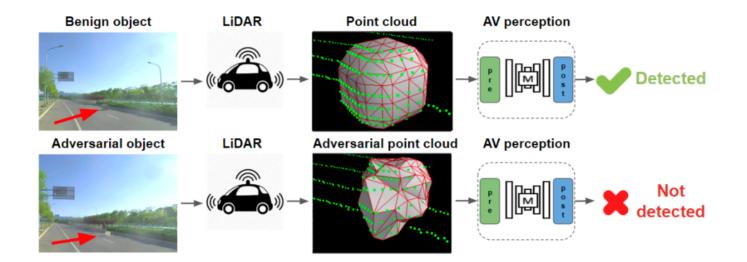
- Physical LiDAR equipment
- Multiple non-differentiable pre/post-processing stages
- Manipulation constraints
 - Limited by LiDAR

- Keeping the shape plausible and smooth adds additional constraints
- Limited Manipulation Space
 - Consider the practical size of the object versus the size of the scene that is processed by LiDAR, the 3D manipulation space is rather small (< 2% in our experiments)



Pipeline of *LiDAR-adv*

- Input: a 3D mesh + shape perturbations
- Non-differentiable Pre/Post Processing
- Target: fool a machine learning model to ignore the object and keep the shape printable

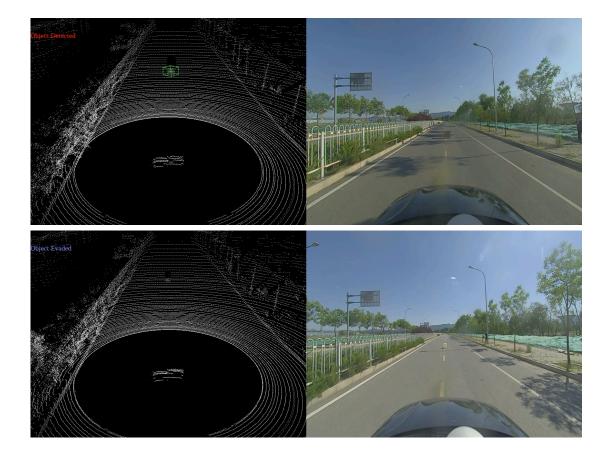


Physical Experiments

Adversarial object/benign box in the middle

Adversarial Object

Benign Object

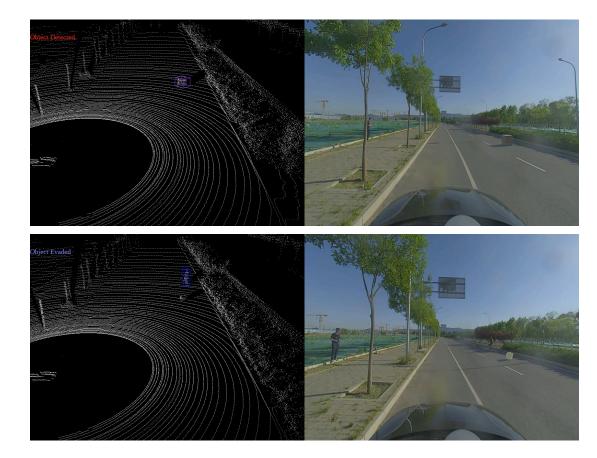


Physical Experiments

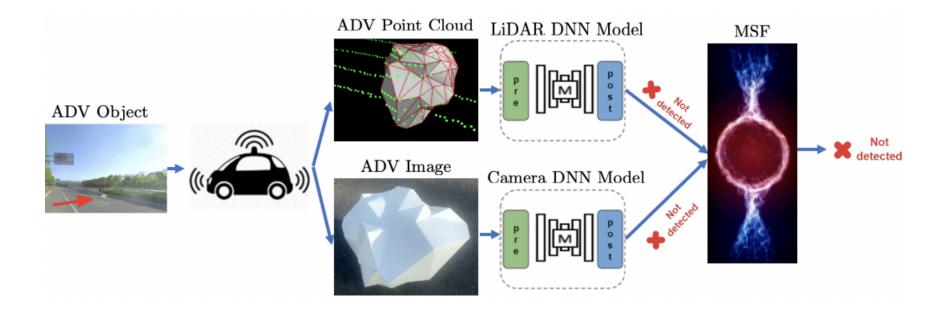
Adversarial object/benign box on the right

Adversarial Object

Benign Object



Physical World MSF-based Attacks

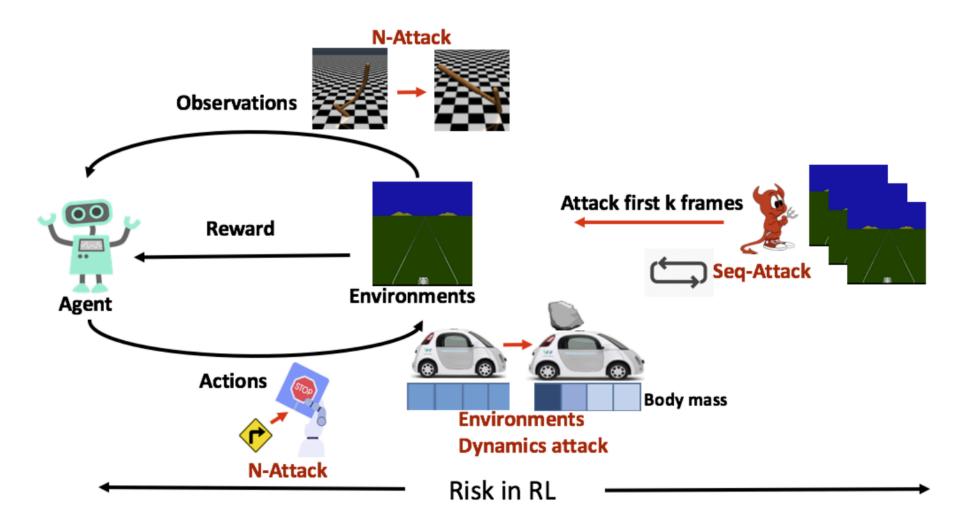


https://aisecure.github.io/BLOG/MRF/Home.html

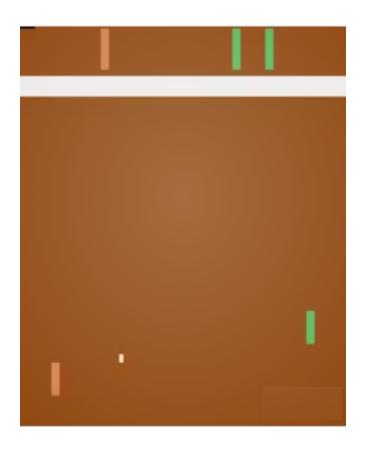
Takeaways

Adversarial perturbations are possible in physical world under different conditions and viewpoints, including the distances and angles.

Attacking Deep Reinforcement Learning



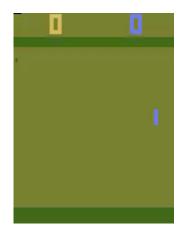
A3C: A Deep Policy on Pong



Reinforcement learning algorithms:

- Actor **policy network** to predict the action based on each frame
- Critics value function to predict the value of each frame, and the action is chosen to maximize the expected value
- Actor-critics (A3C) combine value function into the policy network to make prediction

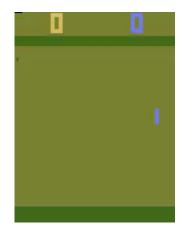
Agent in Action: attack the policy network

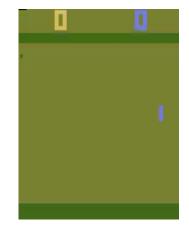


Original Frames

Adversarial perturbation injected into every frame

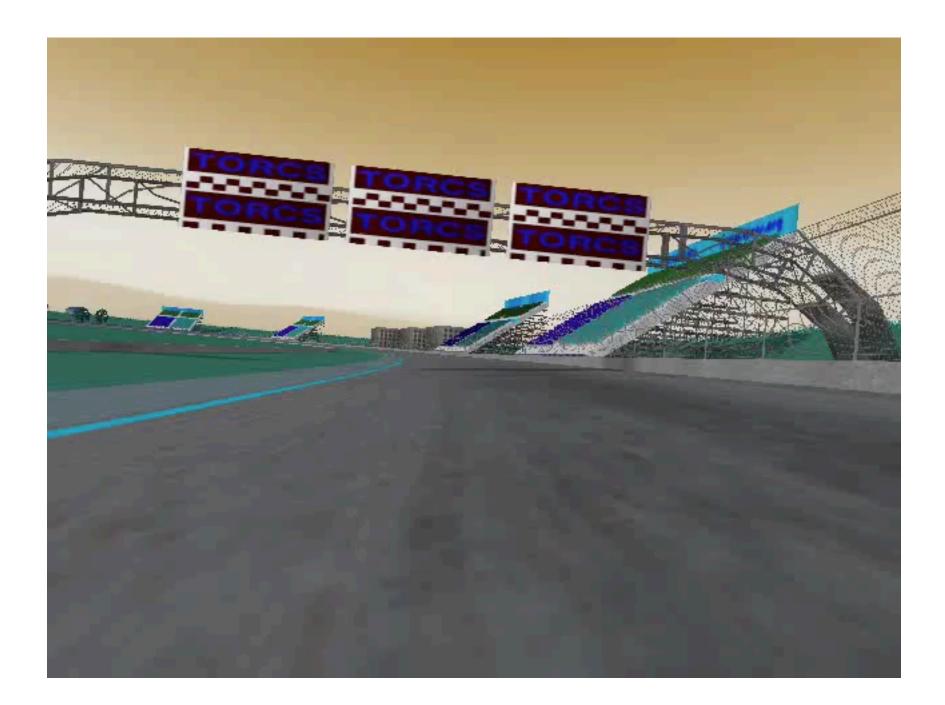
Agent in Action: attack the value function





Original Frames

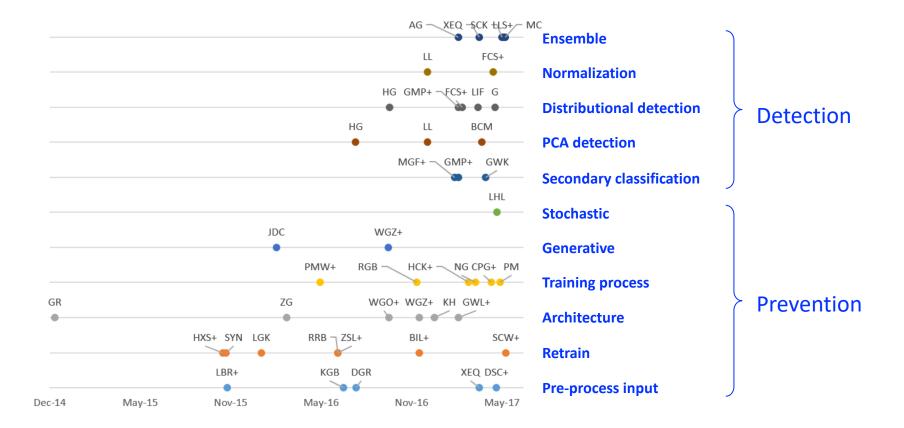
Adversarial perturbation injected into every other 10 frames

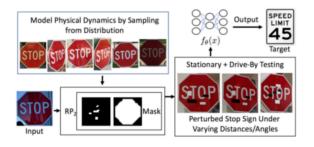


Takeaways

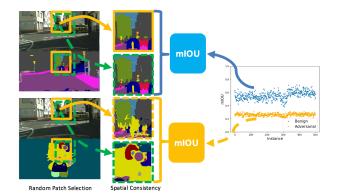
- **Reinforcement learning** systems (e.g., robotics, self-driving systems) are also **vulnerable** to adversarial examples
- To attack a reinforcement learning system, adversarial perturbations need not be injected to every frame.

Numerous Defenses Proposed





Robust physical world attacks against different sensors



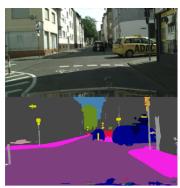
Potential **defenses** against adversarial behaviors based on intrinsic learning properties

Beyond the Min-max Game

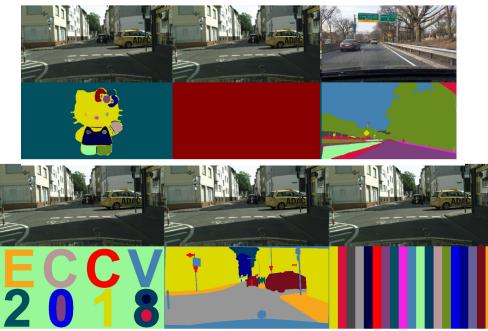
- Will it help if we have more knowledge about our learning tasks?
 - Properties of learning tasks or data
 - General understanding about ML models

Characterize Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation

- Attacks against semantic segmentation
 - State-of-the-art attacks against segmentation: Houdini [NIPS2017], DAG [ICCV 2017]
 - We design diverse adversarial targets: hello kitty, pure color, a real scene, ECCV, color shift, strips of even color of classes
 - Cityscapes and BDD datasets



Benign



Adversarial Examples

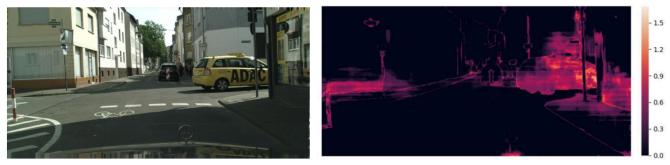
Spatial Context Information

- Spatial consistency is a distinct property of image segmentation
- Perturbation at one pixel will potentially affect the prediction of surrounding pixels
 For each pixel m, we sele

$$\mathcal{H}(m) = -\sum_{j} \mathcal{V}_m[j] \log \mathcal{V}_m[j]$$

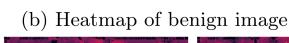
(d) DAG | Pure

For each pixel m, we select its neighbor pixels and calculate the entropy of their predictions for m

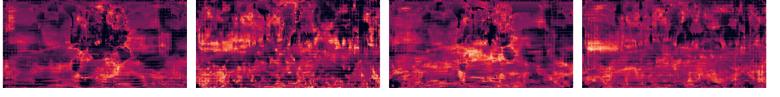


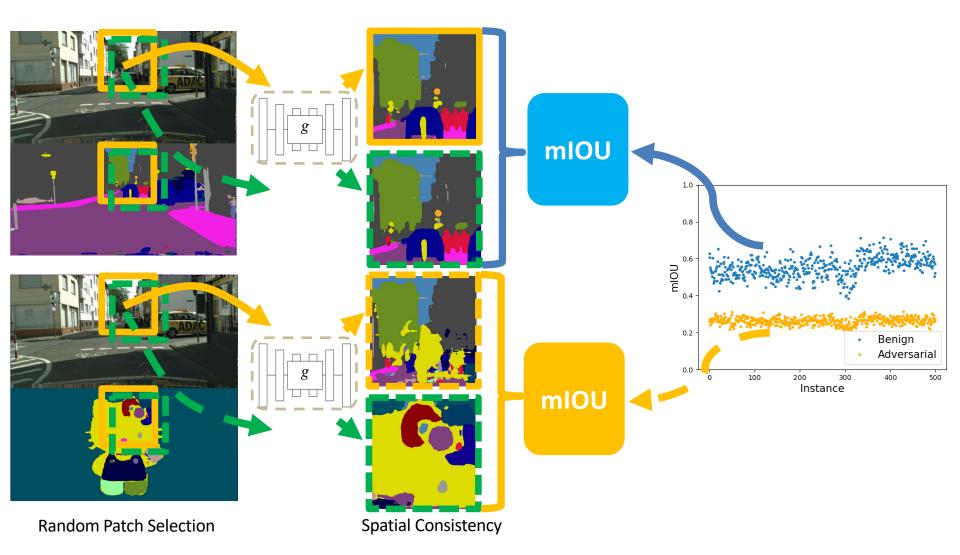
(a) Benign example

(c) DAG | Kitty



(e) Houdini | Kitty (f) Houdini | Pure





Pipeline of spatial consistency based detection for adversarial examples on semantic segmentation

Detecting adversarial instances based on spatial consistency information

- Both the spatial consistency based detection and the scaling based baseline achieve promising detection rate on different attacks
- The scaling based baseline fails to detect strong adaptive attacks while the spatial based method can

Method	Model	mIOU	DAG	ction Houdini Pure Kitty	DAG	on Adap Houdini Pure Kitty
$\begin{array}{c c} Scale \\ (std) \end{array} \begin{vmatrix} 0.5 \\ 3.0 \\ 5.0 \end{vmatrix}$	$\left \begin{array}{c} \mathrm{DRN} \\ \mathrm{(16.4M)} \end{array} \right $		$100\% \ 100\%$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100% <mark>0%</mark>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c} Spatial & 1\\ Spatial & 5\\ (K) & 10\\ 50 \end{array}$	$\left \begin{matrix} \text{DRN} \\ (16.4\text{M}) \end{matrix} \right $	66.7	$\begin{array}{c} 100\% \\ 100\% \\ 100\% \\ 100\% \end{array}$	$\begin{array}{c} 100\% \\ 100\% \\ 100\% \\ 100\% \end{array}$	$100\% \ 100\%$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Takeaways

Spatial consistency information can be potentially applied to help distinguish benign and adversarial instances against segmentation models.

Temporal consistency?

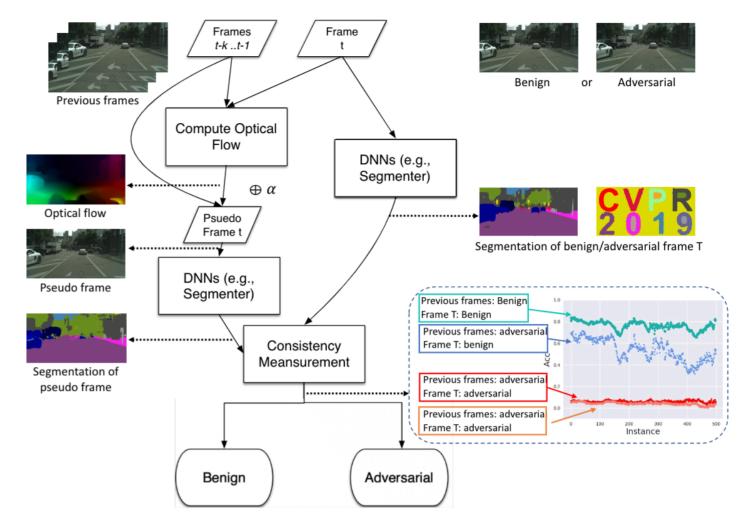
Adversarial Frames In Videos

Attacks on segmentation

Attacks on pose estimation

Attacks on object detection

Defensing Adversarial behaviors in Videos – Temporal Dependency

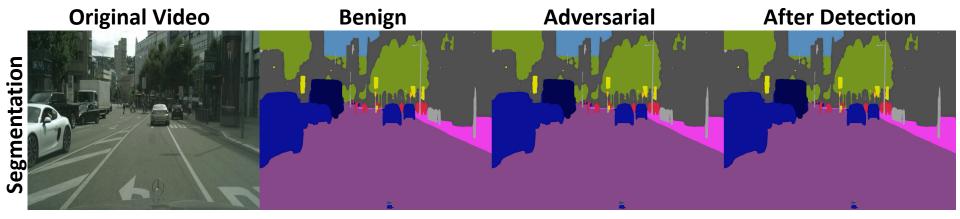


Teels	Attack Method	Target	Previous		Detection		Detection Adap		
Task			Frames	1	3	5	1	3	5
Semantic Segmentation	Houdini	CVPR	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
		Remapping	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
		Stripe	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	99%	100%	100%
	DAG	CVPR	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
		Remapping	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
		Stripe	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
Human Pose Estimation	Houdini	shuffle	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	99%	100%	100%
		Transpose	Benign	100%	100%	100%	98%	100%	100%
			Adversarial	98%	99%	100%	98 %	99%	100%
Object Detection	DAG	all	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	98%	100%	100%
		person	Benign	99%	100%	100 %	100%	100%	100%
			Adversarial	97%	98%	100%	96 %	97%	100%

- The results show that choosing more random patches can improve detection rate while k=5 is enough to achieve AUC 100%
- The spatial consistency based detection is robust against strong adaptive attackers due to the randomness in patch selection

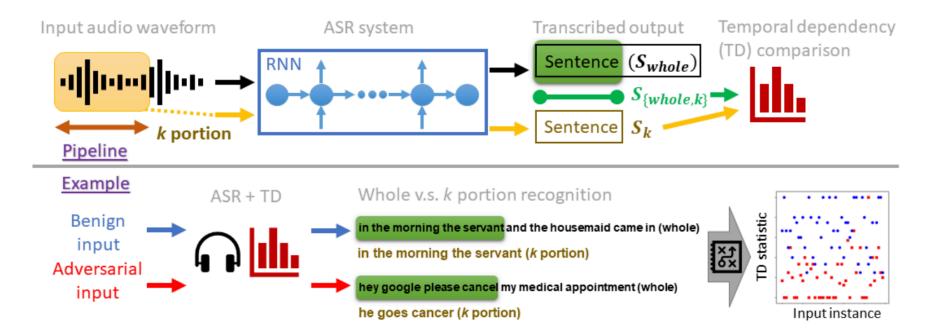
Human pose Estimation





Temporal Consistency Based Analysis

"Yanny" or "Laurel"? – adversarial audio



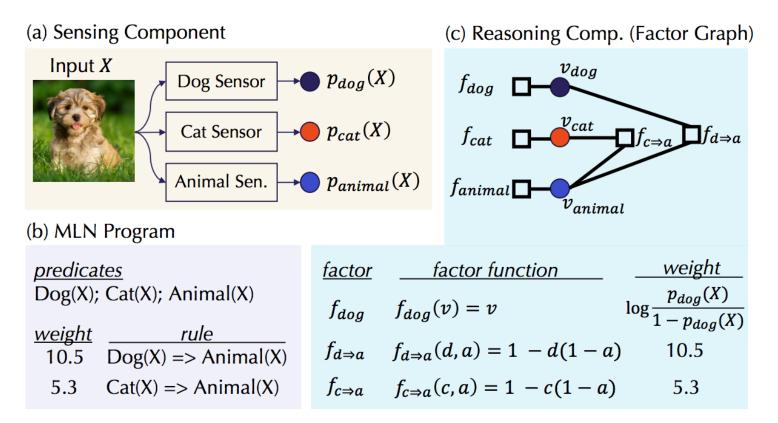
Temporal Consistency (TD) Based Detection

Туре	Transcribed results
Original	then good by said the rats and they went home
the first half of Original	then good bye said the raps
Adversarial (short)	hey google
First half of Adversarial	he is
Adversarial (medium)	this is an adversarial example
First half of Adversarial	thes on adequate
Adversarial (long)	hey google please cancel my medical appointment
First half of Adversarial	he goes cancer

Dataset	LSTM	TD (WER)	TD (CER)	TD (LCP ratio)
Common Voice	0.712	0.936	0.916	0.859
LIBRIS	0.645	0.930	0.933	0.806

TD achieves high detection rate for adversarial audio

Certified Robustness for Sensing-Reasoning ML Pipelines

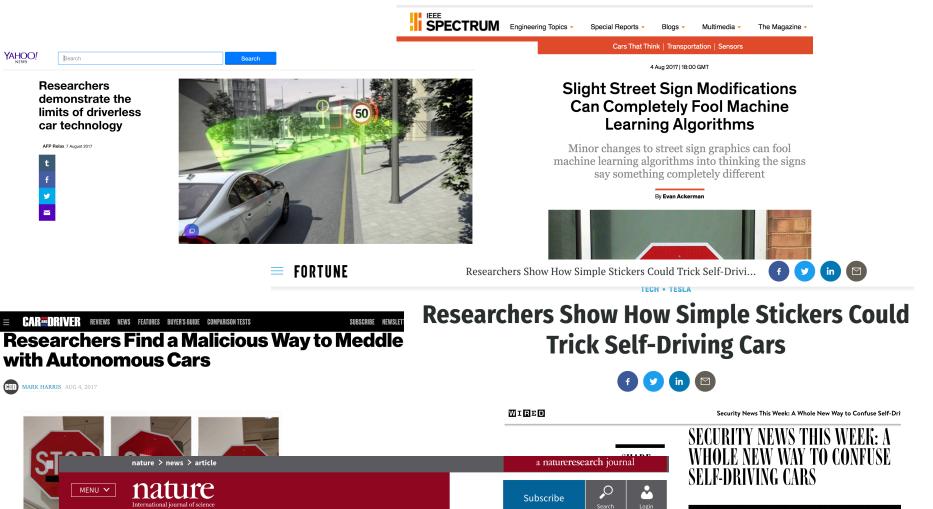


Definition 3 (ROBUSTNESS). Given input polynomial-time computable weight function $w(\cdot)$ and query function $Q(\cdot)$, parameters α , two real numbers $\epsilon > 0$ and $\delta > 0$, a ROBUSTNESS oracle decides, for any $\alpha' \in P^{[m]}$ such that $\|\alpha - \alpha'\|_{\infty} \leq \epsilon$, whether the following is true:

$$\left|\mathbf{E}_{\sigma\sim\pi_{\alpha}}\left[Q(\sigma)\right]-\mathbf{E}_{\sigma\sim\pi_{\alpha'}}\left[Q(\sigma)\right]\right|<\delta.$$

Conclusions

- ML models are vulnerable to sophisticated adversarial attacks (e.g. evasion, poisoning)
- Any ML models can be adversarially attacked
- Lead board of the certified robustness: <u>https://github.com/AI-secure/Provable-</u> <u>Training-and-Verification-Approaches-</u> <u>Towards-Robust-Neural-Networks</u>
- First certified robustness against backdoor attacks: <u>https://arxiv.org/abs/2002.11750</u>



NEWS · 10 MAY 2019

CED

AI can now defend itself against malicious messages hidden in speech Stickers on street signs can

confuse self-driving cars, Computer scientists have thwarted programs that can tri malicious audio as safe.

