Alternatives in robotic perception for self-driving cars:

what can academics add to a robust industrial research area?

Matthew Johnson-Roberson University of Michigan

The world around us is changing industry has started pumping billions of dollars into ML, CV and more recently Robotics

What is the purpose of a research university when "industry research labs" look increasingly like universities? A company's ultimate allegiance is to its shareholders

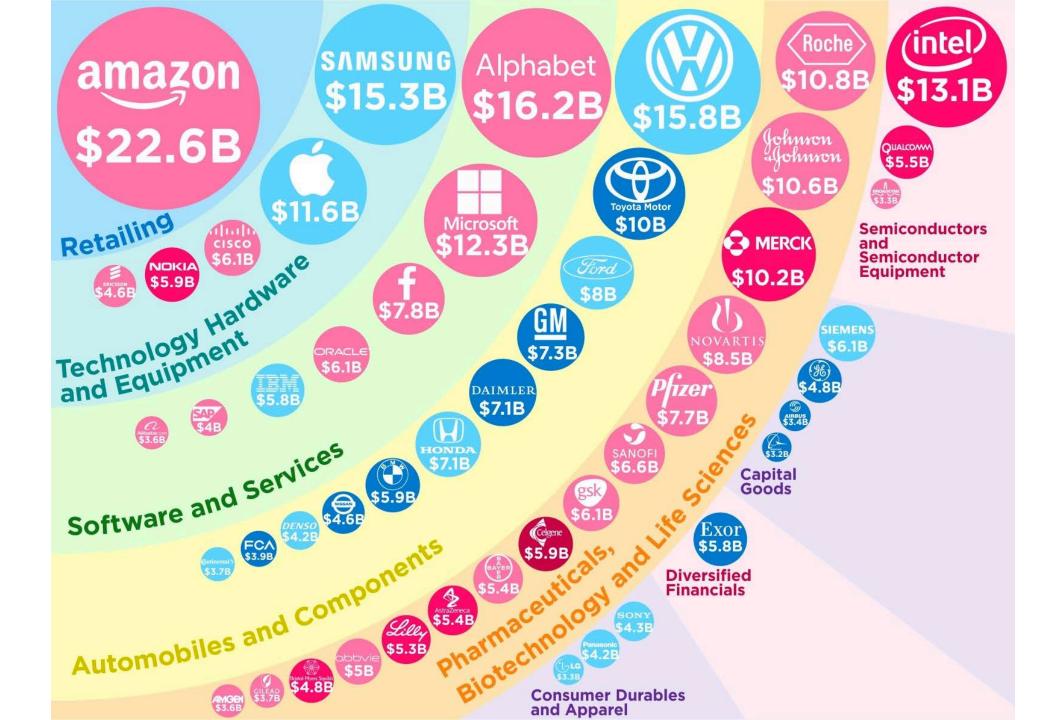
a research university's ultimate allegiance is to knowledge

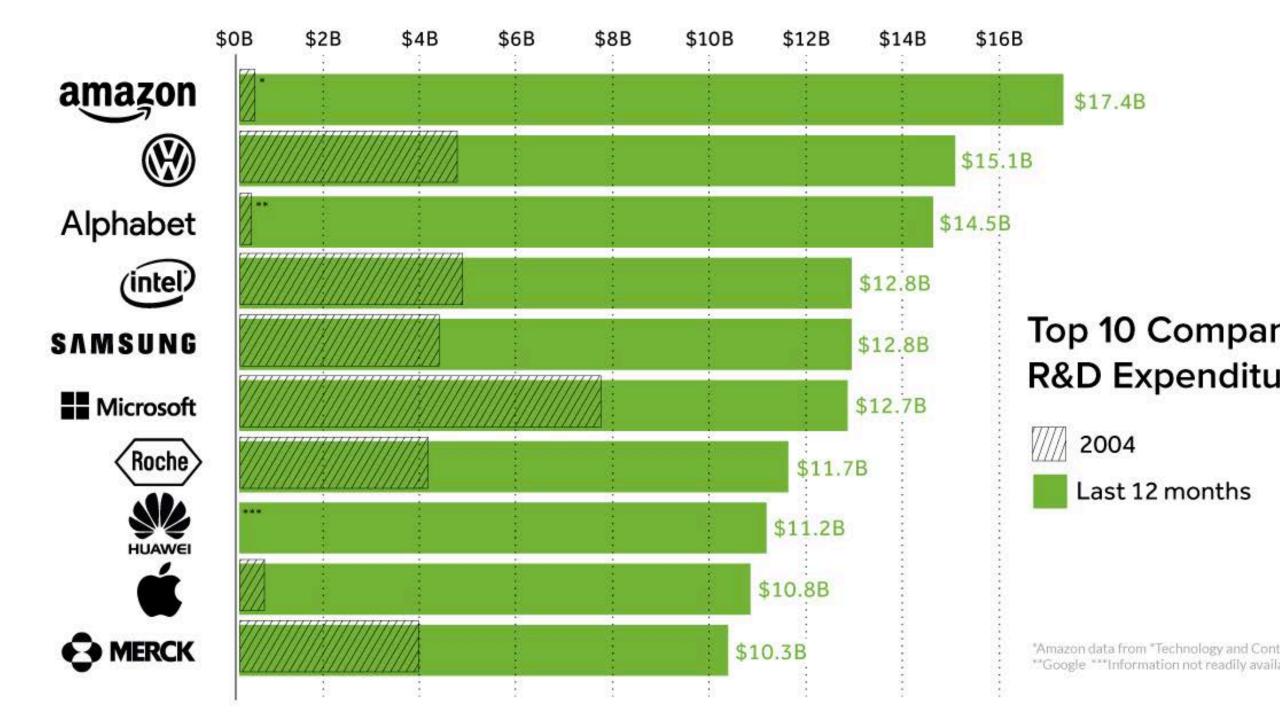
All change

3



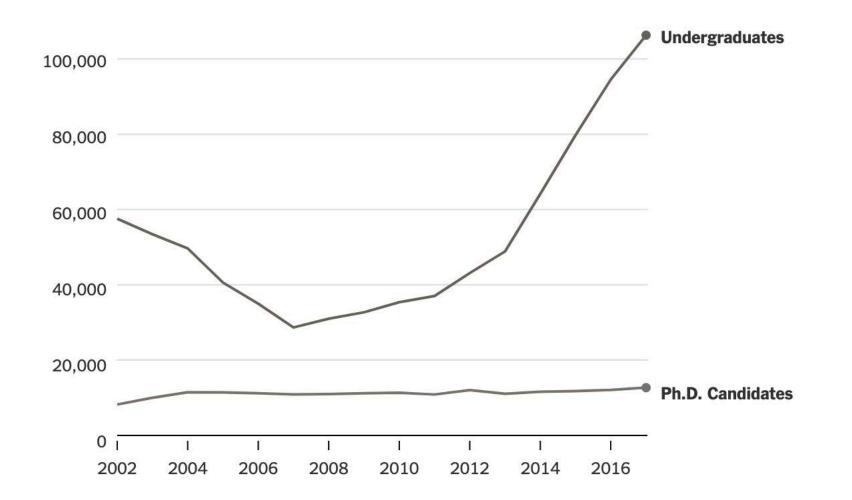
Economist.com





"I had a faculty member who came in with an offer from a bank, and they were told that, with their expertise, the starting salary would be \$1 million to \$4 million,"

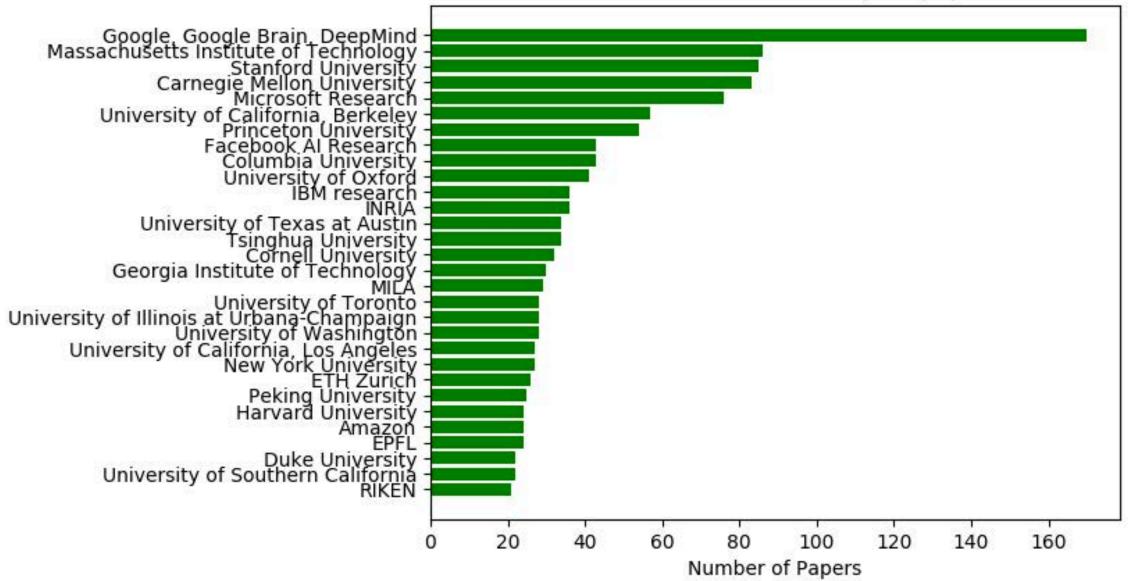
> Greg Morrisett, dean of computing and information science at Cornell University - Nytimes Jan. 24, 2019

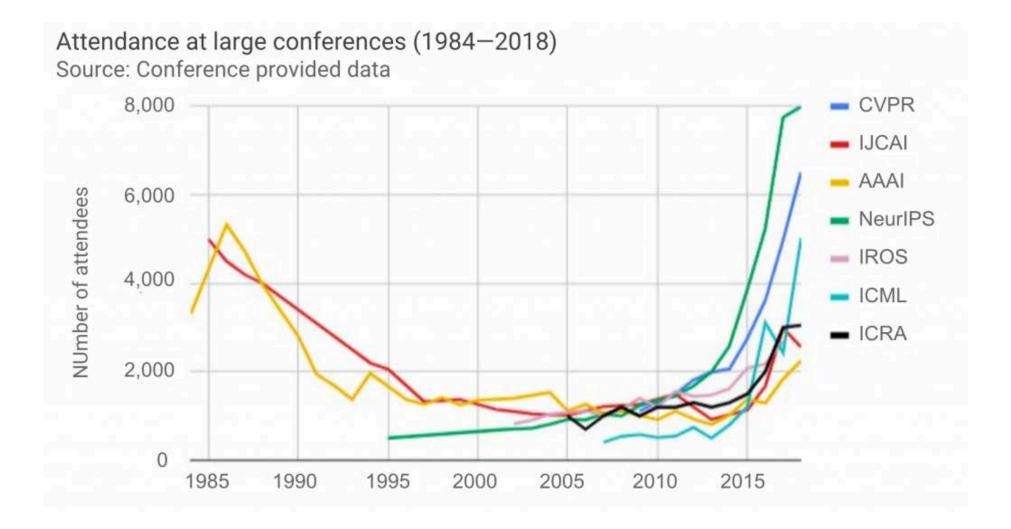


Greg Morrisett, dean of computing and information science at Cornell University - Nytimes Jan. 24, 2019

NeurIPS 2019

Institutions with most accepted papers





CVPR 2020

Number of submissions and admission rate

Year	Number of submitted papers	Number of accepted papers	Acceptance rate
2015	2123	602	28.35%
2016	2145	643	29.97%
2017	2620	783	29.88%
2018	3303	979	29.63%
2019	5160	1294	25.07%
2020	6656	1476	22.17%

Institutions ranked by number of contributions (top 20)

Name of institution	Number of accepted papers
Google	88
Chinese Academy of Sciences	84
Tsinghua University	60
Microsoft	59
SenseTime	56
Peking University	54
Chinese University of Hong Kong	45
Peng Cheng Laboratory	45
Huawei	44
Facebook	42
Carnegie Mellon University	41
ETH Zürich	39
University of Science and Technology of China	38
Adobe	37
Nanyang Technological University	35
Massachusetts Institute of Technology	32
Nanjing University	32

What can we do that a company cannot?

Interdisciplinary Work

Work for Social Good

Ethics and Accountability

Fundamental Research

Education

What from a technical perspective?

- Weird sensors
- Less brute-force approaches
- Simulation
- Orthogonal

Pixel-Wise Motion Deblurring of Thermal Videos

Manikandasriram S.R

Pixel-Wise Motion Deblurring of Thermal Videos (S. Manikandasriram, R. Vasudevan, M. Johnson-Roberson), *In Robotics: Science and Systems*, 2020

Small exposure time eliminates motion blur

Visible Image captured at 30fps while panning

Thermal Image captured at 200fps while panning

Microbolometers work differently

Visible Cameras

• Controllable exposure time

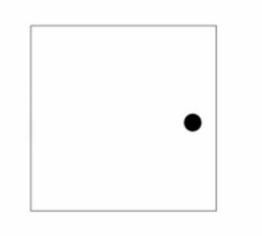
• Frame is a snapshot

Microbolometers

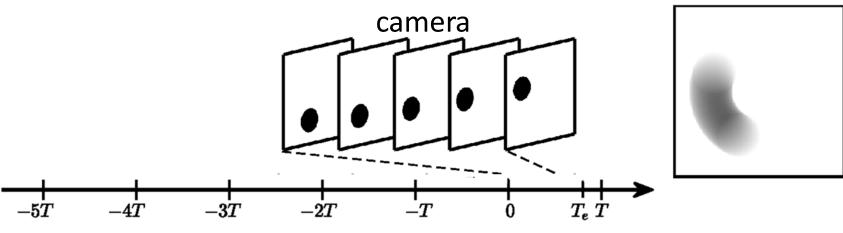
• Always exposed

• Does not reset to zero

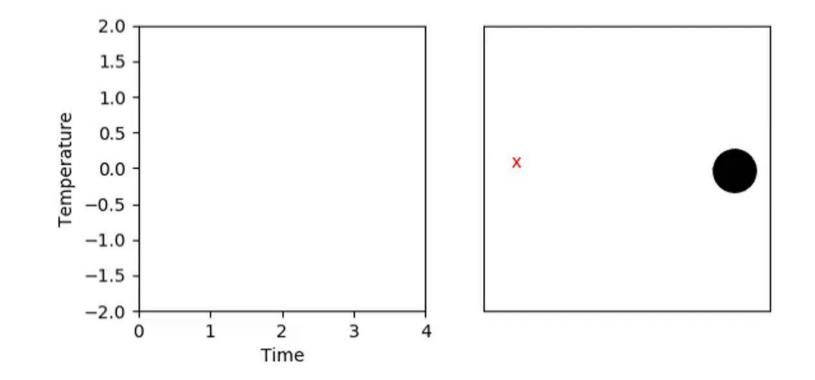
Physics behind Motion Blur



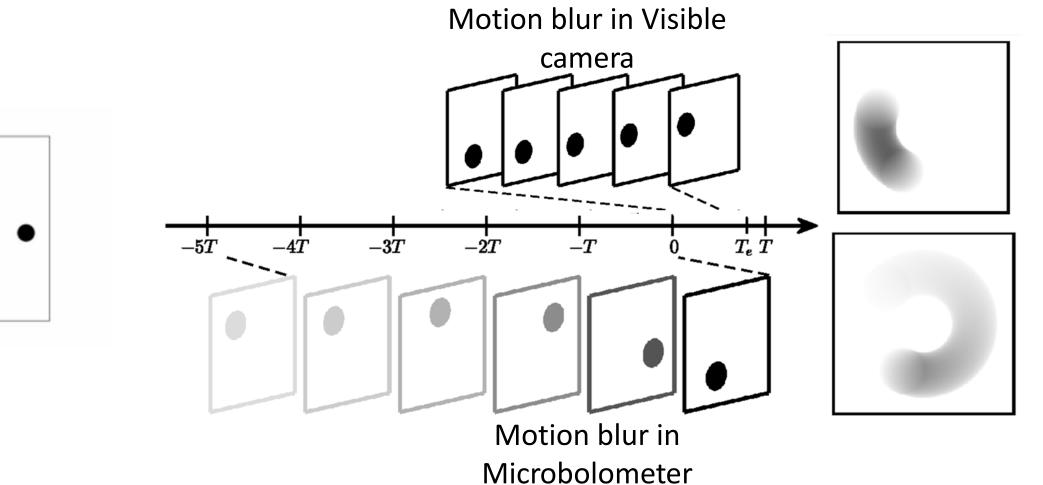
Motion blur in Visible



Microbolometer pixel is like a resistor-capacitor circuit



Physics behind Motion Blur



Qualitative results

Blurred input

DeblurGANv2

Ours

Qualitative results

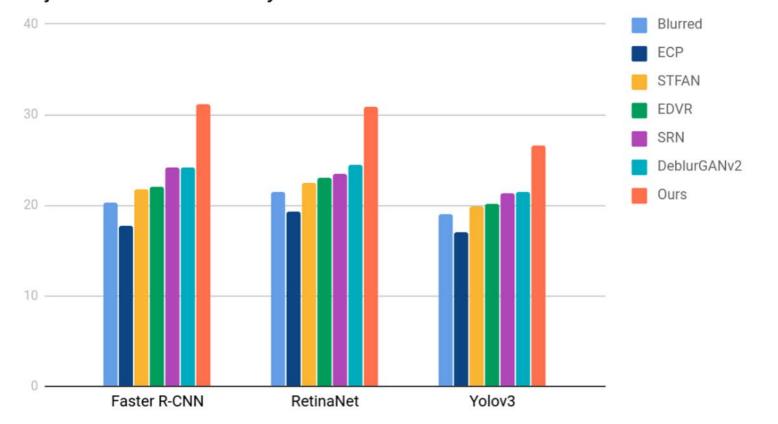
Blurred input

DeblurGANv2

Ours

Quantitative evaluation

Object Detector Accuracy



Key Contributions

- Our model-based algorithm
 - Respects microbolometer physics
 - Handles arbitrary camera motions
 - Handles arbitrary scene dynamics
 - Achieves state-of-the-art performance

Motion Deblurring

Literature (Image-Wise)

$$I(i,j) = \iint H(i-x,j-y)L(x,y) \, dx \, dy$$

- x, y Pixel coordinates
 - H Point Spread Function
 - L Latent image
 - I Observed image

Motion Deblurring

Literature (Image-Wise)

$$I(i,j) = \iint H(i-x,j-y)L(x,y) \, dx \, dy$$

- H models relative motion
- Both H and L are unknown

Ours (Pixel-Wise)

$$I(i,j) = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{s-t}{\tau}} L(s) ds$$

- t Time
 - au Thermal time constant
- L Latent image
- I Observed image

Motion Deblurring

Literature (Image-Wise)

$$I(i,j) = \iint H(i-x,j-y)L(x,y) \, dx \, dy$$

- H models relative motion
- Both H and L are unknown

Ours (Pixel-Wise)

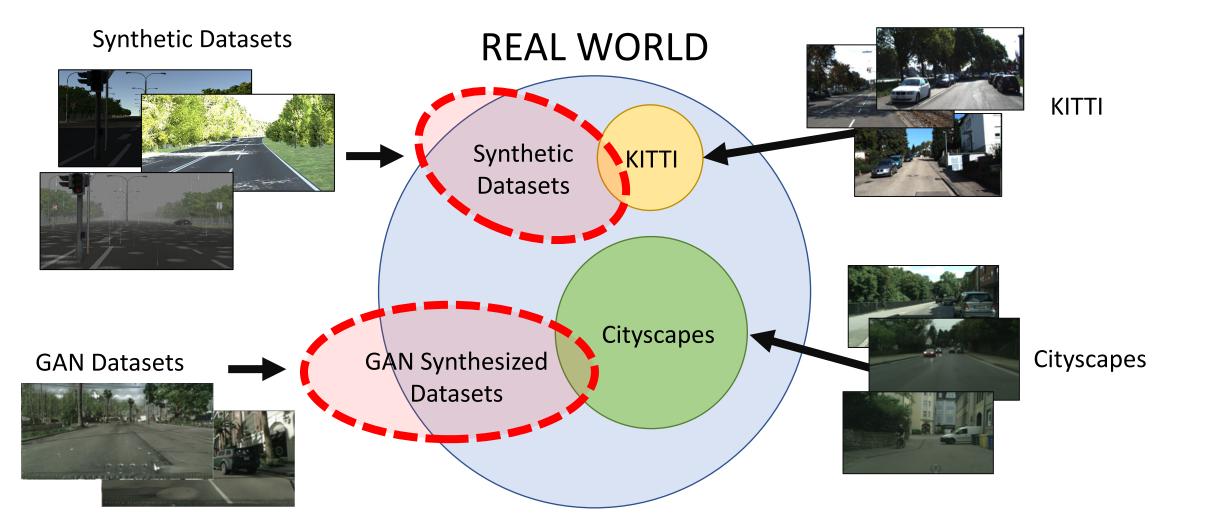
$$I(i,j) = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{s-t}{\tau}} L(s) ds$$

- τ is fixed and can be calibrated
- Only L is unknown

Physically-based Augmentation Techniques to overcome Domain Adaptation

Alexa Carlson

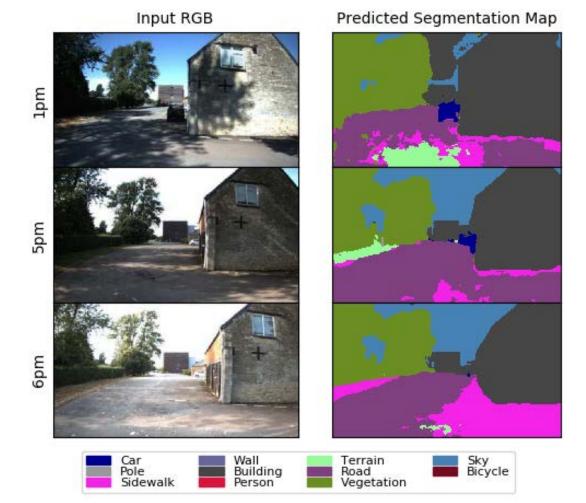
Introduction: The domain shift in Rendered and Real Datasets



Prior Work: Illumination effects degrade performance (and contribute to Domain Shift!)

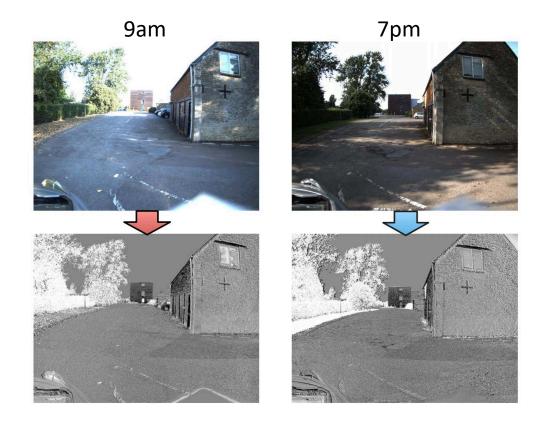
- By considering changes in illumination, we consider a huge variety of visual effects:
 - Specular highlights, reflections
 - Overexposure/saturation, underexposure
 - Soft and hard shadows, shading
 - Color changes

 Environmental lighting cause severe prediction errors for deep learning algorithms trained for object tracking, detection and segmentation tasks



Maddern et al, Illumination Invariant Imaging: Applications in Robust Vision-based Localisation, Mapping and Classification for Autonomous Vehicles, ICRA 2014

• Illumination Invariant Color spaces^{1,2,3}



1 Alshammari et al, On the Impact of Illumination-Invariant Image Pre-transformation for Contemporary Automotive Semantic Scene Understanding, IV 2018 2 Alshammari et al, Multi-Task Learning for Automotive Foggy Scene Understanding via Domain Adaptation to an Illumination-Invariant Representation, arxiv 2019 3 Maddern et al, Illumination Invariant Imaging: Applications in Robust Vision-based Localisation, Mapping and Classification for Autonomous Vehicles, ICRA 2014

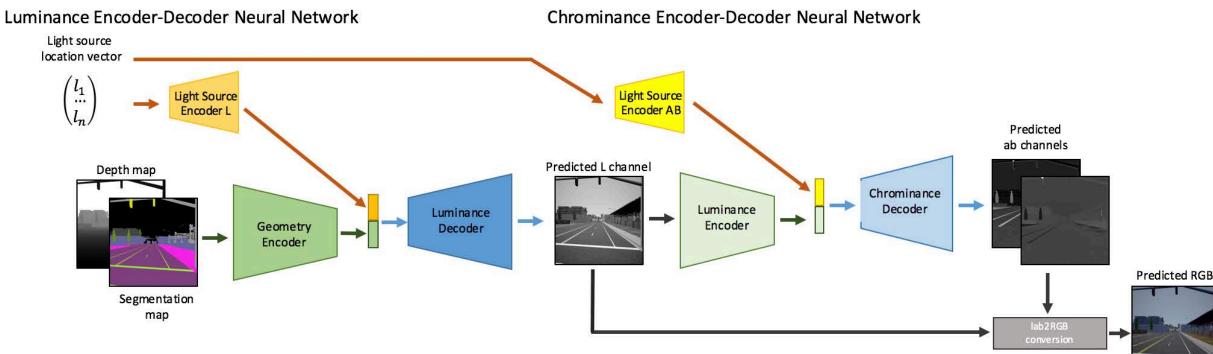
Proposed Approach: Shadow Transfer Network

- We cast as a multi-domain transfer problem, where the goal is to transfer illumination effects between times of day
- Learns an illumination model via a deep neural encoder-decoder framework that operates upon input that is easily obtained from a car-mounted RGB camera
- Designed to be self-supervised, removing the need for labeling illumination features in images, like shadows, brightness or global color temperature

Contributions

 To learn a deep illumination model that can relight a given image, and use this model to better understand the failure modes of detection and segmentation DNNs

Shadow Transfer Network Architecture



Loss Functions:

- L1 loss on predicted L and ab channels
- Standard Perceptual and Style loss on predicted RGB
- Sun Estimation Perceptual loss on Predicted RGB

Sun Estimation Perceptual loss on Predicted RGB

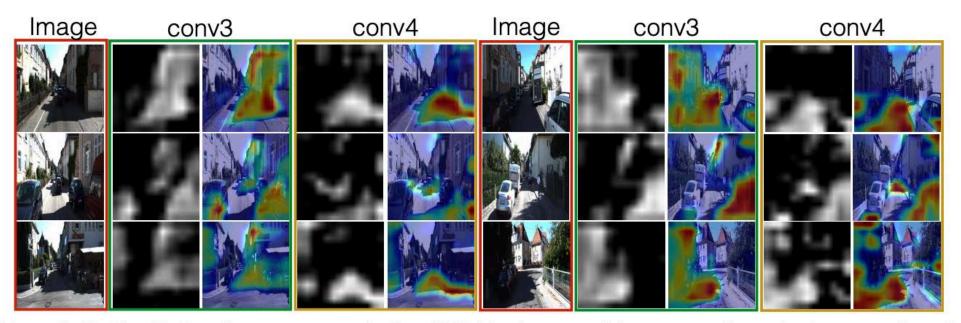


Figure 5: Shading/shadow detectors emerge in Sun-CNN: Test images and the corresponding activation maps of certain units in conv3 and conv4 layers of Sun-CNN. Despite being trained on *image-level* label (the relative sun position), our Sun-CNN automatically learns to fire on shadings (conv3) and shadows (conv4).

Ma et al, Find your Way by Observing the Sun and Other Semantic Cues, arxiv 2016

Results: Real Dataset KITTI-sun



ParametricX: 3D Reconstruction of Urban Intersections to Bridge the Gap Between Real and Synthetic Data

Wonhui Kim

Capturing Data at Urban Intersections

How do we capture full dynamics of the entire urban intersections?

Previously in **PedX**, we parked our capture vehicle at the curb ⇒ Limited perspective RGB images and LiDAR point clouds with occlusions

A moving vehicle passes through the intersection, and after STOP sign it needs to choose a single route (Left turn/ straight/ right turn)
⇒ Not enough time to fully observe the surroundings,
⇒ Limited perspective data

Bird's-eye view data of the intersection is good to obtain trajectories,
⇒ Limited view data
⇒ Lack of data other than trajectories

Dense 3D Reconstruction of Intersections

Bridging gaps between real and synthetic data:

Real trajectories of dynamic agents

Synthetic reconstruction of static/dynamic components

Real scene geometry

Urban intersection consists of many scene components.

Background	Static objects	Dynamic objects
Ground Lanes Sidewalks Crosswalks Parking lots	Buildings Trees Lampposts Road poles Traffic signs Trash bins Bike racks	Pedestrians Vehicles

3D Model Fitting

Scene backgrounds are modeled based on plane fitting and manual labeling using Blender.

Static scene objects are reconstructed by fitting 3D CAD models from *ObjectNet3D dataset*.

Pedestrians from *PedX dataset* were adjusted to be consistent with other scene models.

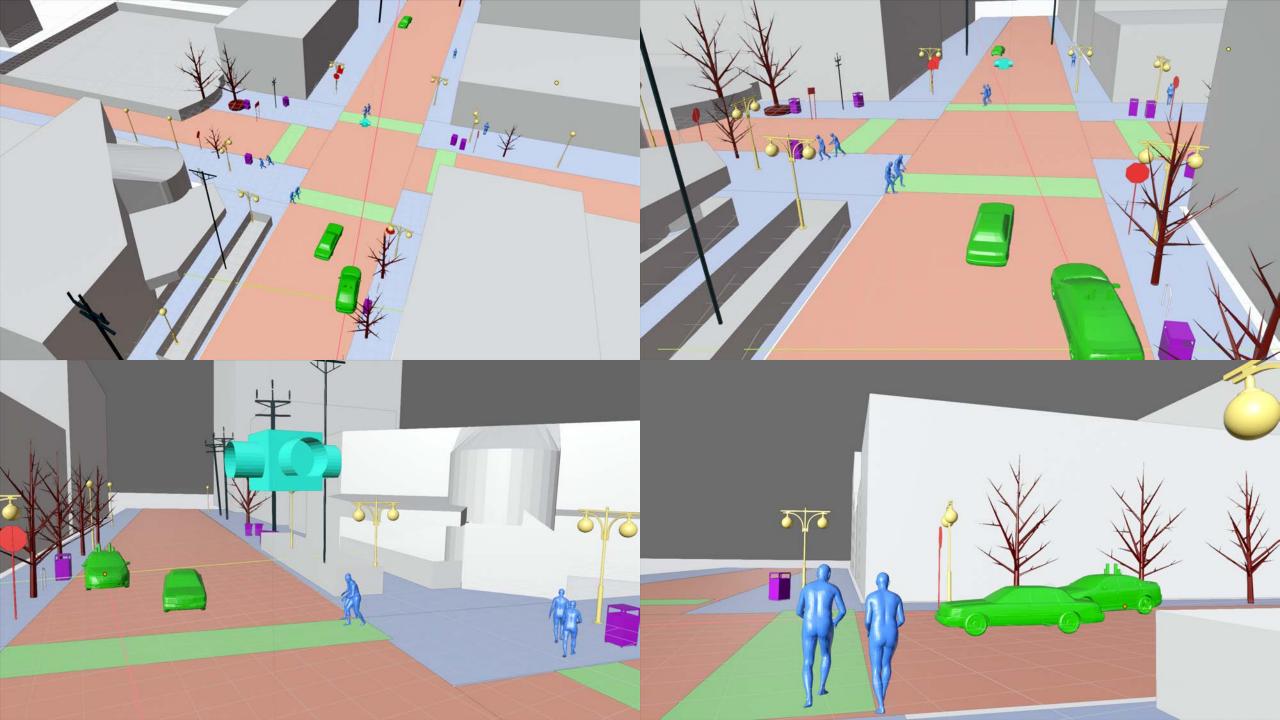
Vehicles are reconstructed by fitting 3D models with the following steps:

- LiDAR point cloud segmentation
- Global trajectory fitting
- Optimization to determine vehicle pose (translation, heading orientation)

Figure: Lanes, sidewalks, crosswalks, buildings are shown; Rendered from a bird's eye view

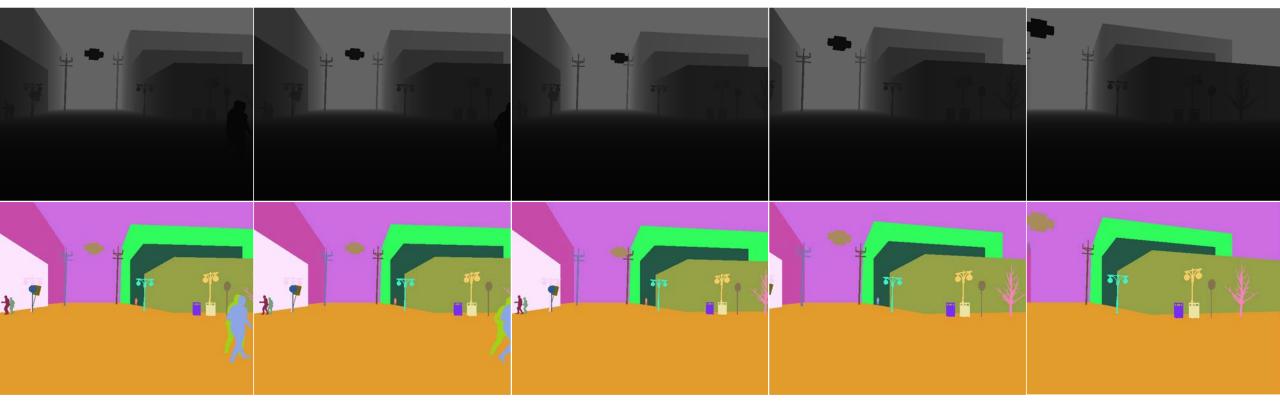
"Blender - a 3D modelling and rendering package", <u>http://www.blender.org</u>, 2018.

Xiang, Yu, et al. "**Objectnet3d**: A large scale database for 3d object recognition." *European Conference on Computer Vision*. Springer, Cham, 2016. Kim, Wonhui, et al. "**PedX**: Benchmark dataset for metric 3-D pose estimation of pedestrians in complex urban intersections." IEEE Robotics and Automation Letters 4.2 (2019): 1940-1947.



Generating Depth and Label Images from Simulation

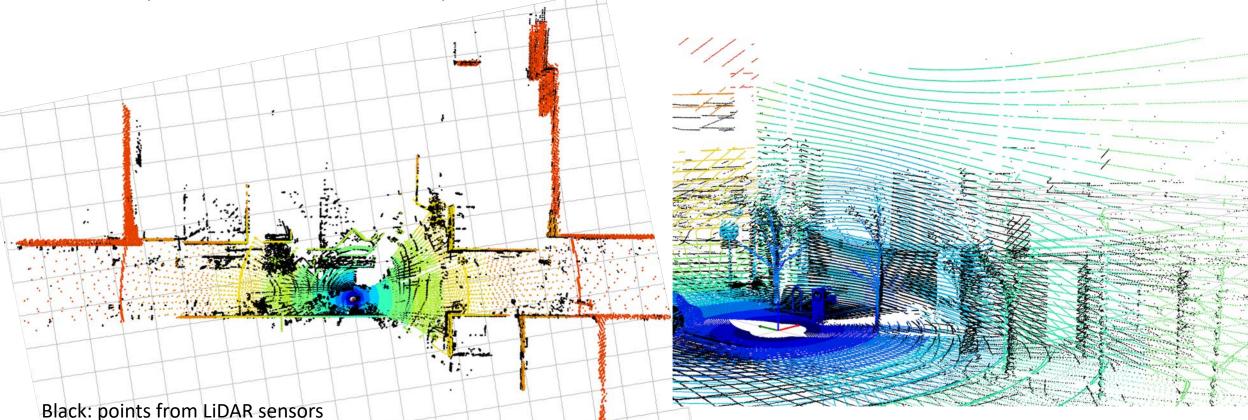
- A virtual camera is placed at a vehicle turning right after the STOP line.
- The trajectory is from the real data capture.



Depth maps (top) / Instance-level label images (bottom)

Generating LiDAR Point Clouds from Simulation

- Virtual LiDARs are placed on the roof of the capture vehicle as in the real configuration.
- Comparison: Real vs. simulated point clouds



Colored: points from the simulator color-coded based on the distance from the LiDAR origin.

Generating Trajectories from Prediction

Cyrus Anderson

Off The Beaten Sidewalk: Pedestrian Prediction In Shared Spaces For Autonomous Vehicles (Cyrus Anderson, Ram Vasudevan, M. Johnson-Roberson), *In IEEE Robotics and Automation Letters (RA-L) Special Issue on Long-Term Human Motion Prediction*, 2020

Generating Trajectories from Prediction

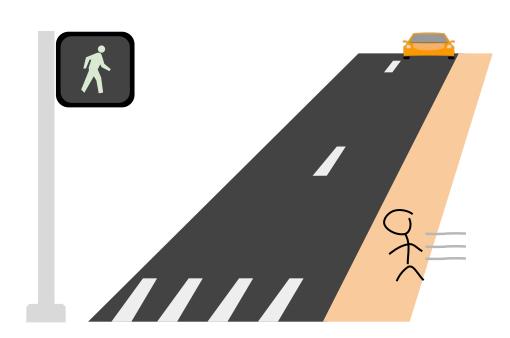
• How to get data for training pedestrian prediction algos

- Anderson, Cyrus, et al. "Stochastic Sampling Simulation for Pedestrian Trajectory Prediction." arXiv preprint arXiv:1903.01860 (2019).
- Du, Xiaoxiao, Ram Vasudevan, and Matthew Johnson-Roberson. "Bio-Istm: A biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction." IEEE Robotics and Automation Letters 4.2 (2019): 1501-1508.
- Yao, Yu, et al. "BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal Goal Estimation." arXiv preprint arXiv:2007.14558 (2020).
- Zhao, Tianyang, et al. "Multi-agent tensor fusion for contextual trajectory prediction." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
- Ma, Yuexin, et al. "Trafficpredict: Trajectory prediction for heterogeneous traffic-agents." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.
- Xue, Hao, Du Q. Huynh, and Mark Reynolds. "SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018.

Standard Pedestrian Prediction

Key ingredients:

- Pedestrian
- Vehicles



Infrastructure:

• Curbs

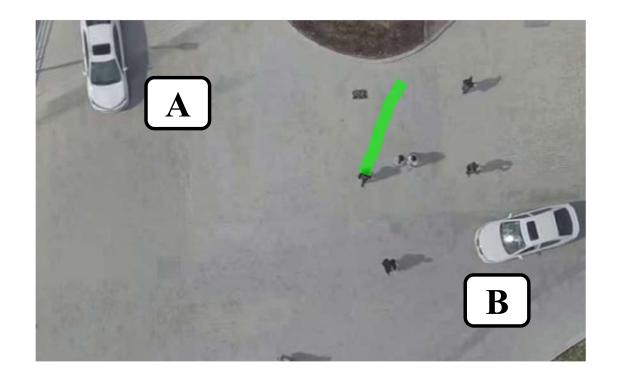
- [Kooiji et al., IJCV '19]
- Marked crosswalk
 - [Blaiotta, RA-L '19]
 - [Jayaraman et al., ICRA '20]
- Signalized intersection

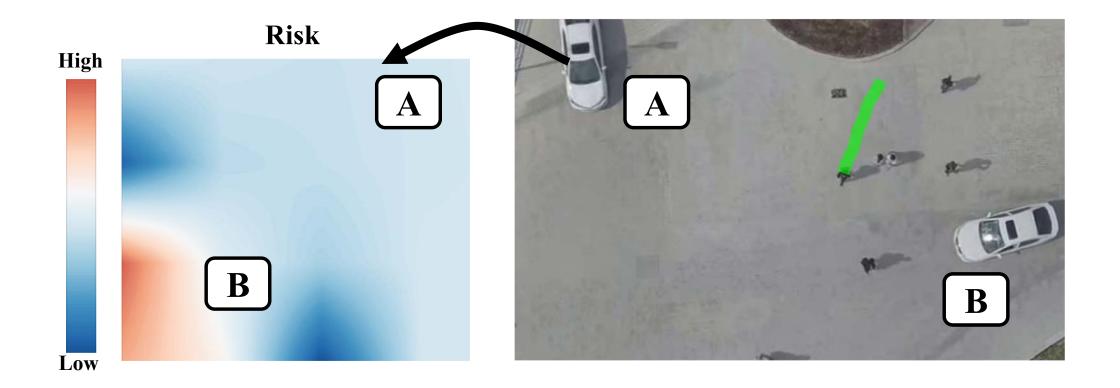
• [Hashimoto et al., ITS '15]

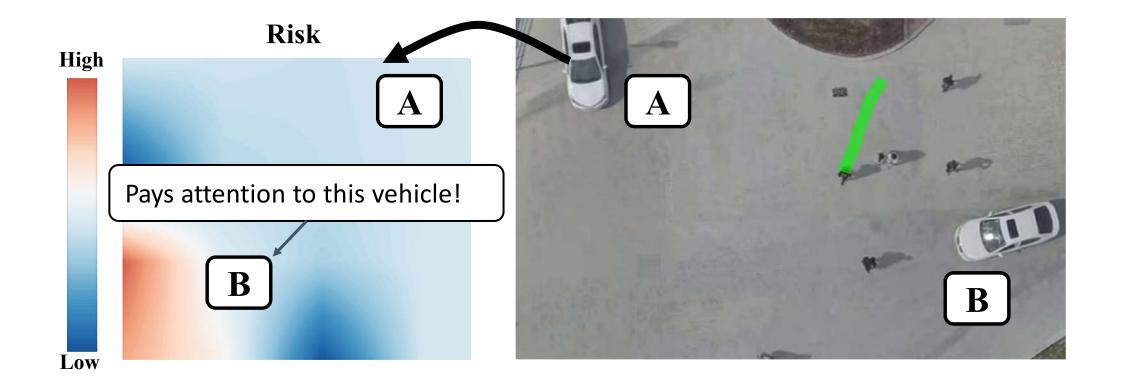
Shared Space

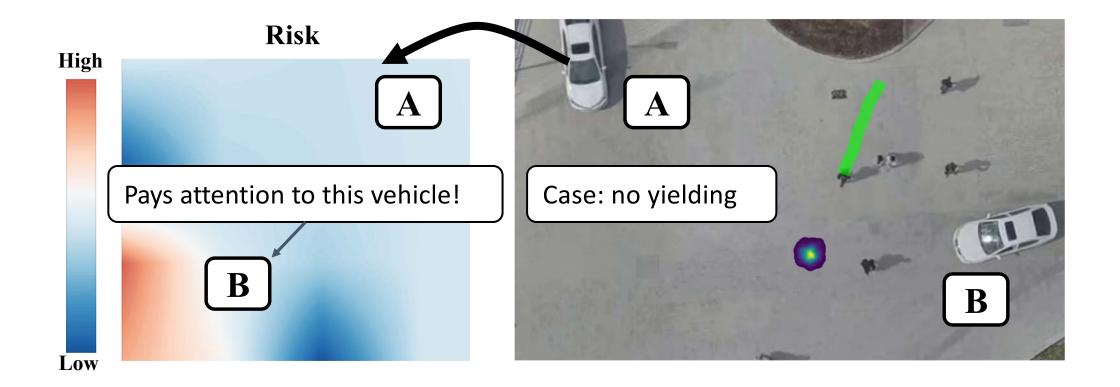
Predictions in more general scenes

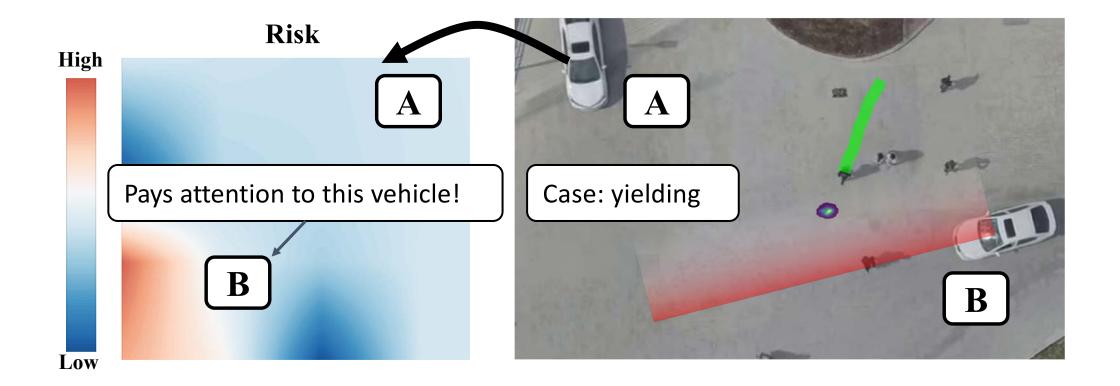
- Infrastructure
 - Unmarked crosswalks
- Pedestrian behavior
 - May change across scenes
 - Less than 100% adherence to traffic rules





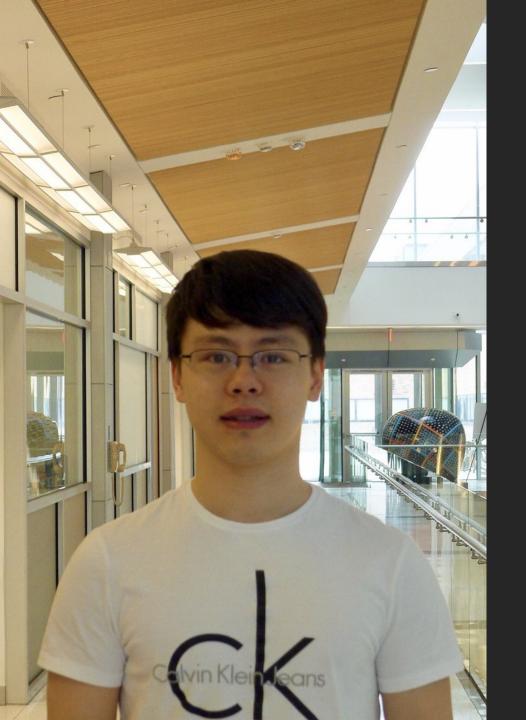






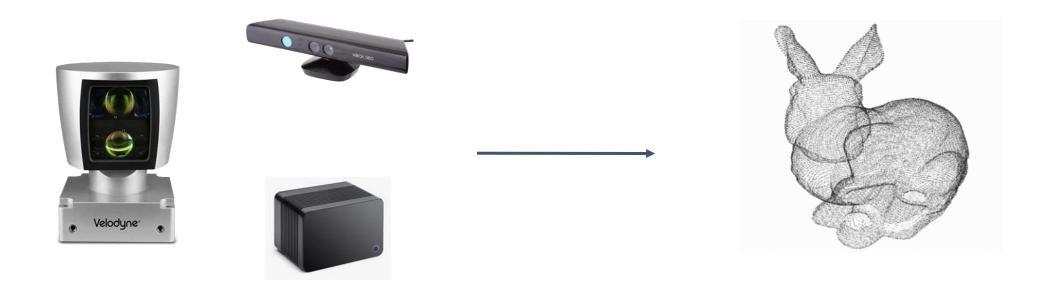
Predicted distributions - DUT

SGAN MATE Ours



Point Set Voting for Partial Point Cloud Analysis

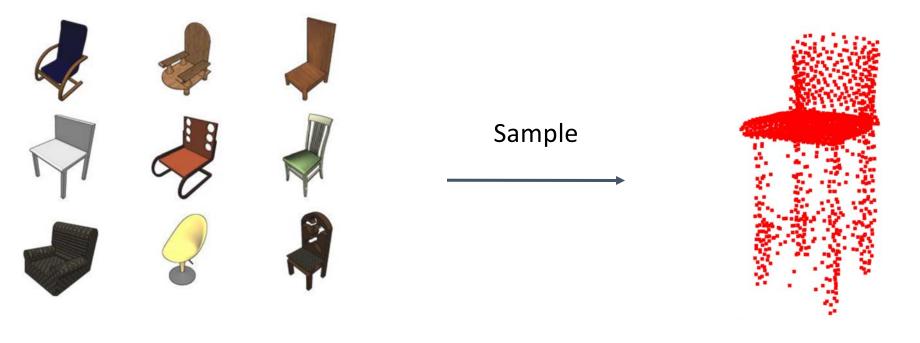
Junming Zhang



Depth Sensors

Point clouds

Point clouds are easily generated by depth sensors



CAD models from ShapeNet

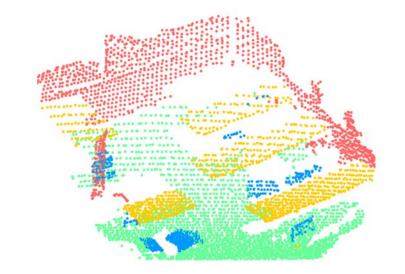
Synthetic Point clouds

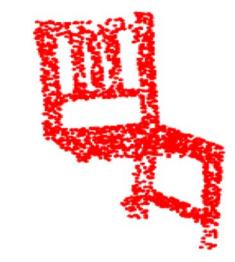
Synthetic point clouds are generated by sampling from CAD models

- RS-CNN [Liu, et al.]
- DG-CNN [Wang, et al.]
- SF-CNN [Rao, et al.]
- Pointnet [Qi, et al.]
- Pointnet++ [Qi, et al.]

Synthetic Point clouds

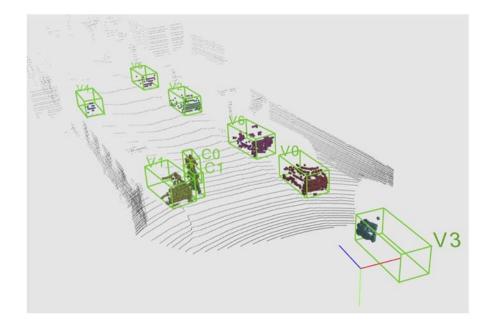
Many methods developed for analyzing point clouds are based on synthetic dataset



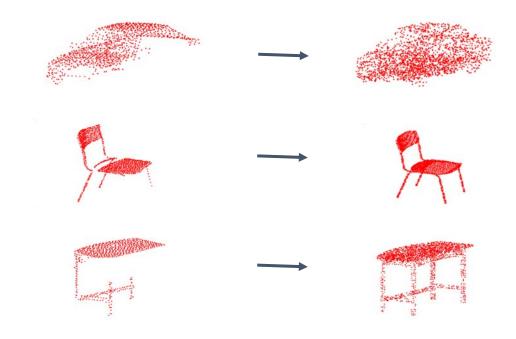


Real-world point clouds are usually incomplete

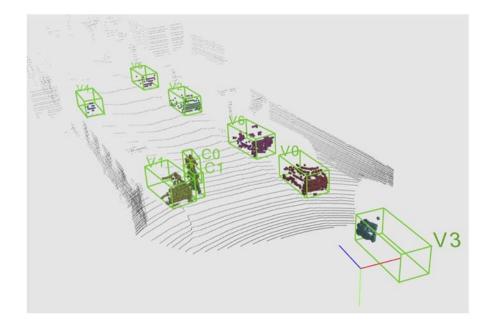
Training on incomplete point clouds



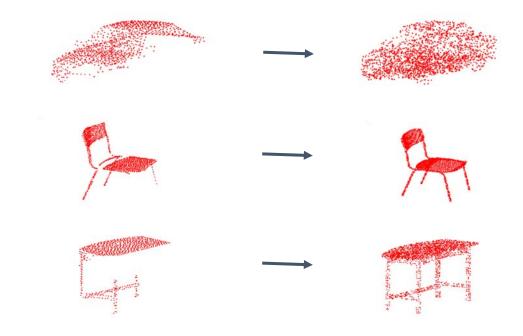
Complete partial point clouds



Training on incomplete point clouds

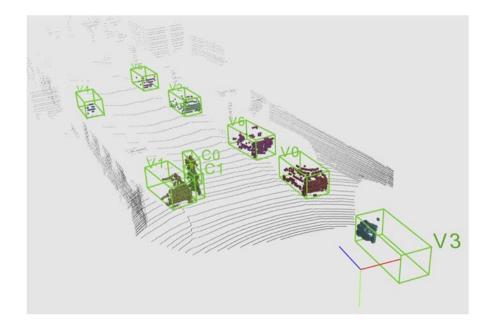


Complete partial point clouds



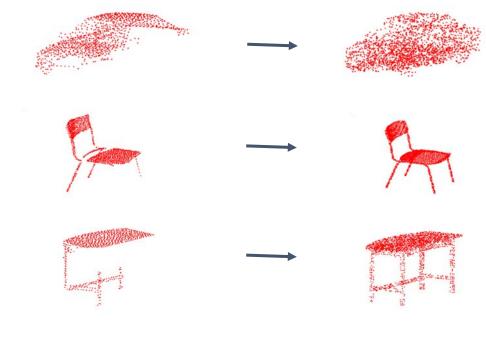
Annotation is expensive

Training on incomplete point clouds



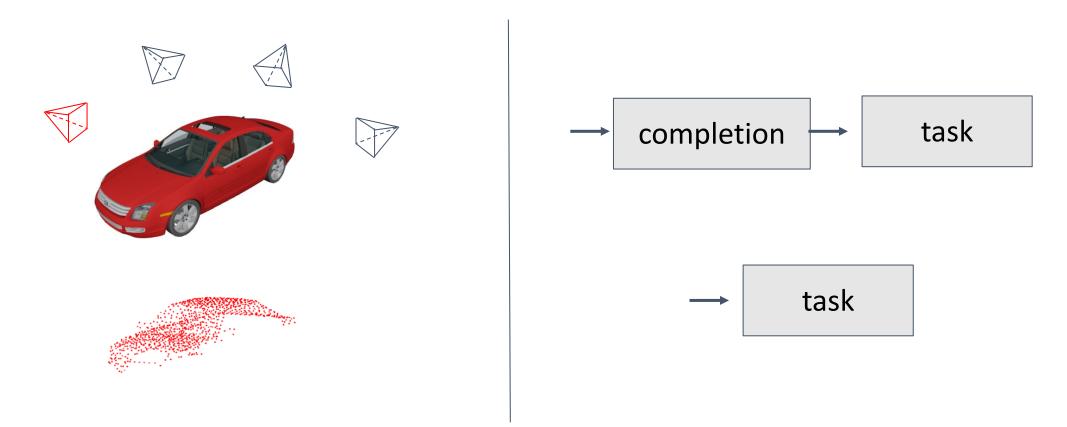
Annotation is expensive

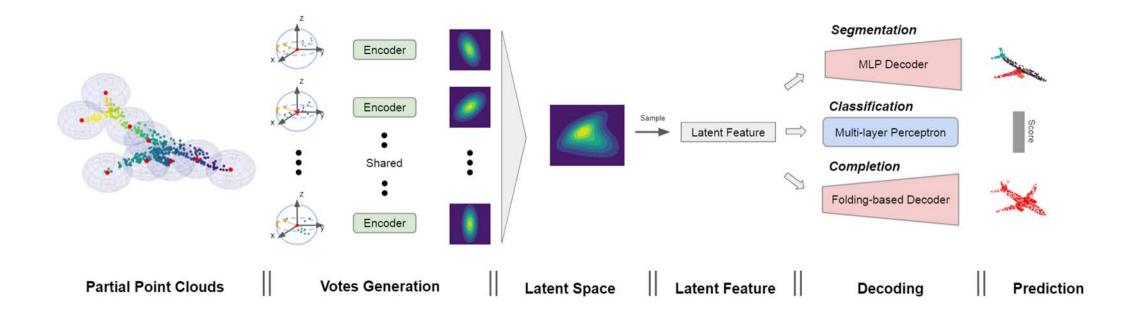
Complete partial point clouds



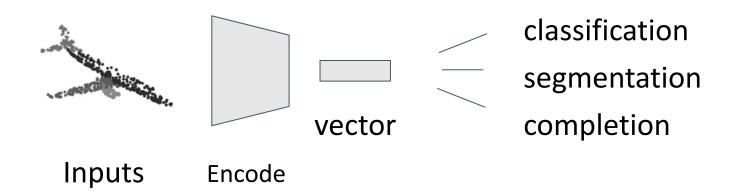
Limitations

Point clouds completion

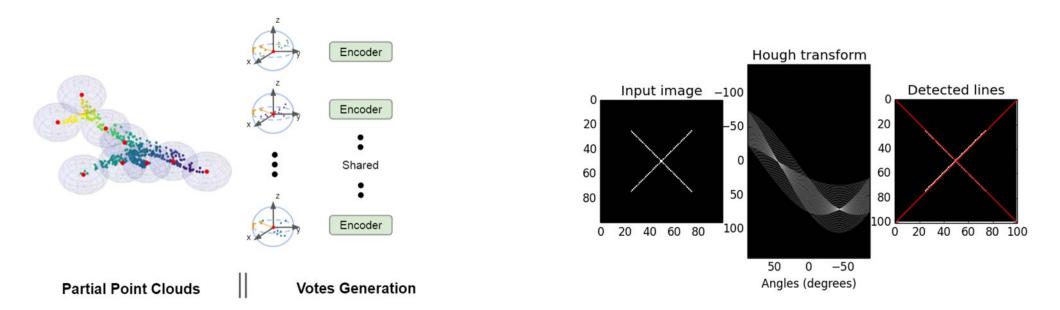




One-stage model for any partial point clouds analysis

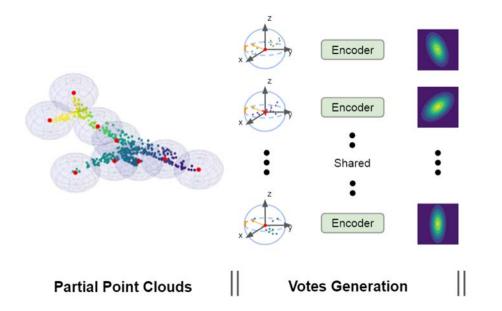


- 1. Mapping different inputs into the same feature vector
- 2. Not able to transfer to other incomplete point clouds

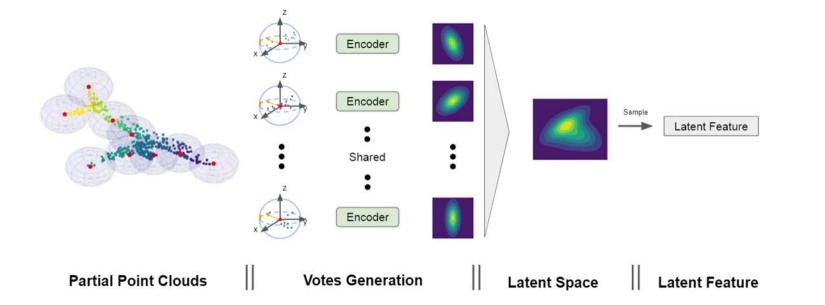


Hough transform

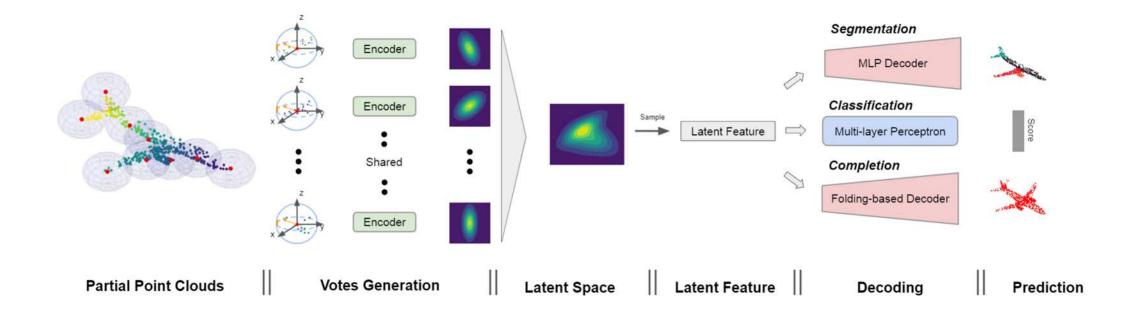
Propose voting strategy to infer the feature for encoding complete PC



Each vote is a distribution in the latent space

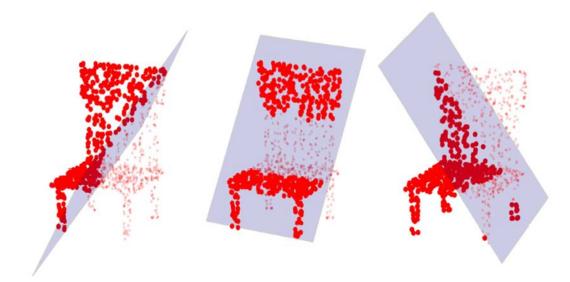


Latent feature is sampled from constructed latent space



Latent feature is passed to decoding modules

Method	Input	Complete	Partial
PointNet [33]	xyz	88.8	20.9
PointNet++ [35]	xyz	91.0	61.5
RS-CNN [27]	xyz	92.3	43.3
DG-CNN [47]	xyz	92.9	51.5
Ours	xyz	91.4	86.4



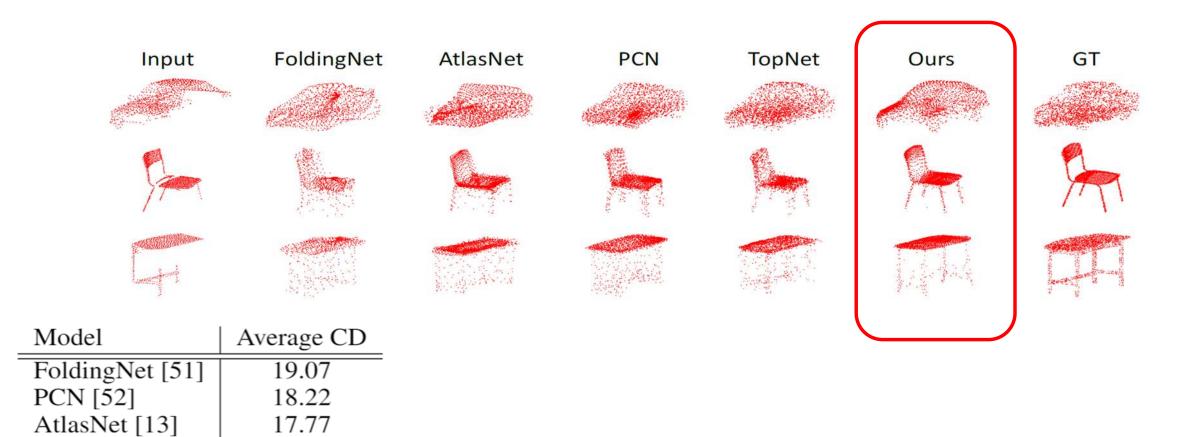
Shape classification on ModelNet40

Results on complete point clouds in ShapeNet from models trained on ShapeNet

Results on simulated partial point clouds from models trained on ShapeNet

Results on point clouds in Completion3D from models trained on ShapeNet

Method	Input	Complete	Partial
PointNet [33]	xyz	80.5	29.9
PointNet++ [35]	xyz	82.0	30.9
DG-CNN [47]	xyz	82.3	29.8
RS-CNN [27]	xyz	82.4	30.6
Ours	xyz	79.0	78.1



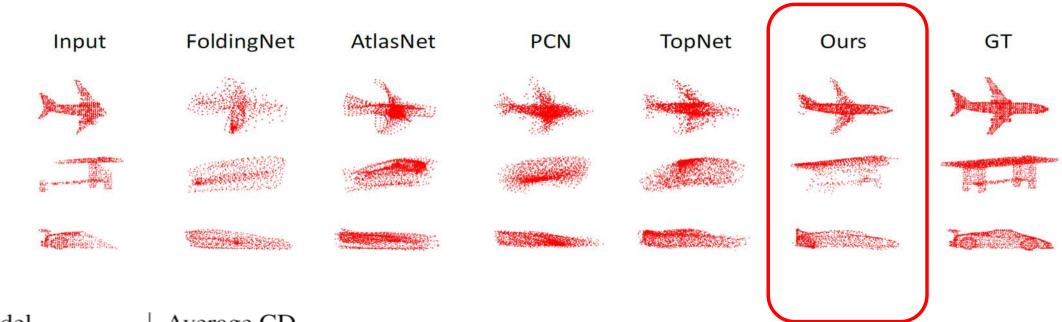
Point clouds completion

TopNet [45]

Ours

14.25

18.18



Model	Average CD	
FoldingNet [51]	34.56	
PCN [52]	34.93	
AtlasNet [13]	39.73	
TopNet [45]	31.87	
Ours	17.22	

Point clouds completion

To current students

Questions?