Alternatives in
robotic perception
for self-driving cars:
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University of Michigan




The world around us is changing -
industry has started pumping billions
of dollars into ML, CV and more
recently Robotics



What is the purpose of a research
university when

“industry research labs”
look increasingly like universities ?



A company's ultimate allegiance is to
its shareholders

a research university’s ultimate
allegiance is to knowledge
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“I had a faculty member who came
in with an offer from a bank, and
they were told that, with their
expertise, the starting salary would
be S1 million to S4 million,”

Greg Morrisett, dean of computing and information science at
Cornell University - Nytimes Jan. 24, 2019
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NeurlPS 2019

Institutions with most accepted papers
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Attendance at large conferences (1984—2018)
Source: Conference provided data
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CVPR 2020

Number of submissions and admission rate

Year Number of submitted papers Number of accepted papers Acceptance rate
2015 2123 602 28.35%
2016 2145 643 29.97%
2017 2620 783 29.88%
2018 3303 979 29.63%
2019 5160 1294 25.07%
2020 6656 1476 22.17%

Institutions ranked by number of contributions (top 20)

Name of institution Number of accepted papers
Google 88
Chinese Academy of Sciences 84
Tsinghua University 60
Microsoft 59
SenseTime 56
Peking University 54
Chinese University of Hong Kong 45
Peng Cheng Laboratory 45
Huawei 44
Facebook 42
Carnegie Mellon University 41
ETH Zirich 39
University of Science and Technology of China 38
Adobe 37
Nanyang Technological University 35
Massachusetts Institute of Technology 32

Nanjing University 32



What can we do that a company cannot?



Interdisciplinary Work
Work for Social Good
Ethics and Accountability
Fundamental Research

Education



What from a technical perspective?

* Weird sensors
* Less brute-force approaches
e Simulation

* Orthogonal



Pixel-Wise Motion

Deblurring of
Thermal Videos

Manikandasriram S.R

Pixel-Wise Motion Deblurring of Thermal Videos (S.
Manikandasriram, R. Vasudevan, M. Johnson-Roberson), In

Robotics: Science and Systems, 2020




Small exposure time eliminates motion blur

Visible Image captured at 30fps while panning

Thermal Image captured at 200fps while panning



Microbolometers work differently

Visible Cameras Microbolometers

e Controllable exposure

. o Always exposed
time

e Frame is a snapshot e Does not reset to zero



Physics behind Motion Blur

Motion blur in Visible
camera




Microbolometer pixel is like a resistor-capacitor
circuit
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Physics behind Motion Blur

Motion blur in Visible
camera
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Qualitative results

-
Blurred input | ! ‘

DeblurGANv2

Ours




Qualitative results

Blurred input

DeblurGANv2

Ours




Quantitative evaluation

Object Detector Accuracy

Faster R-CNN

RetinaNet

Yolov3

B Blurred
@ EcP

B STFAN
@ EDVR

B SRN
B DeblurGANv2

@ Ours



Key Contributions

Our model-based
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Handles arbitrary camera motions

Handles arbitrary scene dynamics

Achieves state-of-the-art performance



Motion Deblurring

Literature (Image-Wise)

(4, 7) / H(i—x,7—vy)L(z,y)dxdy

T,1 Pixel coordinates

H Point Spread Function
L Latent image
I

Observed image



Motion Deblurring

Literature (Image-Wise)

1) = [[ HG = 2.5~ p)Lix.y) dody

¢ H models relative motion
e BothHandLlare
unknown

Ours (Pixel-Wise)

t s —t
/ e = L(s)ds

Time
Thermal time constant
Latent image

Observed image



Motion Deblurring

Literature (Image-Wise) Ours (Pixel-Wise)
I(2,7) = //H(z —x,5 —y)L(x,y) dx dy I(i,7) = ;/ e’ T L(s)ds
¢ H models relative motion e Tisfixed and can be
e Both HandLare calibrated

unknown e OnlyLisunknown



Physically-based
Augmentation
Techniques to overcome
Domain Adaptation

Alexa Carlson




Introduction: The domain shift in Rendered and Real Datasets

Synthetic Datasets REAL WORLD

Synthetic
N\ Datasets
S

\-—’

Cityscapes
Cityscapes




Prior Work: lllumination effects degrade performance (and contribute to

Domain Shift!)

* By considering changes in illumination, we
consider a huge variety of visual effects:
e Specular highlights, reflections
* Overexposure/saturation, underexposure
» Soft and hard shadows, shading
* Color changes

* Environmental lighting cause severe prediction
errors for deep learning algorithms trained for
object tracking, detection and segmentation
tasks

Predicted Segmentation Map

Input RGB

1pm

S5pm

I Car B Wall Terrain I Sky
BlE Pole B Building Il Road Il Bicycle
B Sidewalk [ Person B Vegetation

Maddern et al, lllumination Invariant Imaging: Applications in Robust Vision-based Localisation, Mapping and Classification for Autonomous Vehicles, ICRA 2014



Prior Work: Physically-based data augmentation

11

* |llumination Invariant Color spaces’%3

1 Alshammari et al, On the Impact of lllumination-Invariant Image Pre-transformation for Contemporary Automotive Semantic Scene Understanding, |V 2018
2 Alshammari et al, Multi-Task Learning for Automotive Foggy Scene Understanding via Domain Adaptation to an Illlumination-Invariant Representation, arxiv 2019
3 Maddern et al, lllumination Invariant Imaging: Applications in Robust Vision-based Localisation, Mapping and Classification for Autonomous Vehicles, ICRA 2014



Brief overview of past approach

Proposed Approach: Shadow Transfer Network

 We cast as a multi-domain transfer problem, where the goal is to transfer illumination effects
between times of day

* Learns an illumination model via a deep neural encoder-decoder framework that operates upon
input that is easily obtained from a car-mounted RGB camera

* Designed to be self-supervised, removing the need for labeling illumination features in images,
like shadows, brightness or global color temperature

Contributions
* To learn a deep illumination model that can relight a given image, and use this model to better
understand the failure modes of detection and segmentation DNNs



Brief overview of past approach
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Shadow Transfer Network Architecture

Luminance Encoder-Decoder Neural Network

Light source
location vector

L
Light Source
( l . Encoder L
n

Depth map

Segmentation
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\ Light Source

Encoder AB
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Luminance
Encoder

Chrominance Encoder-Decoder Neural Network

Chrominance
Decoder

Predicted
ab channels

Predicted RGB

* L1 loss on predicted L and ab channels
* Standard Perceptual and Style loss on predicted RGB
* Sun Estimation Perceptual loss on Predicted RGB
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Brief overview of past approach

Sun Estimation Perceptual loss on Predicted RGB

Image

N
5
\

conv3 conv4 Image conv3
I[N i i :

g
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Figure 5: Shading/shadow detectors emerge in Sun-CNN: Test images and the corresponding activation maps of certain
units in conv3 and conv4 layers of Sun-CNN. Despite being trained on image-level label (the relative sun position), our
Sun-CNN automatically learns to fire on shadings (conv3) and shadows (conv4).

Ma et al, Find your Way by Observing the Sun and Other Semantic Cues, arxiv 2016



Brief overview of past approach
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Results: Real Dataset KITTI-sun

Sem Seg. Input only

Desired Lighting Proposed Method

[10, 60]

[180,60]

»
~j

Network Ablation Experiments

[-80, 50]




ParametricX: 3D
Reconstruction of Urban
ntersections to Bridge the
Gap Between Real and
Synthetic Data

Wonhui Kim




Capturing Data at Urban Intersectiong

How do we capture full dynamics of the entire urban intersections?

Previously in PedX, we parked our capture vehicle at the curb
= Limited perspective RGB images and LiDAR point clouds with occlusions

A moving vehicle passes through the intersection, and

after STOP sign it needs to choose a single route (Left turn/ straight/ right turn)
= Not enough time to fully observe the surroundings,

= Limited perspective data

Bird’s-eye view data of the intersection is good to obtain trajectories,
= Limited view data
= Lack of data other than trajectories



Dense 3D Reconstruction of Intersections

Bridging gaps between real and synthetic data:

Real trajectories of Synthetic reconstruction of
+ + Real scene geometry

dynamic agents static/dynamic components

Urban intersection consists of many scene components.

Background Static objects Dynamic objects
Buildings

Ground Trees

L'an €3 PpOSts Pedestrians

Sidewalks Road poles Vehicles

Crosswalks Traffic signs

Parking lots Trash bins

Bike racks




3D Model Fitting

Scene backgrounds are modeled based on plane fitting and manual labeling using Blender.
Static scene objects are reconstructed by fitting 3D CAD models from ObjectNet3D dataset.
Pedestrians from PedX dataset were adjusted to be consistent with other scene models.

Vehicles are reconstructed by fitting 3D models with the following steps:

- LiDAR point cloud segmentation

- Global trajectory fitting

- Optimization to determine vehicle pose (translation, heading orientation)

Figure: Lanes, sidewalks, crosswalks, buildings are shown;
Rendered from a bird’s eye view

“Blender - a 3D modelling and rendering package”, http://www.blender.org, 2018.
Xiang, Yu, et al. "Objectnet3d: A large scale database for 3d object recognition." European Conference on-Computer Vision. Springer, Cham, 2016.
Kim, Wonhui, et al. "PedX: Benchmark dataset for metric 3-D pose estimation of pedestrians in complex urban intersections." IEEE Robotics and Automation Letters 4.2 (2019): 1940-1947.



http://www.blender.org




Generating Depth and Label Images from
Simulation

e Avirtual camera is placed at a vehicle turning right after the STOP line.
e The trajectory is from the real data capture.

YN Y e Y

Depth maps (top) / Instance-level label images (bottom)

.Tr g r



Generating LiDAR Point Clouds from Simulation

e Virtual LiDARs are placed on the roof of the capture vehicle as in the real configuration.
e Comparison: Real vs. simulated point clouds

Black: points from LiDAR sensors ‘
fance from the LiDAR origin.

Colored: points from the simulator color-coded based on the di




Generating
Trajectories from
Prediction

Cyrus Anderson

Off The Beaten Sidewalk: Pedestrian Prediction In Shared
Spaces For Autonomous Vehicles (Cyrus Anderson, Ram
Vasudevan, M. Johnson-Roberson), In IEEE Robotics and

Automation Letters (RA-L) Special Issue on Long-Term Human
Motion Prediction, 2020



Generating Trajectories from Prediction

e How to get data for training pedestrian prediction algos

- Anderson, Cyrus, et al. "Stochastic Sampling Simulation for Pedestrian Trajectory Prediction." arXiv preprint arXiv:1903.01860 (2019).

- Du, Xiaoxiao, Ram Vasudevan, and Matthew Johnson-Roberson. "Bio-Istm: A biomechanically inspired recurrent neural network for 3-d
pedestrian pose and gait prediction." IEEE Robotics and Automation Letters 4.2 (2019): 1501-1508.

- Yao, Yu, et al. "BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal Goal Estimation." arXiv preprint arXiv:2007.14558
(2020).

- Zhao, Tianyang, et al. "Multi-agent tensor fusion for contextual trajectory prediction." Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019.

- Ma, Yuexin, et al. "Trafficpredict: Trajectory prediction for heterogeneous traffic-agents." Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 2019.

- Xue, Hao, Du Q. Huynh, and Mark Reynolds. "SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction." 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2018.



Standard Pedestrian Prediction

Key ingredients: Infrastructure:

e Pedestrian e Curbs
o [Kooiji et al., JICV “19]

e Vehicles o Marked crosswalk

o [Blaiotta, RA-L ‘19]
[Jayaraman et al., ICRA ‘20]

o Signalized

intersection
[Hashimoto et al., ITS ‘15]




Shared Space




Predictions in more general scenes

e Infrastructure
o Unmarked crosswalks
e Pedestrian behavior

o May change across scenes
o Less than 100% adherence
to traffic rules




Predictions off the sidewalk




Predictions off the sidewalk




Predictions off the sidewalk




Predictions off the sidewalk

Risk
High

Pays attention to this vehicle! ]

|

Low

A




Predictions off the sidewalk

Risk
High

A -
Pays attention to this vehicle! ] Case: no yielding

[

Low




Predictions off the sidewalk

Risk
High

1 i -
Pays attention to this vehicle! ] Case: yielding

|

Low




t = 1.1s

Predicted distributions - DUT

———  (bserved Trajectory

= Future GT Trajectory

Vehicle Trajectory




Point Set Voting for
Partial Point Cloud
Analysis

Junming Zhang




Motivation

\ 4

Depth Sensors Point clouds

Point clouds are easily generated by depth sensors



Motivation

347
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CAD models from ShapeNet Synthetic Point clouds
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Synthetic point clouds are generated by sampling from CAD models



Motivation

e RS-CNN
e DG-CNN
e SF-CNN
e Pointnet

e Pointnet++
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Synthetic Point clouds

Many methods developed for analyzing point clouds

are based on synthetic dataset



Motivation

Real-world point clouds are usually incomplete



Motivation

Training on incomplete point clouds Complete partial point clouds
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Motivation

Training on incomplete point clouds

Annotation is expensive

Complete partial point clouds
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Motivation

Training on incomplete point clouds Complete partial point clouds
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Annotation is expensive Limitations



Motivation

Point clouds completion

7 —>| completion

task

task




Method
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Partial Point Clouds

One-stage model for any partial point clouds analysis



Method

__—~ Cclassification
I segmentation
~ g
vector completion

Inputs Encode

1. Mapping different inputs into the same feature vector
2. Not able to transfer to other incomplete point clouds



Method

Hough transform

x)’—w Encoder Hough transform
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Propose voting strategy to infer the feature for encoding complete PC



Method
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Motivation
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Latent feature is sampled from constructed latent space



Motivation
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Latent feature is passed to decoding modules



Results

Method Input Complete Partial

PointNet [33] Bl 88.8 20.9
PointNet++ [35] | xyz 91.0 61.5
RS-CNN [27] TYZ 02.3 43.3
DG-CNN [47] B 92.9 o) I

Ours TYz 914 86.4

Shape classification on ModelNet40



Results

Results on complete point clouds in ShapeNet
from models trained on ShapeNet

Part Segmentation trained on ShapeNet



Results

Results on simulated partial point clouds from
models trained on ShapeNet

Part Segmentation trained on ShapeNet



Results

Results on point clouds in Completion3D from
models trained on ShapeNet

Part Segmentation trained on ShapeNet



Results

Method Input Complete Partial
PointNet [33] TYZ 80.5 29.9
PointNet++ [35] | zyz 82.0 30.9
DG-CNN [47] TYZz 82.3 29.8
RS-CNN [27] TYZ 32.4 30.6
Ours TYZ2 79.0 78.1

Part Segmentation trained on ShapeNet



Input FoldingNet AtlasNet

s~
Model Average CD \- J
FoldingNet [51] 19.07
PCN [52] 18.22
AtlasNet [13] 17.77
TopNet [45] 14.25
Ours 18.18

Point clouds completion



Model

FoldingNet

VMBS e
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B s L AR T
RSB R, h T

Average CD

FoldingNet [51]
PCN [52]
AtlasNet [13]
TopNet [45]

34.56
34.93
39.73
31.87

Ours

17.22

AtlasNet

Point clouds completion

PCN

WR——
TRR KA Kt M
N A e




To current students



Questions?



