

Fundamentals of optimization Part I

M. Grazia Speranza University of Brescia

Optimization

What is it?

Why do we care?

When do we use it?

Optimization

Decision variables

$$\min c(x)$$
$$x \in F$$

One objective (objective function)

Constraints (feasible region)

Optimization

One objective only?

Safety

Fair traffic assignment

Environmentally friendly

'Low' cost

Optimization problem

 $\min c(x)$ $x \in F$

Local and global optima

What do we need?

- We know how to analitically find local optima for 'simple' optimization problems
- We know how to analitically find the global optimum for some 'very simple' optimization problems
- We do not know for all the others algorithms needed

Convex problem

 $\min_{\substack{x \in F}} c(x)$

Fc(x) Convex set Convex function on F

Convex problem

Convex problem

Property:

For a convex problem, any local optimum is a global optimum

Effective and efficient algorithms

Convex problem

$$\min \varphi(x) g_i(x) \ge 0 \quad (i = 1, ..., q) h_j(x) = 0 \quad (j = 1, ..., p)$$

Theorem:

If $\varphi(x)$ is convex, $g_i(x)$ are concave, $h_j(x)$ are linear, the optimization problem is a convex problem

Linear programming

 $\min c'x$ Ax = b $x \ge 0$

Special case of convex problem

Linear programming

 $\min c'x \\ Ax = b$

 $x \ge 0$

LP problems can be solved with efficient algorithms: Simplex method Interior point methods (Khachiyan, Karmarkar)

Computational complexity or simply **complexity** of an algorithm is the amount of resources required to run it

Resources: time and memory

Worst-case complexity of an algorithm

 $n \rightarrow f(n)$ *n*: size of the input

f(n) = max f(I) over all instances I of size n

Problem: Sorting Instance I: 6, 35, 7, 15, 27, 12, 18 Algorithm: Bubblesort Size: 7 f(7) = max f(I) over all instances I of size 7

f(n) very difficult to obtain

Asymptotic behavior (when *n* tends to the infinity) The complexity is expressed by using big O notation Complexity of Bubblesort: $O(n^2)$

The complexity of a problem is the infimum of the complexities of the algorithms that solve the problem, including unknown algorithms.

Complexity of problem Sorting: O(n log n) (thanks to Heapsort)

Why do we care about computational complexity?

 $O(n \log n)$

 $O(2^{n})$

 $O(n^2)$

CPU speed *1000

O(n)

size solved increases by 10

 $O(2^{n})$

George Dantzig (1914-2005) in 1947 invented the **simplex method** Worst-case complexity: $O(2^{\frac{m}{2}-1})$

In practice: Rarely time required is greater than O(m log n)

Complexity of LP unknown until 1979

Leonid Khachiyan (1952-2005) in 1979 invented the ellipsoid method

Worst-case complexity: $O(n^6)$

In practice: $O(n^6)$

Solution of LP

More and more powerful software available

(CPLEX, Gurobi) (GLPK, LP-SOLVE)

Planning problems

Robust optimization

Mixed integer linear programming **Fixed costs** Scheduling Location min c'xAx = b $x \ge 0$ Integer **Selection** Routing

Mixed integer linear programming

Branch-and-bound

Branch-and-cut

Branch-and-price

Branch-and-price

MILP

More and more powerful software

Mixed integer linear programming

Fixed costs

Location

Specialized algorithms (exact and heuristic)

Routing

Scheduling