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Optimization

What is it?

Why do we care?

When do we use it?



Optimization

Decision variables

One objective (objective function)

Constraints (feasible region)



Optimization

One objective only?



Optimization

One objective only?
Safety

Small 
traveling

time

Environmentally friendly
Fair traffic

assignment

‘Low’ cost



Optimization

Multiple objectives

a) Combination of objectives into a single one

min f(x)

max g(x)
max g(x)-p f(x)

Method not always appropriate



Optimization

Multiple objectives

b) One objective chosen as objective with the others into
constraints with thresholds

min f(x)

max g(x)

min f(x)

g(x)≥k



Optimization

Multiple optimization problems, each with one objective

Efficient frontier

a) 

max g(x)-p f(x)

b) 

min f(x)

g(x)≥k

Choice of p Choice of k



Optimization

Cost

Quality Efficient frontier

Non-existing



Optimization problem



Types of objectives

sum over a given
percentage of the worst i 

Average

Worst

CVaR-like
(can be used on 

scenarios)



Local and global optima

Global optimum (max)Local optima (max)



What do we need?

• We know how to analitically find local optima for 
‘simple’ optimization problems

• We know how to analitically find the global optimum 
for some ‘very simple’ optimization problems

• We do not know for all the others – algorithms needed



Convex problem

Convex set
Convex function on F

Convex problem



Convex problem

Effective and efficient
algorithms

Property:

For a convex problem, 
any local optimum is a 

global optimum



Convex problem

Theorem:
If is convex, are concave, are linear,

the optimization problem is a convex problem



Linear programming

x

Special case of convex problem



Model - algorithm

Mathematical programming formulation

Algorithm 
(for the formulation and not for a 

specific problem)



Linear programming

x

LP problems can be solved with efficient algorithms:
Simplex method

Interior point methods (Khachiyan, Karmarkar)



Computational complexity

Computational complexity or simply complexity of an 
algorithm is the amount of resources required to run it 

Resources: time and memory



Computational complexity

Worst-case complexity of an algorithm

n → f(n)

n: size of the input

f(n) = max f(I) over all instances I of size n

Problem: Sorting 

Instance I: 6, 35, 7, 15, 27, 12, 18

Algorithm: Bubblesort

Size: 7

f(7) = max f(I) over all instances I of size 7



Computational complexity

f(n) very difficult to obtain

Asymptotic behavior (when n tends to the infinity)

The complexity is expressed by using big O notation

Complexity of Bubblesort: O(



Computational complexity

The complexity of a problem is the infimum of the 
complexities of the algorithms that solve the problem, 
including unknown algorithms.

Complexity of problem Sorting: O(n log n)   
(thanks to Heapsort)



Computational complexity
Why do we care about computational complexity?

O(n) O (n log n) O( )               O( )

days years centuries

CPU speed *1000         O( ௡)                size solved  increases by 10



Computational complexity: classes

P=NP? Conjecture: no



Computational complexity: LP
George Dantzig (1914-2005) in 1947 invented the simplex method

Worst-case complexity: O(
೘

మ
ିଵ)

In practice: Rarely time required is greater than O(m log n)

Complexity of LP unknown until 1979

Leonid Khachiyan (1952-2005) in 1979 invented the ellipsoid method

Worst-case complexity: O( ଺)

In practice:  O( ଺)



Computational complexity: LP

LP



Solution of LP

More and more powerful software available

(CPLEX, Gurobi)
(GLPK, LP-SOLVE)



Planning problems



Planning problems



Optimization problems

Mixed integer linear programming

Non-linear programming

Global optimization

Stochastic programming

Non-convex optimization

Robust optimization



Mixed  integer linear programming

Integerx

Location

Routing

Scheduling

Selection

Fixed costs



Mixed  integer linear programming

MILP



Mixed  integer linear programming

Branch-and-bound

Branch-and-cut

Branch-and-price x

Exponential number of 
variables



Branch-and-price

Column generation



MILP

More and more powerful software



Mixed  integer linear programming

Specialized algorithms

(exact and heuristic) 

Location

Routing

Scheduling

Selection

Fixed costs


