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Traffic Flow Theory and Traffic Models The Point of Traffic Models

The Point of Traffic Models

One could study traffic flow purely empirically, i.e., observe and classify
what one sees and measures.

So why study (principled) models?

Reduce system complexity, e.g.: replace different drivers by one
effective average driver type, while preserving system behavior.

Remove/add specific effects (lane switching, vehicle inhomogeneities,
road conditions, etc.) −→ understand which effects play which role.

Can study effect of model parameters (driver aggressiveness, etc.).

Can be analyzed theoretically (to a certain extent).

Can use computational resources to simulate.

Yield quantitative predictions (−→ traffic forecasting).

We actually do not know (exactly) how we drive. Models that
reproduce correct emergent phenomena help us understand our
driving behavior.
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Traffic Flow Theory and Traffic Models The Point of Traffic Models in the Context of AVs

The Point of Traffic Models in the Context of AVs

Why do we need traffic flow modeling in light of AVs?

Because we (as a society) are fundamentally changing the transportation
system, by introducing automation and connectivity (and electrification
and shared mobility).

To predict the impacts of autonomous vehicles (and prevent the worst
pitfalls), we must have a good principled understanding of traffic flow
without vehicle automation.

Key message about flow modeling

1) “All models are wrong, but some are useful.”
(George Box)

2) Whether a model is useful depends on what is needed in
the specific situation.
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Traffic Flow Theory and Traffic Models See Traffic Flow Data Yourself

See Traffic Flow Data Yourself

Visualize Real Traffic Data

The seminal NGSIM (Next Generation Simulation) data set:
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

Here Interstate 80 Freeway Dataset near Emeryville, CA.

1 Download https://www.math.temple.edu/~seibold/NGSIM.zip

2 Unzip NGSIM.zip

3 Open Matlab

4 >> A = load(’trajectories-0500-0515.txt’);

5 >> animate ngsim

Additional files:
trajectories-0400-0415.txt

trajectories-0515-0530.txt
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Traffic Flow Theory and Traffic Models Fundamental Quantities of Traffic Flow Theory

Uniform traffic flow

veh. length ` gap s spacing hs

-vel. u

Fundamental quantities

density ρ: # vehicles per unit length; ρmax: bumper to bumper + safety

flow rate (throughput) q: # vehicles passing fixed position per time

velocity u: distance traveled per unit time

bulk-velocity u = q/ρ: correct notion in non-uniform flow

spacing hs : road length per vehicle; gap s = hs − `

Non-uniform traffic flow

- - - - -

- - - - - -
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Traffic Flow Theory and Traffic Models First Traffic Measurements and Fundamental Diagram

Bruce Greenshields collecting data (1933)

[This was only 25 years after the first Ford Model T (1908)]

Postulated density–velocity relationship

Deduced relationship

u = U(ρ) = umax(1− ρ/ρmax),
ρmax≈195 veh/mi; umax≈43 mi/h

Flow rate
q = Q(ρ) = umax(ρ− ρ2/ρmax)

Contemporary measurements (q vs. ρ)
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[Fundamental Diagram of Traffic Flow]
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Traffic Flow Theory and Traffic Models Fundamental Diagram

Fundamental Diagram (FD) of
traffic flow (detector data)
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[Greenshields Flux]
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[(smoothed) Daganzo-Newell Flux]

Traffic phase theory (here: 2 phases) [Kerner]
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FDs around the world exhibit same features

for ρ small (free-flow): small spread

above a critical density (congestion):
Q(ρ) decreasing & FD set-valued

Key open question in traffic flow theory:
precise phenomenological understanding of
spread (role of sensor noise, inhomogeneities,
non-equilibrium effects, etc.).
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Traffic Flow Theory and Traffic Models Types of Traffic Models

Microscopic Models
ẍj = G(xj+1 − xj , uj , uj+1)
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Idea

Describe behavior of individual
vehicles (ODE system).

Micro ←→ Macro

macro = limit of micro
when #vehicles →∞
micro = discretization of
macro in Lagrangian
variables

Macroscopic Models{
ρt + (ρu)x =0

(u+h)t +u(u+h)x = 1
τ
(U−u)

Methodology and role

Describe aggregate/bulk
quantities via PDE.

Natural framework for
multiscale phenomena,
traveling waves, and
shocks.

Suitable framework to
incorporate sparse data
[Mobile Millennium Project].

Cellular Models

Idea

Cell-to-cell propagation
(space-time-discrete).

Cellular ←→ Macro

macro = limit of
cellular

cellular = discreti-
zation of macro in
Eulerian variables
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Traffic Flow Theory and Traffic Models First- vs. Second-Order Models

Key Distinction for All Traffic Models

First-order dynamics: System state is vehicle positions (or density).
Obtain (instantaneous) vehicle velocities from positions.

Second-order dynamics: System state is vehicle positions and
velocities. Model vehicle accelerations (Newton’s laws of motion).

First-order dynamics can produce shock waves (moving upstream end
of traffic jam; red/green light dynamics); but . . .

Second-order dynamics needed to produce instabilities and traveling
waves (phantom traffic jams). [Or: first-order with delay; not treated here]

Microscopic Models

First-order: ẋj = F (xj+1 − xj)

Second-order:

ẍj = G (xj+1 − xj , uj , uj+1)

Macroscopic Models

First-order: ρt + (ρU(ρ))x = 0

Second-order:{
ρt + (ρu)x =0

(u+h(ρ))t +u(u+h(ρ))x = 1
τ (U(ρ)−u)
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Macroscopic Traffic Models

Overview
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Macroscopic Traffic Models Philosophy

Macroscopic Traffic Models — Philosophy

Philosophy of macroscopic models

Equations for macroscopic traffic variables (density, flow rate, etc.)

Usually lane-aggregated (ρ(x , t)), but multi-lane models can also be
formulated.

Natural framework for multiscale phenomena, traveling waves, shocks.

Established theory of control and coupling conditions for networks.

Suitable framework to fill gaps in incorporated measurement data.

Mathematically related with other models, e.g., microscopic models,
mesoscopic (kinetic) models, cell transmission models, stochastic
models.

Good for estimation and prediction, and for mathematical analysis of
emergent features. Not the best framework if vehicle trajectories are
of interest. Also, analysis and numerical methods for PDE are more
complicated than for ODE.
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Macroscopic Traffic Models Continuum Description

Macroscopic Traffic Models — Continuum Description

Continuity equation

Vehicle density ρ(x , t). Number of vehicles in [a, b]: m(t) =
∫ b

a
ρ(x , t)dx

Traffic flow rate (flux): f = ρu

Change of number of vehicles equals inflow f (a) minus outflow f (b):

d

dt
m(t) =

∫ b

a

ρtdx = f (a)− f (b) = −
∫ b

a

fxdx

Equation holds for any choice of a and b: ρt + (ρu)x = 0

First-order models (Lighthill-Whitham-Richards)

Model: velocity uniquely given by density, u = U(ρ). Yields flux function
f = Q(ρ) = ρU(ρ). Scalar hyperbolic conservation law.

Second-order models (e.g., Payne-Whitham, Aw-Rascle-Zhang)

ρ and u are independent quantities; augment continuity equation by a second
equation for velocity field (vehicle acceleration). System of hyperbolic
conservation laws.
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Macroscopic Traffic Models LWR & PW & ARZ

Lighthill-Whitham-Richard (LWR) Model [Lighthill&Whitham: Proc. Roy. Soc. A 1955]

ρt + (ρU(ρ))x = 0
⇐⇒ ρt + Q(ρ)x = 0

}
where Q(ρ) = ρU(ρ)

Model parameter: flow rate function Q(ρ)

First order model

Payne-Whitham (PW) Model [Whitham 1974], [Payne: Transp. Res. Rec. 1979]{
ρt + (ρu)x = 0
ut + uux + 1

ρp(ρ)x = 1
τ (U(ρ)− u)

Parameters: pressure p(ρ); desired velocity function U(ρ); relaxation time τ

Second order model; vehicle acceleration: ut + uux = − p′(ρ)
ρ ρx + 1

τ (U(ρ)− u)

Inhomogeneous Aw-Rascle-Zhang (ARZ) Model
[Aw&Rascle: SIAM J. Appl. Math. 2000], [Zhang: Transp. Res. B 2002]{

ρt + (ρu)x = 0
(u + h(ρ))t + u(u + h(ρ))x = 1

τ (U(ρ)− u)

Parameters: hesitation function h(ρ); velocity function U(ρ); time scale τ

Second order model; vehicle acceleration: ut + uux = ρh′(ρ)ux + 1
τ (U(ρ)− u)
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Macroscopic Traffic Models First-Order LWR: Derivation

Continuity equation ρt + (ρu)x = 0

One equation, two unknown quantities ρ and u.

Simplest idea: model velocity u as a function of ρ.

(i) alone on the road ⇒ drive with speed limit: u(0) = umax

(ii) bumper to bumper ⇒ complete clogging: u(ρmax) = 0

(iii) in between, use linear function: u(ρ) = umax

(
1− ρ

ρmax

)
Lighthill-Whitham-Richards model (1950)

f (ρ) = ρ
ρmax

(
1− ρ

ρmax

)
umax

A more realistic f (ρ)
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Macroscopic Traffic Models First-Order LWR: Evolution in Time

Method of characteristics

ρt + (f (ρ))x = 0

Look at solution along a special curve x(t). At this moving observer:

d

dt
ρ(x(t), t) = ρx ẋ +ρt = ρx ẋ − (f (ρ))x = ρx ẋ − f ′(ρ)ρx =

(
ẋ − f ′(ρ)

)
ρx

If we choose ẋ = f ′(ρ), then solution (ρ) is constant along the curve.

LWR flux function and information propagation

speed of vehicles speed of information
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Macroscopic Traffic Models First-Order LWR: Evolution in Time

Solution method

Let the initial traffic density ρ(x , 0) = ρ0(x) be represented by points
(x , ρ0(x)). Each point evolves according to the characteristic equations{

ẋ = f ′(ρ)

ρ̇ = 0

Shocks

The method of characteristics eventually creates breaking waves.
In practice, a shock (= traveling discontinuity) occurs.
Interpretation: Upstream end of a traffic jam.

Note: A shock is a model idealization of a real thin zone of rapid braking.
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Macroscopic Traffic Models First-Order LWR: Weak Solutions

Characteristic form of LWR

LWR model ρt + f (ρ)x = 0 (1)

in characteristic form: ẋ = f ′(ρ), ρ̇ = 0.

If initial conditions ρ(x , 0) = ρ0(x) smooth (C 1),
solution becomes non-smooth at time
t∗ = − 1

infx f ′′(ρ0(x))ρ′0(x) .

Reality exists for t > t∗, but PDE does not make
sense anymore (cannot differentiate discont. function).

Weak solution concept

ρ(x , t) is a weak solution if it satisfies∫ ∞
0

∫ ∞
−∞

ρφt + f (ρ)φx dxdt = −
∫ ∞
−∞

[ρφ]t=0 dx ∀φ ∈ C 1
0︸ ︷︷ ︸

test fct., C1 with compact support

(2)

Theorem: If ρ ∈ C 1 (“classical solution”), then (1) ⇐⇒ (2).

Proof: integration by parts.
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Macroscopic Traffic Models First-Order LWR: Weak Solutions

Weak formulation of LWR∫ ∞
0

∫ ∞
−∞

ρφt + f (ρ)φx dxdt = −
∫ ∞
−∞

[ρφ]t=0 dx ∀φ ∈ C 1
0

Every classical (C 1) solution is a weak solution.

In addition, there are discontinuous weak solutions (i.e., with shocks).

Riemann problem (RP)

ρ0(x) =

{
ρL x < 0

ρR x ≥ 0
-x

a b

ρL

ρR
-
s

Speed of shocks

The weak formulation implies that shocks move with a speed such that
the number of vehicles is conserved:

RP: (ρL − ρR) · s = d
dt

∫ b
a ρ(x , t) dx = f (ρL)− f (ρR)

Yields: s = f (ρR)−f (ρL)
ρR−ρL = [f (ρ)]

[ρ] Rankine-Hugoniot condition
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Macroscopic Traffic Models First-Order LWR: Entropy Condition

Weak formulation and Rankine-Hugoniot shock condition∫ ∞
0

∫ ∞
−∞
ρφt + f (ρ)φx dxdt = −

∫ ∞
−∞

[ρφ]t=0 dx ∀φ ∈ C 1
0 ; s =

[f (ρ)]

[ρ]

Problem

For RP with ρL > ρR , many weak solutions for same initial conditions.

One shock

-x

6
ρ

�

Two shocks

-x

6
ρ

�

Rarefaction fan

-x

6
ρ

�
�
-

Entropy condition

Single out a unique solution (the dynamically stable one −→ vanishing
viscosity limit) via an extra “entropy” condition:

Characteristics must go into shocks, i.e., f ′(ρL) > s > f ′(ρR).

For LWR (f ′′(ρ) < 0): shocks must satisfy ρL < ρR .

Benjamin Seibold (Temple University) Basic Traffic Models and Traffic Waves 09/16–17/2020, IPAM Tutorials 21 / 44



Macroscopic Traffic Models First-Order LWR: Limitations

Evolution of Traffic Density for LWR
Model

Result

The LWR model quite nicely explains
the shape of traffic jams (vehicles run
into a shock).

Data-Fitted Flow Rate Curve
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Shortcomings of LWR

Cannot explain FD spread.

Cannot explain phantom traffic
jams (perturbations never grow
due to maximum principle).
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Macroscopic Traffic Models Second-Order Models: Relaxation to First-Order Models

Payne-Whitham (PW) Model [Analysis for ARZ Model is Very Similar]{
ρt + (ρu)x = 0

ut + uux + 1
ρp(ρ)x = 1

τ (U(ρ)− u)

Mathematical Structure: System of Balance Laws(
ρ
u

)
t

+

(
u ρ

1
ρ
dp
dρ u

)
·
(
ρ
u

)
x︸ ︷︷ ︸

hyperbolic part

=

(
0

1
τ (U(ρ)− u)

)
︸ ︷︷ ︸

relaxation term

Relaxation to Equilibrium

Formally, we can consider the limit τ → 0.
In this case: u = U(ρ), i.e., the system reduces to the LWR model.

Important Fact

Solutions of the 2× 2 system converge to solutions of LWR, only if a
condition is satisfied −→ next slide. . .
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Macroscopic Traffic Models Second-Order Models: Linear Stability Analysis and Connections

System of Balance Laws (e.g., PW Model)(
ρ
u

)
t

+

(
u ρ

1
ρ
dp
dρ u

)(
ρ
u

)
x

=

(
0

1
τ (U(ρ)− u)

) Eigenvalues{
λ1 = u − c
λ2 = u + c

}
c2 = dp

dρ

Linear Stability Analysis

(LS) When are constant base state
solutions ρ(x , t) = ρ̃, u(x , t) = U(ρ̃)
stable (i.e. infinitesimal perturbations
do not amplify)?

Reduced Equation

(RE) When do solutions of the 2× 2
system converge (as τ → 0) to
solutions of the reduced equation

ρt + (ρU(ρ))x = 0 ?

Sub-Characteristic Condition

(SCC) λ1 < µ < λ2, where µ = (ρU(ρ))′
Theorem [Whitham: Comm. Pure Appl. Math 1959]

(LS) ⇐⇒ (RE) ⇐⇒ (SCC)

Example: Stability for PW Model

(SCC) ⇐⇒ U(ρ)− c(ρ) ≤ U(ρ) + ρU ′(ρ) ≤ U(ρ) + c(ρ)⇐⇒ c(ρ)
ρ ≥ −U

′(ρ).

For p(ρ) = β
2 ρ

2 and U(ρ) = um

(
1− ρ

ρm

)
: stability iff ρ < ρc, where ρc =

βρ2
m

u2
m

.

Phase transition: If enough vehicles on the road, uniform flow is unstable.
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Macroscopic Traffic Models Second-Order Models: Traveling Wave Solution

PW Model
{
ρt + (ρu)x = 0

ut + uux + 1
ρp(ρ)x = 1

τ (U(ρ)− u)

Traveling Wave Ansatz

ρ = ρ(η), u = u(η), with self-similar variable η = x−st
τ .

Then ρt = − s
τ ρ
′ , ρx = 1

τ ρ
′ , ut = − s

τ u
′ , ux = 1

τ u
′

and px = 1
τ c

2ρ′ , c2 = dp
dρ

Continuity Equation

ρt + (uρ)x = 0

− s

τ
ρ′ +

1

τ
(uρ)′ = 0

(ρ(u − s))′ = 0

ρ =
m

u − s

ρ′ = − ρ

u − s
u′

Momentum Equation

ut + uux +
px
ρ

=
1

τ
(U − u)

− s

τ
u′ +

1

τ
uu′ +

dp

dρ

ρ′

ρ
=

1

τ
(U − u)

(u − s)u′ − c2 1

u − s
u′ = U − u

u′ =
(u − s)(U − u)

(u − s)2 − c2
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Macroscopic Traffic Models Second-Order Models: ODE and Algebraic Condition

Jamiton Ordinary Differential Equation for u(η)

u′ =
(u − s)(U(ρ)− u)

(u − s)2 − c(ρ)2
where ρ =

m

u − s
where

s = travel speed of jamiton

m = mass flux of vehicles through jamiton

Key Point

In fact, m and s can not be chosen independently:

Denominator has root at u = s + c . Solution can only pass smoothly
through this singularity (the sonic point), if u = s + c implies U = u.

Using u = s + m
ρ , we obtain for this sonic density ρS that:{

Denominator s + m
ρS

= s + c(ρS) =⇒ m = ρSc(ρS)

Numerator s + m
ρS

= U(ρS) =⇒ s = U(ρS)− c(ρS)

Algebraic condition (Chapman-Jouguet condition [Chapman, Jouguet (1890)]) that
relates m and s (and ρS). Jamitons described by ZND detonation theory.
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Macroscopic Traffic Models Jamitons in an Experiment

Experiment: Jamitons on circular road [Sugiyama et al.: New J. of Physics 2008]
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Macroscopic Traffic Models Second-Order Models: Jamitons in Numerical Simulations
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Macroscopic Traffic Models Second-Order Models: Jamitons in Numerical Simulations

Infinite road; lead jamiton gives birth to a chain of “jamitinos”.

Important practical lesson: traffic waves can arise as properties of the flow;
no bad drivers needed to cause them.
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Macroscopic Traffic Models Jamitons and Spread in Fundamental Diagram

Jamiton Fundamental Diagram

For each sonic density ρS that violates the
SCC: construct maximal jamiton.
 Line segment in FD.
Jamitons can explain spread in real FD.

Emulating Detector Data

At fixed position, calculate all possible
temporal averages of jamiton profiles.

Resulting aggregated jamiton FD is a subset
of the maximal jamiton FD.

Good Agreement With Dectector Data

We can reverse-engineer model parameters,
such that the aggregated jamiton FD shows
a good qualitative agreement with sensor
data.

Jamiton Fundamental Diagram
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Cellular Traffic Models

Overview

1 Traffic Flow Theory and Traffic Models

2 Macroscopic Traffic Models

3 Cellular Traffic Models

4 Microscopic Traffic Models
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Cellular Traffic Models Cell-Transmission Models: Godunov’s Method

Back to LWR

ρt + (f (ρ))x = 0

Initial condition

-x

6
ρ

Cell-averaged initial cond.

-x

6
ρ

Godunov’s method

REA = reconstruct–evolve–average

1 Divide road into cells of width h.

2 On each cell, store the average density ρj .

3 Assume solution is constant in each cell.

4 Evolve this piecewise constant solution
exactly from t to t + ∆t.

5 Average over each cell to obtain a
pw-const. sol. again.

6 Go to step 4.

Solution evolved exactly

-x

6
ρ

Cell-averaged evolved solution

-x

6
ρ

Benjamin Seibold (Temple University) Basic Traffic Models and Traffic Waves 09/16–17/2020, IPAM Tutorials 32 / 44



Cellular Traffic Models Cell-Transmission Models: Godunov’s Method

Godunov’s method

4 Evolve pw-const. sol. exactly from t to t+∆t.

5 Average over each cell.

6 Go to step 4.

Key Points

If we choose ∆t < h
2 max |f ′| (“CFL

condition”), waves starting at neighboring
cell interfaces never interact. Thus, can be
solved as local Riemann problems.

Because the exactly evolved solution is
averaged again, all that matters for the
change ρj(t) −→ ρj(t+∆t) are the fluxes
through the cell boundaries:

ρj(t+∆t) = ρj(t) + ∆t
h (Fj− 1

2
− Fj+ 1

2
)

Solution at time t

-x

6
ρ ρj

Solution evolved exactly

-x

6
ρ

-

Fj− 1
2

-

Fj+ 1
2

Solution at time t + ∆t

-x

6
ρ ρj

?
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Cellular Traffic Models Cell-Transmission Models: Demand and Supply

Godunov’s method

ρj(t+∆t) = ρj(t) + ∆t
h (Fj− 1

2
− Fj+ 1

2
)

right-going shock or raref.: Fj+ 1
2

= f (ρj)

left-going shock or raref.: Fj+ 1
2

= f (ρj+1)

transsonic rarefaction: Fj+ 1
2

= f (ρc)

Equivalent formulation of fluxes −→ CTM

Fj+ 1
2

= min{D(ρj),S(ρj+1)}
is the maximal flux that exceeds neither the

demand D(ρ) = f (min(ρ, ρc)), nor the

supply S(ρ) = f (max(ρ, ρc)).

Demand function

-ρ

6
f

ρc ρmax

Supply function

-ρ

6
f

ρc ρmax

Generalizations

Same concept for network coupling conditions.

Principles generalize to (certain) second-order traffic models.
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Cellular Traffic Models Cellular Automata

Cellular Automata

Concept Nagel-Schreckenberg model

en.wikipedia.org/wiki/Nagel-Schreckenberg model

1 Acceleration: Increase velocity by 1, up to a given
maximum speed.

2 Slowing down: Reduce velocity to number of empty
cells ahead (if necessary), to avoid collision.

3 Randomization: With probability p, reduce vehicle
velocity by 1, not below 0.

4 Car motion: Move cars forward as many cells as their
velocity is.

Ease of simulation and parallelization

PDE models as macroscopic limits

Simulation Code

https://www.math.temple.edu/~seibold/teaching/2018 2100

temple abm traffic cellular.m
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Microscopic Traffic Models

Overview

1 Traffic Flow Theory and Traffic Models

2 Macroscopic Traffic Models

3 Cellular Traffic Models

4 Microscopic Traffic Models
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Microscopic Traffic Models Philosophy

Microscopic Traffic Models — Philosophy

Philosophy of microscopic models

Compute trajectories of each vehicle.

Natural to extent to multiple lanes (lane switching model), different
vehicle types, etc.

At the core of most micro-simulators (e.g., Aimsun (Gipps’ model);
Vissim (Wiedemann model); SUMO (Krauss model)); usually with a
discrete time-step and fail-safes.

Many other car-following models, e.g., the intelligent driver model.

May have many parameters, in particular free parameters that cannot
be measured directly. Hence, calibration required.

Natural to add randomness. Generally, ensembles of computations
must be run.

Good for off-line simulation (“How would a lane-closure affect this
highway section?”).
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Microscopic Traffic Models Car-Following Models

Microscopic Car-Following Models

Vehicles at positions
x1<. . .<xN .

Car-following: car j
affected only by j + 1.

Types of arrangements:
`

gap sj `

xj
-ẋj

xj+1
-ẋj+1

a) Infinite road with one vehicle leading.

b) Ring road (N follows 1): proxy for infinite road.

Possible Model Dynamics

First order with delay: ẋj(t + τ) = V (sj(t)) with gap sj = xj+1−xj−`.
Second order: ẍj = f (sj , ṡj , vj). Here ṡj = ẋj+1− ẋj velocity difference.

Perturbations to Uniform Flow

Equilibrium: vehicles equi-spaced with identical velocities v eq.

Linearize: xj = xeq
j + yj , where yj infinitesimal perturbation.
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Microscopic Traffic Models String Stability

Car-Following: String Stability

Linearized Dynamics

First order: ẏj(t + τ) = V ′(seq)(yj+1(t)− yj(t)).

Second order: ÿj = α1 (yj+1 − yj)− α2 ẏj + α3 ẏj+1,

where α1 = ∂f
∂s , α2 = ∂f

∂ṡ −
∂f
∂v , α3 = ∂f

∂ṡ (all eval. at equilibrium).

Frequency Response of Car-Following I/O Behavior

Laplace transform ansatz yj(t) = cje
ωt , where cj , ω ∈ C.

Yields I/O system: cj = F (ω)cj+1 with transfer function

F (ω) =
(

1 + 1
V ′(seq)ωe

ωτ
)−1

resp. F (ω) =
α1 + α3 ω

α1 + α2 ω + ω2
.

Re(ω): temporal growth/decay

Im(ω): frequency of oscillation

|F |: growth/decay across vehicles

θ(F ): phase shift across vehicles

Def.: string stability means |F (ω)| ≤ 1 ∀ω ∈ iR.

The models above are string stable exactly if

2τV ′(seq) ≤ 1 resp. α2
2 − α2

3 − 2α1 ≥ 0 .
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Microscopic Traffic Models Modeling Mixed Human–AV Traffic

Two-Species Car-Following (Humans and AVs)

Slightly unstable human driver model, i.e. α2
2 − α2

3 − 2α1 < 0.

What changes when a few automated vehicles are added to the flow?
(that drive slightly differently than humans)
Can the few AVs stabilize traffic flow, and thus prevent traffic waves?

Humans: ẍj = f (hj , ḣj , vj); AVs: ẍj = g(hj , ḣj , vj).

Let AVs leave same equilibrium spacing as humans. Linearize.

Humans: ÿj = α1 (yj+1 − yj)− α2 uj + α3 uj+1

AVs: ÿj = β1 (yj+1 − yj)− β2 uj + β3 uj+1

Transfer functions: F (ω) = α1+α3 ω
α1+α2 ω+ω2 and G (ω) = β1+β3 ω

β1+β2 ω+ω2 .

Stability criterion with AV penetration rate γ:

|F (ω)|1−γ · |G (ω)|γ ≤ 1 ∀ω ∈ iR
Problem with this result: It states that any number of human-driven
vehicles can be stabilized with any number of AVs, and any
spatial arrangement. That cannot be true in reality.
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Microscopic Traffic Models Resolution of Modeling Problem

Resolution of Modeling Problem

Linear stability only captures t →∞ behavior.

For transient t, a small perturbation may produce a large deviation.

Instability of human driving: perturbations grow from car to car.

Stability of coupled system: AV(s) reduce(s) perturbation by more
than amplification caused by all humans.

Just before hitting the AV, perturbation could be amplified a lot.

System with noise yields needed failure to remain close to equilibrium:

duj = [α1(yj+1−yj)− α2uj + α3uj+1]dt + sjdBt

Amplification and
decay of perturbation

Max. possible: 1 AV sta-

bilizes ≈ 25 humans.

System response to
single perturbation

With noise: system’s
mean deviation
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Microscopic Traffic Models Flow Smoothing via a Sparse Autonomous Vehicles

Flow Smoothing via a Sparse Autonomous Vehicles (AVs)

Traditional highway traffic controls (ramp metering, variable speed
limits) lack resolution to dissipate traffic waves. Use AVs.

Ring road of N vehicles with a single AV; proxy for long road with AV
penetration rate 1/N.

AV control law: local (safety) + global (smart avg. speed).

Simulation: uncontrolled vs. AV-controlled traffic flow
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Microscopic Traffic Models Some Key Modeling Extensions

Some Key Modeling Extensions

Many different drivers/vehicles, up to: ẍj = fj(hj , ḣj , vj)).

Space-dependent driving laws (e.g., road features, speed limits).

Multiple lanes (lane-switching models); ramps, intersections, etc.

Connected Automated Vehicles (CAVs): Non-local effects:
ẍj = g(vj , hj , ḣj , hj+1, ḣj+1, . . . ).

Vehicle-to-Infrastructure communication.

Boundary Conditions

Need to spawn/remove cars at
inflows/outflows.

Must adhere to macroscopic laws:

Can only prescribe inflow state (ρL, qL) at x =0 if s = q(0)−qL

ρ(0)−ρL
> 0.

Must prescribe condition at outflow if analogously s < 0 there.
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Microscopic Traffic Models Simulation Codes

Simulation Codes

https://www.math.temple.edu/~seibold/teaching/2018 2100

Follow-the-leader model: ẍj = ḣj/hj
temple abm traffic follow the leader.m

optimal velocity model: ẍj = 1
τ (V (hj)− ẋj)

temple abm traffic car following.m

Simple traffic simulator (highway):
https://www.traffic-simulation.de

Simple traffic simulator (urban):
http://volkhin.com/RoadTrafficSimulator
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