

How might automated vehicles affect energy use and emissions?

Don MacKenzie Sustainable Transportation Lab Department of Civil & Environmental Engineering University of Washington

Background: Energy and emissions implications of AVs

Automation offers substantial energy & environmental benefits...

Automation offers substantial energy & environmental benefits... and risks

Right-sizing is largest opportunity

Lower cost of travel could swamp gains in efficiency

Scenarios illustrate, but don't quantify, uncertainty

Scenarios illustrate, but don't quantify, uncertainty

Today's focus: Trying to refine estimates of impacts

1. How does relieving traveler from driving affect value of travel time?

2. How does reduced value of travel time affect residential location choices?

3. How would a right-sized fleet affect fuel economy?

Today's focus: Trying to refine estimates of impacts

1. How does relieving traveler from driving affect value of travel time?

2. How does reduced value of travel time affect residential location choices?

3. How would a right-sized fleet affect fuel economy?

Automation can make vehicle travel cheaper, safer, and more convenient

https://www.teslamotors.com/customer-stories/howautopilot-added-years-my-life

CIVIL & ENVIRONMENTAL ENGINEERING

Premise: ridesourcing services provide analogous in-vehicle experience to Level 4-5

- AVs • No need to drive
- Productivity or relaxation
- Ridesourcing is available today

Frequency of ridesourcing use

Stated choice experiment elicited marginal utility of time, money

If you had to make a **<u>15-mile commute trip</u>**, which of the following options would you choose?

Personal Car	Ride-hailing Service
Travel Time: 20 min	Travel Time: 15 min
Travel Cost: \$5	Travel Cost: \$15
(fuel, tolls, parking, etc.)	(fare)
Waiting Time: 0 min	Waiting Time: 2 min

Personal Car

Ride-hailing Service

Respondents were randomly assigned to one of four conditions

(a) Personal car	(b) Personal car	
vs.	vs.	
Human-driven ridesourcing	Driverless ridesourcing	
(c) Personal car	(d) Personal car	
vs.	vs.	
Human-driven ridesourcing,	Driverless ridesourcing,	
multitasking explicitly mentioned	multitasking explicitly mentioned	

Conditions (c) and (d) included an activity attribute

If you had to make a **<u>15-mile commute trip</u>**, which of the following options would you choose?

Personal Car	Ride-hailing Service	
Travel Time: 20 min	Travel Time: 15 min	
Travel Cost: \$5	Travel Cost: \$15	
(fuel, tolls, parking, etc.)	(fare)	
Waiting Time: 0 min	Waiting Time: 2 min	
Activity: Driving	Activity: Non-Driving(e.g. work, read, rest, using cellphone)	

Ride-hailing Service

Within each condition, we used a full factorial experimental design

Attribute	Attribute level(s)		
Travel time car	15 min	20 min	25 min
Travel time ridesourcing	15 min	20 min	25 min
Travel cost car	\$5	\$10	\$15
Travel cost ridesourcing	\$10	\$15	\$20
Waiting time car	0 min		
Waiting time ridesourcing	2 min		

Survey was hosted on SurveyMonkey, respondents recruited through Amazon MTurk • 535 respondents, 502 valid responses

• 6 choice situations each \rightarrow 3012 observations

We used binary mixed logit to model utility of alternatives

 $U_{ij,car} = \beta_1 cost_{j,car} + \beta_{2,car} time_{j,car} + \varepsilon_{ij,car}$

 $U_{ij,RS} = \alpha_i + \beta_1 cost_{j,RS} + \beta_{2,RS} time_{j,RS} + \beta_3 driverless_{j,RS} + \beta_4 multitask_{j,RS}$

 $+\beta_5 driverless_{j,RS} time_{j,RS} + \beta_6 multitask_{j,RS} time_{j,RS} + \varepsilon_{ij,RS}$

- *i*: individuals
- *j*: choice situations

Value of travel time is lower in ridesourcing services than when driving self

Value of time increases with automation; Decreases with multitasking

Conclusions

- Implied disutility to AV travel
- Value of time in ridesourcing 13-45% lower than driving

Gao, J., Ranjbari, A., & MacKenzie, D. Would being driven by others affect the value of travel time: taking ride-hailing service as an example. *TRB Paper No. 19-02360*, Transportation Research Board 98th Annual Meeting.

1. How does relieving traveler from driving affect value of travel time?

2. How does reduced value of travel time affect residential location choices?

3. How would a right-sized fleet affect fuel economy?

On-demand mobility services and **self-driving cars** \rightarrow free the traveler from the effort of driving, which is expected to reduce the perceived cost of travel time.

Magic Carpet: an arbitrary technology that makes travel radically more comfortable and convenient and requires little to no active control from the traveler.

Goal: Explore how reductions in the perceived cost of travel time may affect the attractiveness of different neighborhoods in a region

- Puget Sound (Washington) region as a case study.
- Estimated a multinomial logit residential location choice model that incorporated travel time via two measures of accessibility
- Explored how changes in the cost of travel time might change land use patterns in that region.

Overview of the model

We used two measures of accessibility

It depends on:

- > How long it takes for residents to get to work,
- > The **available** transportation options,
- > Accessible opportunities in each zone (captured by number of retail jobs in each zone)

logsum measure for commute accessibility

gravity-based measure for regional accessibility

Data Sources for accessibility

Regional accessibility

Data Sources for accessibility

Data Sources for residential location choice model

We investigated effects of changing time cost of travel

- Cut cost of travel time by half.
 - Reduction in value of travel time
 - Magic carpets being a faster mode compared with cars
 - Combination of both

The choice of 50% is arbitrary and is for the purpose of exploring the methodology and observing the impact of the hypothetical magic carpet.

We tested two scenarios

- 1) Magic carpets replace cars
 - The time cost of travel is reduced by half
 - short run financial cost of magic carpet travel is same as for cars (\$0.10/mile)
- 2) Magic carpets are introduced as an additional mode available to all people as an on-demand service
 - The time cost of travel is reduced by half
 - price of the magic carpet service is \$0.50 / mile,

Changes in commute accessibility with respect to base accessibility

Changes in log of regional accessibility with respect to base accessibility

Changes in residential location demand, holding prices constant

Magic carpets replace private cars \rightarrow shift population to the urban fringes,

Magic carpets as an additional on-demand service \rightarrow increase the attractiveness of living in central cities

Reflections and Limitations

- Many uncertainty sources
- The results of this analysis are strongly dependent on multiple layers of models
- Many model specifications returned nonsensical results

Jabbari, P., Barber, E., Laberteaux, K., & MacKenzie, D. Where will your magic carpet take you? Analyzing accessibility effects of automated vehicles and mobility services. *TRB Paper No. 19-05259*, Transportation Research Board 98th Annual Meeting.

1. How does relieving traveler from driving affect value of travel time?

2. How does reduced value of travel time affect residential location choices?

3. How would a right-sized fleet affect fuel economy?

Fuel economy & GHG standards are based on vehicle footprint (Cars)

Figure I.1 CO₂ (g/mile) Passenger Car Standards Curves

WW UNIVERSITY of WASHINGTON CIVIL & ENVIRONMENTAL ENGINEERING Final Determination on the Appropriateness of the Model Year 2022-2025 Light-2/28/201 Guty Vehicle Greenhouse Gas Emissions Standards under the Midterm Evaluation. EPA-420-R-17-001 January 2017.

Light-duty trucks

Figure I.2 CO₂ (g/mile) Light Truck Standards Curves

UNIVERSITY of WASHINGTON CIVIL & ENVIRONMENTAL ENGINEERING

Final Determination on the Appropriateness of the Model Year 2022-2025 Light-2/28/201 Puty Vehicle Greenhouse Gas Emissions Standards under the Midterm 40 Appropriateness of the Model Year 2022-2025 Light-2/28/201 Puty Vehicle Greenhouse Gas Emissions Standards under the Midterm 40 Appropriateness of the Model Year 2022-2025 Light-2/28/201 Puty Vehicle Greenhouse Gas Emissions Standards under the Midterm We assume that vehicle size matches travel party size, for mobility services Avg 2016 Footprint Standard

Mobility services providers are already starting to right-size

http://uberestimate.com/what-is-uberxl/

By Wakasui - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=

http://www.techtimes.com/articles/148876/20160409/bmw-reachnow-vs-daimler-car2go-how-these-carsharing-services-work-and-price-comparison.htm 42

Mix of travel party sizes depends on day, time, location

We considered two approaches to right-sizing fleet

1. Minimize number of vehicles (larger vehicles sometimes move smaller parties)

Number of n - seat Vehicles = $Max(\sum_{i=n}^{7} X_{it}) - Max(\sum_{i=n+1}^{7} X_{it})$

2. Minimize number of seats (vehicle size matches party size for each trip)

Number of n – seat Vehicles = $Max(X_{nt})$

Right-sizing fleet would increase MPG standard 20% above actual 2016 sales mix

Many unanswered questions about rightsizing

- Market potential for micromobility?
- Social optimum vs market equilibrium?
- Asymmetry between costs of providing larger vehicles and opportunity costs of unfulfilled requests?
- Willingness of travelers to split parties? Barber, E., Chernicoff, W., & MacKenzie, D. Fleet Right-sizing: The Corporate Average Fuel Economy Effect of a Transition to a Shared Autonomous Fleet. *TRB Paper No. 19-03931*, Transportation Research Board 98th Annual Meeting.

Thank you!

dwhm@uw.edu @DonMacKenzie9

Appendix slides follow

Waymo has reduced disengagement rate 90% in 3-4 years

https://blog.piekniewski.info/2019/02/16/a-v-safety-2018-update-2/

UNIVERSITY *of* **WASHINGTON** CIVIL & ENVIRONMENTAL ENGINEERING

GM has reduced disengagement rate 99% in 2 years, now 1-2 years behind Waymo

https://blog.piekniewski.info/2019/02/16/a-v-safety-2018-update-2/

UNIVERSITY of WASHINGTON CIVIL & ENVIRONMENTAL ENGINEERING

Waymo's estimated crash rate is ~ 10X human crash rate

About 20% of disengagements in 2015 would have resulted in a crash.

http://fortune.com/2016/01/13/google-self-driving-car-accidents/

	Miles between incidents
Uber, all disengagements (March 2018)	13
GM Cruise, safety disengagements (2018)	5,000
Waymo, safety disengagements (2018)	10,000
Waymo, crashes (estimated, 2018)	50,000
Human drivers, crashes (2015)	490,000

Extrapolating... Crash rate might be competitive with human drivers in 4-10 years https://blog.piekniewski.info/2019/02/16/a-v-safety-2018-update-2/ https://arstechnica.com/cars/2018/03/leaked-data-suggests-uber-self-driving-car-program-years-behind-waymo/ http://fortune.com/2016/01/13/google-self-driving-car-accidents/ https://www.fhwa.dot.gov/policyinformation/statistics/2015/xls/vmt421c.xls https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812318 http://www.thedrive.com/tech/18150/waymo-self-driving-cars-are-the-most-competent-ca-reports-say

Market intro. to peak growth is ~10 years, could be ~5 years by 2030

0

INGTON

New automotive features rarely grow by more than 10% per year

It will be decades before all vehicles can drive themselves.

Percentage of New Cars Equipped

Driver's time is single largest cost, for both light and heavy duty vehicles.

		Light Duty	Heavy Duty
	Cars	Trucks	Truck
Driver's time	\$0.50	\$0.50	\$0.61
Wear & Ownership	\$0.30	\$0.43	\$0.19
Fuel	\$0.15	\$0.20	\$0.59
Insurance & Accidents	\$0.08	\$0.08	\$0.07
Maintenance	\$0.05	\$0.06	\$0.19
Registration & Fees	\$0.05	\$0.07	\$0.06
Parking	\$0.02	\$0.02	\$0.00
Generalized Cost per Mile	\$1.16	\$1.37	\$1.71

Travel demand impacts were estimated using a generalized cost approach.

- Elasticity of travel demand w.r.t. generalized cost: -1.0
 - For both LDV and HDV
- Assumed cost reductions through automation:

Insurance Costs	Driver's Time
60%	0-5%
80%	50-80%
	Insurance Costs 60% 80%

$$VKT_{auto} = VKT_{pre-auto} \left(\frac{generalized \ cost_{auto}}{generalized \ cost_{pre-auto}}\right)^{elasticit}$$

v

PSRC has simulated travel demand impacts for Seattle region

Scenario 1	Scenario 2	Scenario 3	Scenario 4
"AVs increase network capacity."	"Important trips are in AVs"	"Everyone who owns a car owns an AV."	""All autos are automated, with all costs of auto use passed onto the user."
30% capacity increase on freeways, major arterials	30% capacity increase on freeways, major arterials	30% capacity increase on freeways, major arterials	
	Travel time is perceived at 65% of actual travel time for high value of time household trips (>\$24/hr.)	Travel time is perceived at 65% of actual travel time for all trips	
		50% parking cost reduction	
			Cost per mile is \$1.65
+3.6%	+5.0%	+19.6%	-35.4%

ARC has simulated impacts for Atlanta region

CIVIL & ENVIRONMENTAL ENGINEERING

(Full) Automation makes mobility services more feasible, and more essential

The hope is that lower total costs will induce shift to mobility services and fewer trips, but...

(a) Future competitive situation - Urban setting.

Bösch, P. M., Becker, F., Becker, H., & Axhausen, K. W. (2018). Cost-based analysis of autonomous mobility services. *Transport Policy*, *64*, 76-91. <u>https://doi.org/10.1016/j.tranpol.2017.09.005</u>

Questions for you

- How many of you have a phone plan?
 X minutes, Y GB per month
- How many of you are on a pay-as-you-go plan?
 \$X / minute, \$Y / MB?
- Why?

... subscription based models are popular, and reduce marginal incentive to forego trips

CULTURE 🗕 CARS 🗕

MORE 🚃

THEVERGE TECH - SCIENCE - CULTURE - CARS - MORE =

TECH 🗕

TRANSPORTATION \setminus Lyft \setminus Ride-Sharing

THEVERGE

S

³ Lyft's monthly subscription plan is ¹ expanding — and now has a waitlist

SCIENCE 🗕

- ^{cc} \$200 a month for \$15 off 30 rides
- Tr By Andrew J. Hawkins | @andyjayhawk | May 9, 2018, 2:06pm EDT

spend up to \$450 on ride-hailing a month. One all-access pass offered up to 30 standard

Lyft rides for \$199 a month, another was priced at \$300, and another at \$399 for 60 rides.

Mobility services appear to be the key to unlocking many benefits of automation.

Questions for you

- How many of you have used Uber, Lyft, or a similar service?
- How many of you have used UberPool, Lyft Line, or a similar service?
- Why?

By reducing total cost of mobility services, automation reduces incentive to share rides

Bösch, P. M., Becker, F., Becker, H., & Axhausen, K. W. (2018). Cost-based analysis of autonomous mobility services. *Transport Policy*, *64*, 76-91. <u>https://doi.org/10.1016/j.tranpol.2017.09.005</u>

Emerging work by David R. Keith & Sergey Naumov (MIT) suggests lower market share for pooling

Mobility services require L4-5 automation

Platooning **Congestion mitigation Eco-driving** Higher highway speeds Travel cost reduction Increased features Infrastructure footprint* Improved crash avoidance De-emphasized performance New user groups Vehicle right-sizing Changed mobility services -60% -40% -20% 0% 20% 40%

% changes in energy consumption due to vehicle automation

60%

SAE

Level

2

3

5

Shared mobility fleets should have fewer emission-intensive cold starts

• Rule of thumb:

- "80% in first 30 seconds, 90 % in first 5 minutes"

	Tier 2-Bin 5 (15) ^a	Initial Engine Start	Engine Restart
THC (mg)	878	191	44
NO _x (mg)	552	228	6
CO (mg)	31290	2970	1253

 TABLE 5 Comparison of Emissions from Initial Engine Start and Restart

^a Tier 2-Bin 5 g/mi converted to FTP-75 mg

L. Gaines, E. Rask, and G. Keller. Which Is Greener: Idle, or Stop and Restart? Comparing Fuel Use and Emissions for Short Passenger-Car Stops. TRB Paper No. 13-4606.

We spend a lot of **time** in traffic, but don't travel a lot of **miles** in traffic

GTON

Unconstrained by driver reaction times, highway speeds could increase

Platooning could reduce energy intensity in near term

Could automation mean a ceasefire in the horsepower wars?

Without crash risk, could we remove safety equipment? Get everyone into a compact car?

<u>CIVIL & ENVIRONMENTAL ENGINEERING</u>

With more free time, travelers may demand more comfort & convenience features

CIVIL & ENVIRONMENTAL ENGINEERING

Some of our impacts may be different for EVs than for conventional vehicles

Engine speed

EV efficiency is less sensitive than ICEs to engine speed and load. So...

EVs likely to be more sensitive to highway speeds and platooning effects.

EVs likely to be less sensitive to congestion relief and eco-driving.

Sensitivity to changes in acceleration performance...???

Read More: http://faculty.washington.edu/dwhm/2016/02/29/will-

UNIVERSITY of WASHINGTON CIVIL & ENVIRONMENTAL ENGINEERING automation-benefit-electric-vehicle-efficiency/ 76

Conditions (c) and (d) included additional text in description of mode alternatives

- "You will have the option of doing other tasks (e.g. working, reading, watching videos, texting, etc.) or just relaxing during the trip, because you don't need to pay attention to driving".
- "A driverless ride-hailing service is similar to services offered by Uber and Lyft, where you can request a ride using an application on your smartphone, but the car will be driven by the computer rather than a human driver"

Regression results: car vs ridesourcing

Variable	Description	Model 1		Model 2	
		coefficient	significance level	coefficient	significance level
InterceptRHS		-0.8973	*	-0.8604	*
SdIntercept		-0.1169		-0.1124	
Cost		-0.1517	***	-0.1516	***
TimeDrive	Travel time of personal car	-0.0619	***	-0.0620	***
TimeRHS	Travel time of RHS	-0.0516	***	-0.0536	**
DriverlessRHS	(Binary, Associated with RHS) 1: Driverless; 0: Regular	-0.2282	*	0.1060	
MultitaskingRHS	(Binary, Associated with RHS) 1: Explicit mention of multitasking; 0: otherwise	0.263	**	0.1289	**
TimeDriverlessRHS	Travel time for driverless RHS	-		-0.0171	*
TimeMultitaskingRHS	Travel time of RHS in cases where multitasking is mentioned explicitly	-		0.0200	*
Log-likelihood		-1427.6		-1427.0	
Null Model Log-likelihood		-1623.4		-1623.4	
Rho-Squared		0.1206		0.1210	
Adjusted Rho-Squared		0.1191		0.1190	
No. of Observations		3012		3012	

Multinomial logit model results:

Variable	Coefficient Estimate	Standard Error	t-value	p-value	
Zestimate / Income / AvgSqFt	-4.71	2.48	-1.90	0.06	
SchoolQuality*Child	0.0582	0.0221	2.63	0.01	
ln(Gaccess)	1.27	0.118	10.74	0.00	
Logsum	2.70	0.0511	52.86	0.00	
WorkplaceDummy	2.06	0.111	18.49	0.00	
Density	15.8	7.27	2.18	0.00	
ln(Gaccess) ²	0.0736	0.00613	12.01	0.00	
Logsum ²	0.0819	0.00238	34.38	0.00	
SchoolQuality	0.0475	0.0109	4.37	0.00	
Null Log Likelihood: -13621.4 Final Log Likelihood: -10126.808 AIC: 20271.616 BIC: 20327.483					

Mode choice model

$A_{ij} = \ln \left[\sum_{c \in C_{ij}} \exp(V_{cij}) \right]$ $V_{cij} = \beta_{0c} + \beta_1 * \left(cost_{cj} / income_i \right) + \beta_{2c} * TTT_{cj}$

Variable	Coefficient Estimate	Standard Error	Т	p- value
Transit Intercept	-1.13	0.116	-9.73	0.00
Walking Intercept	1.48	0.204	10.05	0.00
Cost / Income	-37.2	5.24	-7.10	0.00
Total Travel Time Car	-0.0161	0.00478	-3.36	0.00
Total Travel Time Transit	-0.000377	0.00117	-0.32	0.75
Total Travel Time Walking	-0.0844	0.00568	- 14.86	0.00
Initial Log Likelihood: -30 Final Log Likelihood: -177 AIC: 3562.091 BIC: 3599.915	02.171 /5.045		1	1

CIVIL & ENVIRONMENTAL ENGINEERING

GTON

$$A_{j}^{Ret} = \frac{1}{N} \sum_{k=1}^{N} \left(\frac{(Number of retail jobs_{k})^{\gamma_{Ret}}}{(Impedance_{jk})^{\beta_{Ret}}} \right)$$

 $V_{ijk}^{Ret} = \gamma_{Ret} \ln (number \ of \ jobs_k) - \beta_{Ret} \ln (impedance_{ijk})$

Name	Value	Std err	t-test	p-value
γ_{retail} (log of number of retail jobs)	0.22	0.0406	5.43	0.00
β_{retail} (log of impedance)	3.87	0.102	37.91	0.00
β (transit weight)	1.03	0.0249	41.38	0.00
γ (walking weight)	0.715	0.0302	23.69	0.00
Init log likelihood: -14366.327 Final log likelihood: -4014.462 AIC: 8036.923 BIC: 8064.881				

The equivalent changes in price(\$)/SqFt to maintain utility in each tract the same

Magic carpets replace private cars \equiv an average reduction of \$126/sqft, Magic carpets as an additional new on-demand service \equiv an average reduction of \$188/sqft.

