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Understanding Driver Behavior for Smart Vehicles

® Empirical Reachability Analysis for Predictions with Safety Guarantees!

O How to capture the variety of human driver behaviors, while providing certificates on
safety?

® Applying the Model in Semi- and Fully Autonomous Vehicles?3

O How can we design a minimally invasive control scheme that takes into account the
driver state?

[1]1 V. Govindarajan, et al., “Robustness vs. Utility Trade-off in Reachability Analysis for Human-in-the-Loop
Systems”

[2] K. Driggs-Campbell, et al., “Improved Driver Modeling for Human-in-the-Loop Vehicular Control

[3] K. Driggs-Campbell, et al., “Integrating Intuitive Driver Models in Autonomous Planning for Interactive
Maneuvers”



Understanding Driver Behavior for Smart Vehicles

® Impressive results using visual data

® An important piece of information to perceive the world around us is
being neglected: Sounds
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Why Is sound important?

® The sound is informative

O danger and the state of the environment can be perceived by humans from the sounds

® Noise in the interior of a vehicle might increase the probability of traffic
accidents

O physiological effects of sounds

® The passengers, the driver, and the vehicle are components of a vibro-
acoustical system
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Why Is sound important?

® There is a complex tradeoff between no disturbing noises and the
expectations of the listener
O The sound quality
O The brand
O The model of the car

® The goal is to keep the environment inside the vehicle comfortable not
a fully silence environment
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Psychoacoustic and sound

® \Works on noise treatment in the vehicle focus on
O noise measurement
O adjustment on designing and manufacturing phases

O measure the vehicle interior noise to gather data for production and design phases.

® Keeping the environment inside the vehicle
comfortable remains a major challenge



The amplitude of the sound might rise Vats5i@al
and fall over time

® \Why do the sounds rise and fall over time?

O Multiple frequency tones present in the sound constructively and destructively interfere
with each other causing the modulation.
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Measuring the annoyance

® The sound annoyance are closely related to the
psychoacoustic indices:

O Fluctuation and Roughness: A modulated signal has a higher roughness and
fluctuation and is considerably more unpleasant

O Sharpness: depends on the spectral composition

O Loudness: takes into account the distributions of critical bands in the human hearing
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Psychoacoustic indices

e Fluctuation Strength (F) and Roughness (R): Sound Modulation
Metrics y

N
o N

O Fluctuation Strength : sounds with 20 modulations per second or less [\ 2))))

O Roughness: sounds with modulations between 20 and 300 times per second
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Sharpness

e The sharpness (S) is a sensation value which is caused by high
frequency components in a given noise.
O ltis related to the spectral characteristics of the sound
O Sharpness increases with high-frequency energy

O Distortion increases sharpness
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Loudness

e The loudness (L) metric is based of perceived loudness

O not a physical phenomena but a psychological phenomena

O the metric was developed with a group of people, unlike decibels which is simply a
math equation



Psychoacoustic annoyance (PA) metric
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e PAis composed of the Fluctuation (F), Roughness
(R), Sharpness (S), and Loudness (N;)

— Results of psychoacoustic experiments with
modulated versus unmodulated narrow- band and
broadband sounds of different spectral distribution.

— N; Is the 95% percentile Loudness
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Fig. 16.12. Psychoacoustic annoyance of car sounds listed in Table 16.2. Dots: Data
from psychoacoustic experiments. '
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Measuring the annoyance

e Annoyance measured by the psychoacoustic annoyance (PA) metric -
higher is more annoying
O car sound only: 10.71 (PA value) B :}::-:}'II "]':]



Vat§idal

Measuring the annoyance

e Annoyance measured by the psychoacoustic annoyance (PA) metric -
higher is more annoying
O car sound only : 10.71 (PA value)
O kid crying: 19.77 (PA value)
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Measuring the annoyance

e Annoyance measured by the psychoacoustic annoyance (PA) metric -
higher is more annoying
O car sound only: 10.71 (PA value)
O kid crying: 19.77 (PA value)
O beells and beeps: 45.2 (PA value)

" N

e Sound captured from the environment: 45.7 (PA)
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Where does the annoyance come from?

® \We can learn from the environment how to change the state inside the
car to avoid an unpleasant environment in the interior of the vehicle,
O turn the radio off
O closing the car windows

O slowing the car speed down

® Exploration-Exploitation approach
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Reinforcement learning approach

® Deep Q-learning Network
O The reward is given by the PA metric

Agent: Q(state, action)

Psychoacoustic Arnoyance (PA) Index

\‘, Le

W/

Observation: radio, window state,

Actions: close window, AC on/off,
car speed, sound

decelerate

Environment



Simulation experiments
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The RL Agent
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The agent is presented with:
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e the current speed,
the state of the windows
(open/closed),

e the state of the air- 0.8 -
conditioning (on/off),

e several seconds of
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The RL Agents’ Architectures

e Several agents and architectures.
e Different ways of preprocessing the audio.

Random Agent MLP w/o audio 1D CNN w/ audio
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PA Violin Plots
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Cumulative Reward

e The cumulative reward increases for all but the random agent.
e Architectures that factor in the sound have an edge.
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Annoyance vs Speed

® Varying the cruise speed from 1 to 30 MPH
® Radio and AC off

® Only traffic, cars and pedestrians

3 - pearsonr = 0.61; p = 2.1e-20 |
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Adding annoying sound from outside

® Noise from streets was simulated merging bells and beeps sounds:

O When we have annoying sound from outside, what should we do? Close the window or
slow the car speed down?
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Collecting Data

® Real-life data
O Lincoln MKS

et
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Collecting Data

@® Using the BDD Lincoln MKS, we gathered data from:

O Sensors on the vehicle (e.g., LIDAR, IMU, cameras)
O Other vehicle data (e.g., vehicle speed, throttle, steering turn signal, etc.)
O Outside audio captured with a mic

@® |n total, we gathered over 1TB of data

Cal
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Real data — PA vs Speed

9oueAouue d13snodeoydAsd

o
(ee]
o
N~
o
(]
O ™
n <
o
&
©
o o
<t O
o
0
o
m
o
N
o
—

29



Real data — PA and GPS
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Real data — PA vs Gear and Braking
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true false
32.95% 67.05%

brake



We conducted a real-world
driving experiment (n=9) to
investigate the effect of driver
annoyance states, elicited by
acoustic stimuli, on driving style.
Acoustic modes were induced by

two soundtracks

O calm instrumentals for sleeping
O Baby crying sound

On-board sensors captured the
driving data for these two modes
Pressure mat data was collected
on the passenger to build a
passenger dynamics model
and to subsequently infer
passenger comfort

Participants drove along this route
for both acoustic modes

Seat Back

TekScan pressure mat images the
passenger seat forces



Feature Correlations (1)
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Recognizing the Acoustic Mode (1)

e Telling apart different acoustic modes:
O Driving with calm vs. annoying soundscape.
O Regulated using audio tracks.
e Featurization:
O Using linear acceleration, angular velocity, linear twist, brake torque (requested),
throttle rate, linear jerk.
O Split into windows of size 2000 (the sampling rate is 50Hz) with the step of 500
samples (windows overlap).
O Each window preprocessed by computing histograms with 7 bins.
e Validation:
O Split validation. 75% of experimental runs used for training, 25% for testing.
e Classifier:

O The light GBM (Gradient Boosting Machine) classifier;
O 250 estimators; hyperparameters optimized using hyperopt.



Recognizing the Acoustic Mode (2) Vetsicul

e Classifying window by window; across all test runs (accuracy 74%):

Zc 0579
85 0.0-
o £

£ 5 051

: = annoymg' '

cumulative

probability
o
[o)]

o
»

o
N

444444

004

real
i) IHHHHHIIIH IHH IHIIHHHII

100 120

time step

e Probability margin: difference between the score of the correct label

and the maximum score among the other labels. Red indicates
misclassification.
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Recognizing the Acoustic Mode (3)

Angular velcity [rad/s]
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e Qualitatively, clear driving differences arise between acoustic modes
for different maneuvers

Angular velocity vs. Time at a U-turn
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a) U-turn
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Linear Acceleration vs. Time at an Intersection
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Acceleration cost

Recognizing the Acoustic Mode (4)

Jerk cost from car trajectory
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Smoothness from a system’s
trajectory can be
characterized by its jerk and
acceleration costs 1I:

ty
| x@far  ©
t=t,
ty
| £@rd @
t=t,

Across the multiple riders,
the annoying mode showed
higher jerk and acceleration
costs than the calm mode
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Feature Correlations (2)

e Pressure sensor is correlated with inertial measurements.
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Interaction Forces between Passenger and %Hi%
Vehicle

[

ar x-acceleration and Pressure Sensor COF Displacement vs. Time
4 4
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e We quantify how the human body
shifts with the car using the
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Passenger Motion Sensitivity vs. Height
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The pressure mat allows us to track the Passenger body height impacts COF
center of force (COF) of the human dynamics
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Next steps and future work

e Implement and test real-time identification of driving mode

e Investigate effects of different types of annoyance
O Eg. Maneuver-based, annoyance with other drivers, etc

e Produce a more complete model of human interactive forces with
sensor mats at the back and the feet
e Record biometric data to create and ground a cognitive model
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Questions?

VHART Lab
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