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How can we ensure safety in data-driven robotic systems
that operate with people in the real-world?
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Cars are communicating more and more
USDOT Issues Advance Notice of Proposed
Rulemaking to Begin Implementation of V2V
Communications Technology

— NHTSA, Aug 2015

Cars are sensing more and more
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‘m,f _ driverless cars date back to
- l - the 80s/90s in the Eureka/
W= Prometheus Project
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There is a greater societal push than ever before...
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U.S. Proposes Spending $4 Billion to Encourage Driverless Cars

Obama administration aims to remove hurdles to making autonomous cars more widespread




Autonomous Vehicles in the News

Science

Google promises autonomous cars for 444 — = 12101

Y "Atlantic After Peak Hype, Self-Driving Cars

 TECHNOLORY Enter the Trough of Disillusionment
Google s Self-Driving Cars: 300,000 Mil

a Single Accndent Under Computer Control | @rS) TECHNICA

REBECCA J. ROSEN AUGS, 2012

BIZ& T TECH SCIENCE POLICY CARS  GAMING & CUL

The automated cars are slowly building a driving record that's better than that of MORE STORIES

your average American.

The hype around driverless cars came
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The 10 Worst Self-Driving Stories of
2018

How many ways can you say Suboptimal? Here's 10 more.

The Quiet Way
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BY ALEX ROY DECEMBER 30, 2018

ANTHONY LEVANDOWSKI FULL SELF-DRIVING HIGHWAY PILOT NEWSWEEK OPINION PRONTO Al SELF-DRIVING CARS SUBOPTIMAL

THE BORING COMPANY TROUGH OF DISILLUSIONMENT UBER WAYMO Z00X




1.5x speed

Steven Crowe, How California’s Self-Driving Cars Performed in 2017, The Robot Report, February 2018. I I LLI N o I S



Emergence of Autonomy in Planes
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Dominique Chatrenet, Air Transport Safety Technology & Training, ETP 2010. I I LLI N o I S 6
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Human-Centered Autonomy
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Robust, Informative Predictions

for Human-in-the-Loop Systems

Roadmap

Efficient Urban Driving
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K. Driggs-Campbell, Experimental Design for Human-in-the-Loop Driving Simulations,
Master’s Thesis. EECS Department, University of California, Berkeley, 2015. 11



Outfitted for Driver Monitoring

Affective Sensing

K. Driggs-Campbell, Experimental Design for Human-in-the-Loop Driving Simulations, Master’s Thesis.
EECS Department, University of California, Berkeley, 2015. I ILLI NOIS 12




Applications for Driver Modeling

Shared Control Interaction Constrained Evaluate & Prove Properties
and Active Safety Autonomous Planning about Human Drivers

& Partlally
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K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.

@ V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver Modeling, in Transactions on ITS 2014.
K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in Transactions on ITS 2017.
D. Sadigh, K. Driggs-Campbell, et al. Data-driven probabilistic modeling and verification of human driver behavior, in AAAI 2014.
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Driver Modeling and Active Safety

If we can identify the driver state and effectively predict their likely behavior, can we
design better, less invasive active safety systems?
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K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.
V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver

Modeling, Transactions on ITS 2014.
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Predictive Modeling

Informative Models Robust Models

Al gl
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Empirical Reachable Sets

Approximate stochastic reachability with
an empirical reachable set, by:

maximizing precision
while maintaining accuracy
argminpcpn A(4)
subjectto  Py[A] = «

g K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.
K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,I I LLI N o I S
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From Data to Empirical Reachable Sets

Building Trajectory Dataset
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g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS v



From Data to Empirical Reachable Sets

maximize precision

while maintaining accuracy

argminy gn A(A)
subjectto  Py[A]

where Py [A Z I{x; € A}

g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. I ILLINOIS



From Data to Empirical Reachable Sets

maximize precision
while maintaining accuracy

argming , , A(X, x)
subjectto  b;(kx — x;) = 0
bi(x —x;) <0
Zi bi = N(l — CZ)
where b; € {0,1}

g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets

in Transactions on Intelligent Vehicles, 2018. ,I I LLI N OIS 19



From Data to Empirical Reachable Sets

maximize precision
while maintaining accuracy

argming, , A(X,x)
subjectto X —x; = (1 — b)) (tmin — X;)
x —x; < (1= b)) (Xmax — X;)

Zi bi = N(l — CZ)
where b; € {0,1}

g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets

in Transactions on Intelligent Vehicles, 2018. ,I I LLI N OIS 20



From Data to Empirical Reachable Sets

Identifying Set Bounds
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g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS =



Solvers, Monotonicity, and Distributions

Identifying Set Bounds
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K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS =2



Solvers, Monotonicity, and Distributions

Computational Efficiency
@ MILP, N=100
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have 2™ optimization problems
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increases in computation time
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g K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS =



Solvers, Monotonicity, and Distributions

Computational Savings from Incremental Approach
If the input data is unimodal, then the 0
output is monotonic, in the sense that:

A(ap) - A(aq),‘v’ap < qq
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Assuming unimodality, iteratively remove
points until the rejection ratio is met to
efficiently find the global optimum

Ratio

Rejection Ratio

@ K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS 2



Detecting Driver Modes

Lane Changing Transition
B Lane Keeping Transition

K. Driggs-Campbell, et al., Identifying Modes of Intent from Driver Behaviors in Dynamic Environments,

ITSC 2015. I ILLINOIS =




Results on Lane Changing Example

Lane Keeping Lane Changing
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K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,

in Transactions on Intelligent Vehicles, 2018. E ILLINOIS 2



Results on Lane Changing Example

Il Lane Keeping
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K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets,
in Transactions on Intelligent Vehicles, 2018. I LLI N O I S 27




Applications for ERS

Shared Control Interaction Constrained Evaluate & Prove Properties
and Active Safety Autonomous Planning about Human Drivers

& Partlally
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K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.

@ V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver Modeling, in Transactions on ITS 2014.
K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in Transactions on ITS 2017.
D. Sadigh, K. Driggs-Campbell, et al. Data-driven probabilistic modeling and verification of human driver behavior, in AAAI 2014.
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Interaction Constrained Autonomous Planning

If we can predict likely driver responses in cooperative maneuvers, can we design
autonomous systems that can effectively integrate with human drivers?

Lane Keeping Want to Change
Execute Lane Change

Using robust, predictive models of drivers, we can:

= Effectively predicts drivers’ merging responses

" Incorporating these sets as planning constraints results in
more human-like motion

" Human-inspired controllers increases predictability by ~40%

9 K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in

Transactions on Intelligent Transportation, 2017.
K. Driggs-Campbell, et al. Communicating Intent on the Road Through Human-Inspired Control Schemes, IROS 2016. I I L LI N o I S 23
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How do we create a safe and
effective autonomous vehicle?
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Testing at Gomentum Station

(~ Turning
Q Obstacles
Other vehicles
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Urban Lane Change Demo at Gomentum Station S I S L

Xiaobai Ma, Michael Kelly,
Katie Driggs-Campbell, and Mykel J. Kochenderfer Systems Laboratory

Stanford Intelligent




Intervention Scenarios

VEHICLE STATUS:
Time:

AD-Engaged:
Velocity-cmd:
Velocity-vcu:
Curvature-cmd:
Curvature-vcu:
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Low-Probability, High-Risk Events

Hazardous Event Frequencies
Disengagement Rate  0.12 per 1000 km
Collision Rate 12.5 per 100 million km
Fatality Rate 0.70 per 100 million km

To be meaningful, on the order of billions of

kilometers must be driven or simulated.

— Alternatively, we need an efficient, scalable
method for validating complex systems.

J. Morton, T. Wheeler, and M.J. Kochenderfer. Closed-Loop Policies for Operational Tests of Safety-Critical Systems.
Under Review 2018.

R. Lee, et al. Adaptive Stress Testing of Airborne Collision Avoidance Systems, in DASC 2015. E ILLIN O | S 38



Traditional Testing

Low-Probability, High-Risk Events

Hazardous Event Frequencies
Disengagement Rate  0.12 per 1000 km
Collision Rate 12.5 per 100 million km
Fatality Rate 0.70 per 100 million km Adaptive Stress Testing

To be meaningful, on the order of billions of

kilometers must be driven or simulated.

— Alternatively, we need an efficient, scalable
method for validating complex systems.

J. Morton, T. Wheeler, and M.J. Kochenderfer. Closed-Loop Policies for Operational Tests of Safety-Critical Systems.
Under Review 2018.

R. Lee, et al. Adaptive Stress Testing of Airborne Collision Avoidance Systems, in DASC 2015. I I LLI N O I S 39



Validation Techniques

AST phrases the validation as a reinforcement

learning problem. This provides:

e Sequences of disturbances that will cause
the system under test to fail

* Worst case scenarios to qualitatively assess
policy performance

X. Ma,* M. Koren,* A. Corso, K. Driggs-Campbell, and M.J. Kochenderfer, Adaptive Stress Testing

Toolbox, Under Review 2019.

If an agent’s motion is discretized,
sampling will not give good coverage

As more agents are added, the number of
trajectories to test grows exponentially
AST aims to identify the most likely failures
in your system

Environment
Actions Reward
Function

Likelihood

Simulator .

Event

I ILLINOIS



Adaptive Stress Testing

Actively search the system to find the . _
most likely failures in your system: / Adaptive Stress Testing \

. AST
0, if failure SITeIZSUt Monte Carlo
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X. Ma,* M. Koren,* A. Corso, K. Driggs-Campbell, and M.J. Kochenderfer, Adaptive Stress Testing

Toolbox, Under Review 2019. I ILLINOIS =«



AST: Failure Assessment Comparison

Heuristic / Rule-based System System with Tracking Errors

prob:
traj

1 .0 isevent: false dist: 6.463812923468552
aj: 1 t

.0 isevent: false dist: 14.846573992753521 prob:
t traj )

1
: 2 aj: 1
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Berkeley

UNIVERSITY OF CALIFORNIA

l[@\\ Icons by Llisole

on NounProject

SISL

Stanford Intelligent
Systems Laboratory
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for Human-in-the-Loop Systems
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Towards Safe and
Efficient Urban Driving
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