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How can we ensure safety in data-driven robotic systems 
that operate with people in the real-world?



There is a greater societal push than ever before…

Cars are sensing more and moreCars are communicating more and more
USDOT Issues Advance Notice of Proposed

Rulemaking to Begin Implementation of V2V

Communications Technology

— NHTSA, Aug. 2015

driverless cars date back to
the 80s/90s in the Eureka/
Prometheus Project



Autonomous Vehicles in the News



Steven Crowe, How California’s Self-Driving Cars Performed in 2017, The Robot Report, February 2018.
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Emergence of Autonomy in Planes
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Dominique Chatrenet, Air Transport Safety Technology & Training, ETP 2010. 6



Dominique Chatrenet, Air Transport Safety Technology & Training, ETP 2010. 7
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Human-Centered Autonomy

Modeling, Semi-autonomy, 
& Experimental Testbeds

Autonomous Planning & Control
Multi-Agent Perception 

& Decision Making
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Roadmap

Validation of Complex,

Multi-Agent Systems

Towards Safe and 

Efficient Urban Driving

Robust, Informative Predictions 

for Human-in-the-Loop Systems
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K. Driggs-Campbell, Experimental Design for Human-in-the-Loop Driving Simulations, 
Master’s Thesis. EECS Department, University of California, Berkeley, 2015. 11



Outfitted for Driver Monitoring

Eye TrackingMotion Capture System Affective Sensing

K. Driggs-Campbell, Experimental Design for Human-in-the-Loop Driving Simulations, Master’s Thesis. 
EECS Department, University of California, Berkeley, 2015. 12



Applications for Driver Modeling

Shared Control                       
and Active Safety

Interaction Constrained 
Autonomous Planning

Evaluate & Prove Properties              
about Human Drivers

K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.
V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver Modeling, in Transactions on ITS 2014.
K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in Transactions on ITS 2017.
D. Sadigh, K. Driggs-Campbell, et al. Data-driven probabilistic modeling and verification of human driver behavior, in AAAI 2014. 13



Driver Modeling and Active Safety

Intervention Function
𝒢𝑘 𝛼, 𝜏 =

ቊ
1 , if ∃𝑘 𝑠. 𝑡. Δ𝑘 ∩ 𝒞𝑘 ≥ 𝜏
0 , otherwise

Driver Prediction

Model Predictive ControlEnvironment Model

If we can identify the driver state and effectively predict their likely behavior, can we
design better, less invasive active safety systems?

K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.
V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver
Modeling, Transactions on ITS 2014. 14



Predictive Modeling
Informative Models Robust Models
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Empirical Reachable Sets

Approximate stochastic reachability with
an empirical reachable set, by:

maximizing precision

while maintaining accuracy

argminΔ⊂ℝ𝑛 𝜆(Δ)

subject to ෠𝑃𝑋 Δ ≥ 𝛼

K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015. 
K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 16



From Data to Empirical Reachable Sets

𝑋 =
𝑥1 0 ⋯𝑥1 𝑇

⋮
𝑥𝑁 0 ⋯𝑥𝑁 𝑇

𝑥𝑖 0 = 𝑥0, ∀𝑖

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 17



From Data to Empirical Reachable Sets

maximize precision

while maintaining accuracy

argminΔ⊂ℝ𝑛 𝜆(Δ)

subject to ෠𝑃𝑋 Δ ≥ 𝛼

where ෠𝑃𝑋 Δ =
1

𝑁
෍

𝑖=1

𝑁

𝕀 𝑥𝑖 ∈ Δ

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 18



From Data to Empirical Reachable Sets

maximize precision

while maintaining accuracy

argmin ҧ𝑥,ഫ𝑥,𝑏 𝜆 ҧ𝑥, പ𝑥

subject to 𝑏𝑖 ҧ𝑥 − 𝑥𝑖 ≥ 0
𝑏𝑖 പ𝑥 − 𝑥𝑖 ≤ 0
σ𝑖 𝑏𝑖 ≥ 𝑁 1 − 𝛼

where 𝑏𝑖 ∈ 0,1

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 19



From Data to Empirical Reachable Sets

maximize precision

while maintaining accuracy

argmin ҧ𝑥,ഫ𝑥,𝑏 𝜆 ҧ𝑥, പ𝑥

subject to ҧ𝑥 − 𝑥𝑖 ≥ (1 − 𝑏𝑖) 𝑥𝑚𝑖𝑛 − 𝑥𝑖
പ𝑥 − 𝑥𝑖 ≤ (1 − 𝑏𝑖) 𝑥𝑚𝑎𝑥 − 𝑥𝑖
σ𝑖 𝑏𝑖 ≥ 𝑁 1 − 𝛼

where 𝑏𝑖 ∈ 0,1

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 20



From Data to Empirical Reachable Sets

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 21



Solvers, Monotonicity, and Distributions

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 22



▪ For 𝑛 binary variables (samples), we
have 2𝑛 optimization problems

▪ Using branch and bound method,
search much fewer combinations

▪ Rejection ratio increases significant
increases in computation time

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018.

Solvers, Monotonicity, and Distributions

23



If the input data is unimodal, then the
output is monotonic, in the sense that:

Δ 𝛼𝑝 ⊆ Δ 𝛼𝑞 , ∀𝛼𝑝 ≤ 𝛼𝑞

Assuming unimodality, iteratively remove
points until the rejection ratio is met to
efficiently find the global optimum

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018.

Solvers, Monotonicity, and Distributions
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Detecting Driver Modes

K. Driggs-Campbell, et al., Identifying Modes of Intent from Driver Behaviors in Dynamic Environments, 
ITSC 2015. 25



Results on Lane Changing Example

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 26



Results on Lane Changing Example

K. Driggs-Campbell, et al., Robust, Informative Human-in-the-Loop Predictions via Empirical Reachable Sets, 
in Transactions on Intelligent Vehicles, 2018. 27



Applications for ERS

K. Driggs-Campbell, et al., Improved Driver Modeling for Human-in-the-Loop Control, ICRA 2015.
V. Shia, Y. Gao, R. Vasudevan, K. Driggs-Campbell, et al. Semi-Autonomous Vehicular Control Using Driver Modeling, in Transactions on ITS 2014.
K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in Transactions on ITS 2017.
D. Sadigh, K. Driggs-Campbell, et al. Data-driven probabilistic modeling and verification of human driver behavior, in AAAI 2014.

Shared Control                       
and Active Safety

Interaction Constrained 
Autonomous Planning

Evaluate & Prove Properties              
about Human Drivers
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Interaction Constrained Autonomous Planning

Using robust, predictive models of drivers, we can: 

▪ Effectively predicts drivers’ merging responses 

▪ Incorporating these sets as planning constraints results in 
more human-like motion

▪ Human-inspired controllers increases predictability by ~40%

K. Driggs-Campbell, et al., Integrating Intuitive Driver Models in Autonomous Planning for Interactive Maneuvers, in 
Transactions on Intelligent Transportation, 2017.
K. Driggs-Campbell, et al. Communicating Intent on the Road Through Human-Inspired Control Schemes, IROS 2016.

If we can predict likely driver responses in cooperative maneuvers, can we design
autonomous systems that can effectively integrate with human drivers?

Lane Keeping Want to Change

Communication

Execute Lane Change
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Roadmap

Validation of Complex,

Multi-Agent Systems

Towards Safe and 

Efficient Urban Driving

Robust, Informative Predictions 

for Human-in-the-Loop Systems
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How do we create a safe and 
effective autonomous vehicle?
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Robust MPC Safe Imitation Learning Rigorous Validation
Integration & 

Implementation
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MPC

Tactical 
Planner

Perception 
& Localization

Behavior 
Prediction



Testing at Gomentum Station
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Free Driving

Turning
Obstacles
Other vehicles
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Intervention Scenarios
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Low-Probability, High-Risk Events

38

Hazardous Event Frequencies

Disengagement Rate 0.12 per 1000 km 

Collision Rate 12.5 per 100 million km 

Fatality Rate 0.70 per 100 million km

To be meaningful, on the order of billions of
kilometers must be driven or simulated.
→ Alternatively, we need an efficient, scalable

method for validating complex systems.

J. Morton, T. Wheeler, and M.J. Kochenderfer. Closed-Loop Policies for Operational Tests of Safety-Critical Systems. 
Under Review 2018. 
R. Lee, et al. Adaptive Stress Testing of Airborne Collision Avoidance Systems, in DASC 2015.



Low-Probability, High-Risk Events
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Hazardous Event Frequencies

Disengagement Rate 0.12 per 1000 km 

Collision Rate 12.5 per 100 million km 

Fatality Rate 0.70 per 100 million km

To be meaningful, on the order of billions of
kilometers must be driven or simulated.
→ Alternatively, we need an efficient, scalable

method for validating complex systems.

J. Morton, T. Wheeler, and M.J. Kochenderfer. Closed-Loop Policies for Operational Tests of Safety-Critical Systems. 
Under Review 2018. 
R. Lee, et al. Adaptive Stress Testing of Airborne Collision Avoidance Systems, in DASC 2015.

Traditional Testing

Adaptive Stress Testing



Validation Techniques

• If an agent’s motion is discretized,
sampling will not give good coverage

• As more agents are added, the number of
trajectories to test grows exponentially

• AST aims to identify the most likely failures
in your system

AST phrases the validation as a reinforcement
learning problem. This provides:
• Sequences of disturbances that will cause 

the system under test to fail
• Worst case scenarios to qualitatively assess 

policy performance

X. Ma,* M. Koren,* A. Corso, K. Driggs-Campbell, and M.J. Kochenderfer, Adaptive Stress Testing
Toolbox, Under Review 2019. 40



Adaptive Stress Testing

Actively search the system to find the
most likely failures in your system:

41

𝑅 𝑠𝑡 , 𝑠𝑡+1 = ቐ
0, if failure

−∞, if no failure and 𝑡 = 𝑇
log𝑃 𝑠𝑡+1|𝑠𝑡 , if no failure and 𝑡 < 𝑇

sim input 
seed

AST
Monte Carlo 
Tree Search

reward
event

likelihood

Adaptive Stress Testing
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X. Ma,* M. Koren,* A. Corso, K. Driggs-Campbell, and M.J. Kochenderfer, Adaptive Stress Testing
Toolbox, Under Review 2019.



AST: Failure Assessment Comparison

Heuristic / Rule-based System System with Tracking Errors
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Icons by Llisole
on NounProject
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