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Approximation Theory:
+

Random sampling:

x in M = manifold of images

graph or list of word labels

f(x)

Fitting a map from images to labels
+

Images are sampled from distribution

Image Classification by CNNs



• ImageNet: Total number of classes: m =21841

• Total number of images:  n =14,197,122

• Color images d= 3*256*256= 196,608

Facebook used 256 GPUs, working in parallel, to 
train ImageNet. 

Still an academic dataset.  Total number of images 
on Facebook is much larger 

ImageNet



We still don’t understand why it works so well

In theory, due to curse of 
dimensionality, impossible to 
accurately interpolate a high 
dimensional function.

In practice, possible using Deep 
Neural Network architecture, 
training to fit the data with SGD.
However we don’t know why it 
works.

Can train a computer to caption images more 
accurately that human performance. 



Mary Shaw’s evolution of 
software engineering discipline

Better theory: improves reliability and discipline evolves



Are all models with the same generalization 
loss equally good?

• Cost of model:  

• memory storage required, 

• inference time 

• power usage (in hardware)

• Robustness: sensitivity of the model to small changes in the 
data.

• Stability: sensitivity of the model to small changes in the 
model parameters

Besides generalization/accuracy what else do we care about?



Challenges for deep learning

“It is not clear that the existing AI 
paradigm is immediately amenable 
to any sort of software engineering 
validation and verification. This is a 
serious issue, and is a potential 
roadblock to DoD’s use of these 
modern AI systems, especially when 
considering the liability and 
accountability of using AI” 

JASON report



Intro: Adversarial Attacks

Small (visually imperceptible) perturbations of an image lead to misclassification
Source: EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES, Goodfellow



Attacks against Facial Recognition

Glasses make you invisible to facial recognition
Source: Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. Sharif et al.



Attacks on road sign classification

Left: real graffiti on a stop sign, something that most humans would not 
think is suspicious. Right: a physical perturbation applied to a stop sign.  
Models classify the sign on the right as a Speed Limit: 45 mph sign! 
Source: Robust Physical-World Attacks on Deep Learning Visual Classification.



Jacobian Saliency Attack

The Limitations of Deep Learning in 
Adversarial Settings Nicolas Papernot, 
(Vector Institute)

Use the Jacobian of the model to 
see which pixels are influential on 
classification, and change those.



One pixel attack

One pixel attack for fooling deep 
neural networks
Jiawei Su,

Can even choose just one of the 
pixels, and fool the network



Scale measures visible attacks

DNNs are vulnerable to attacks which are invisible to the human eye.
Undefended networks have 100% error rate at .1 (in max norm)



Adversarial attacks, defence and detection

• Why are models robust to random perturbations, but not adversarial ones?

• Designing adversarial attacks on a given network is an optimization problem: find the 
smallest perturbation of an image which leads to misclassification.

• Adversarial defences (models which resist attacks)

•  Game Theory problem: need to anticipate the attacks, and defend against them.  It 
matters who moves first

• Also a Security problem: like spam detection and encryption, need to be aware of 
possible attacks and defend against them.  Practical considerations (time, effort) matter as 
much as theoretical ones (security guarantees).

• Address it using Regularization coming from calculus of variations



Foolbox Attacks 

Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber, Wieland Brendel, Matthias Bethge 

• Benchmark attacks.

• White box / Black box (gradients of model, just model predictions)

• Gradient based attacks on the loss



Arms race of attack methods and defences

Error curve: probability an image 
misclassified as a function of adversarial 
attack vector norm. 

Error curve for an undefended model
for different attacks.

Strongest attacks on undefended 
model:
Iterative Gradient Attacks 
(FGSM for infinity norm/Projected 
Gradient for Euclidean norm)



Carlini-Wagner Evasion Attacks 

Nicolas Carlini

• Then Carlini-Wagner came and broke every detection method.

• They used a modifies loss function, which used knowledge of the 
detection method to optimize

• misclassification + undetectable

• The strongest model was a Bayesian combination of 30 models 
which used consensus.   Harder to fool 30 models.  (But costs 
more)

• Game Theory: Carlini moves after detector.

Attack Detection

• Can’t defend very well, but can you detect attacks.

• 8 papers published in 2017 conferences, detecting attacks

• Game theory: detector moves after attacker.



Gradient Obfuscation and the Arms Race

• Strongest attacks on undefended models are gradient based

• On many models, Carlini-Wagner and Boundary attacks are 1000 times slower, and 
not as effective, because they do not use gradient information.

• However, early defended models seemed to work well against gradient attacks. (But 
they didn’t check the black box attacks, which were assumed to be weaker).

• Turns out: non-gradient based attacks destroyed them.

• Carlini-Wagner called these models “gradient obfuscation”, essentially providing bad 
gradients.

• Whenever a gradient attack works better than a black box attack they call it 
obfuscated.

• Lesson: need to test all the attacks.



Madry: Defence by adversarial training

Aleksander Mądry

• Simple idea: train network replacing original images with attacked 
images (still using correct labels).

• Now when someone attacks the images, the model has already 
been trained to recognize them.

• Benefits: improved adversarial robustness

• Problem: loss of accuracy (say from 4% to 12% on CIFAR 10).

• Madry: “Robustness may be at odds with accuracy” claims this loss 
is unavoidable

• Algorithmic / Variational : 

• Our interpretation: Adversarial Training corresponds to Total 
Variation Regularization (to be explained)

• Better results: implement the Regularization effectively.



Lessons from Game Theory

• Declaring your strategy is a disadvantage / moving after you see the 
other player’s move is an advantage.

• Custom defences may work well if the attack is known

• New attacks can take advantage of the knowledge

• Min Max strategy is best outcome over the worst attack : no 
disadvantage to declaring strategy

•Game theory lesson:  Rock Paper Scissors: R > S,  S > P, but R  
< P (!)

•Game theory lesson:  Rock Paper Scissors: minimax strategy is 
randomized.



Security Lessons

• Encryption :  there may be no unbreakable code.  However can make a code require 
so much effort to break, that impractical (e.g. Prime Factorization)

• Bank vault: takes long time to break in.

• Spam Detection :  will always get false positive / false negatives

• sometimes real message classified as spam (false positive)

• sometimes miss spam, classify as ham (false negative)

• There is always a trade off between these.

• Better tests may require more effort: e.g. medical screenings.  Less invasive screen, 
then more invasive test.



Adversarial Robustness without loss of accuracy.  

Chris Finlay (current PhD student)

Improved robustness to adversarial examples using Lipschitz regularization of the loss 

Chris Finlay, O., Bilal Abbasi; Oct 2018; arxiv

Bilal Abbasi (former PhD now working in AI)



Outcome of the regularized model

Adversarial Robustness without loss of accuracy.  

It is somewhat less robust than Madry/Qian.  But no loss of accuracy on clean test images.
Increasing lambda/epsilon gives better robustness at a slight loss of accuracy.

Defence methods on CIFAR-10. Classification error (Smaller is better).  Each row 
corresponds to an adversarial attack method (in 2-norm or infinity-norm)   Results from 
Finlay-Abassi-Oberman 2018.



Comparison of attack methods using error curves for ResNeXt-34 (2x32), on the CIFAR-10 
test set.  Error curve. Left: undefended model; right: best regularized model.

Results



Carlini-Wagner Evasion Attacks 

Nicolas Carlini

• 8 papers published in 2017 conferences, detecting attacks

• Detection methods based on statistics of the images,

• for example, PCA analysis of attacked images

• most of the detection methods ignored the model.

• The Bayesian one used multiple models

• Then Carlini-Wagner came and broke every detection method.

• They used a modified loss function, which used knowledge of the 
detection method to optimize

• misclassification + undetectable

Attack Detection: Background



Our attack detection: Image Vulnerability

Taylor series argument (from a different part)

We propose: vulnerability to attack as a proxy for attack detection. 
Uses the model instead of statistics of the data.

 Pessimistic: if you can be attacked, assume you will be.

Will clearly generate some false positives.



Attack detection works?

Attack detection results:  All attacked images have large gradients.  Most clean images have 
small gradients.

Choose a threshold so only 5% of clean images are wrongly detected attacked.

clean images have small values middle: gradient attack  Right: boundary attack.



Wait: C-W style self attack.

Design a CW style modified loss attack.  Now instead of image statistics, we try to attack 
while also making gradient small.  
Results: attacks can succeed, but require much larger attack distance.

Clean and evasive attack histogram



Detection Conclusion

The fact that designing evasive attacks makes the median distance so large implies 
that our defence method is fairly robust.
From a game theory perspective, even knowing the detection method, the attacker cannot 
avoid detection without making a much larger distance attack.
The attacks are not quite visible, but much closer than the detectable attacks.



Introduction to 
Variational 

 Regularization



Loss depends on noise - regularizer depends on signal

• In Machine Learning, we choose a loss 
function which is designed with the 
statistics of the noise in mind.


• E.g. quadratic loss for Gaussian noise


• In Calculus of Variations, we choose a 
regularizer based on the smoothness 
properties of the model/function.


• Tychonoff regularization for smooth 
(left)


• Total Variation regularization for 
piecewise smooth (right)

Noisy and Regularized signal



Mathematics: Calculus of Variations

• Derive physical laws from energy 
minimization principles.


• “Path of least resistance” - Variational 
principle for the path of light in a medium


• Often there is a single non-dimensional 
parameter that determines the 
“wildness” of the system.  For example 
the Reynolds number for fluid dynamics.


• Regularization: adding “friction” to the 
system.  Leads to smoother solutions.

0 1 2 3 4 5
0

1

2

3
Regularity R(f )

Loss L(f ,y)

Regularity and Loss as a function of 
smoothing parameter



Total Variation Denoising [1992] R-Osher-F.

used in early, high 
profile image 
reconstruction of 
video images.

Stanley Osher

• minimize a variational functional: combination of a loss term, to 
the original noisy image, and a regularization term


• Regularization is large on noise, small on images.  
Regularization: Total Variation.



Image inpainting [B. Sapiro, Casselles, B. ’00]

Fill in missing parts of image, 
without adding additional 
information. Analogy with 
generalization

• minimize a variational functional: combination of a loss term to the 
given image (on the data manifold), and a regularization term


• Regularization: Lipschitz Regularization 

• Equivalent to solving the Infinity-Laplace PDE [O. ’04, ’13] 


• FYI [Peres Tug-of-War and IL ’09]
G. Sapiro



Regularization of models

x in M = manifold of images

word labels

f(x)

Idea: apply a regularizers to the model; 
the function mapping data to labels.



Q: Can we find and implement a good regularizer 
which promotes adversarial robustness?  (A: yes)

unregularized map: well-behaved on data manifold,  but very 
bad off the manifold (without regularization)

Interpretation: regularization fixes large gradients 
(instability to perturbations) on, or near, the data manifold

Adversarial Robustness measures : vulnerability of a model to adversarial attack. 

Weng et al. (2018) and Hein & Andriushchenko (2017) propose the the Lipschitz constant of 
the model.  
So try Lipschitz Regularization?  

We will show that a modified, more accurate version of Adversarial Training corresponds to 
Total Variation Regularization.   Best results come from combining both.



Outcome of the regularized model

Our Regularization: 
lambda Total Variation + epsilon Lipschitz
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Regularity R(f )

Loss L(f ,y)

Defence methods on CIFAR-10. Classification error (percentage) on test images. 
Increasing regularization parameters by factor of 10 leads to better robustness, but loss of 
accuracy.  Consistent with cartoon.  



Adversarial attacks  
as an optimization 

problem



Adversarial Attacks on the loss



Blackboard derivation: Signed Gradient Attack Vector



Dual norms and attacks



Blackboard: Why random attacks are weak, adversarial attacks 
are strong

• Blackboard/Exercise:  taylor series, random attacks, mean zero, versus gradient 
attack



Adversarial 
Regularization 



Derivation: Total Variation Regularizaton from Adversarial 
Training

The equation above shows that perturbing an image by an optimal one step attack vector
is equivalent to modifying the loss with an extra term.  

Take expectations (drop the higher order term) 

Thus adversarial training corresponds to Total Variation Regularization



Discussion: Robustness and Lipschitz constant



Discussion: Estimating Model Lipschitz constant



Derivation: Lipschitz Regularization

Instead of averaging, consider a penalty for the largest gradient norm

Then by Rademacher’s Theorem, this corresponds to Lipschitz Regularization

Combined Model: TV and Lip regularization



Proof of Convergence and 
Generalization for Lipschitz 

Regularized DNNs
joint with Jeff Calder

Lipschitz regularized Deep Neural Networks converge and generalize O. and Jeff Calder; 2018



Lipschitz Regularization of DNNs

Train with the expected loss augmented by the Lipschitz regularization term

Take the limit as we sample more points. 
The limiting functional is given by   

• u0 - the true label function
• L0 - the Lipschitz constant of u0, estimated from data.



Statement of convergence theorem for Noisy 
Labels



Estimates of worst case distance from a point to 
sampled points

Random sampling from density

• n  - the number of data points sampled
• m -  the dimension of the data manifold.



Convergence with a rate

• u0 - the true label function
• L0 - the Lipschitz constant of u0, easily estimated from data.
• n  - the number of data points sampled
• m -  the dimension of the data manifold.



Generalization follows

Question: can we get a better rate for generalization with a stronger estimate?



End


