The Jiang—Su algebra

After several successful classification results were obtained by
lifting maps from the level of K-theory and tracial states, George
Elliott conjectured that it might be possible to classify all simple,
separable, unital, nuclear C*-algebras by the “Elliott Invariant”:

Ell(A) := (Ky(A), Ky(A) ., [14], Ki(A), T(A), p : T(A) — S(Ky(A), [1,]))
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If A = C, a perfectly nice simple, separable, unital, nuclear C*-algebra,
then we have the following:

EIl(C) = (Z, Z,, [11,0,{7 = id}, p()(n) = n))
Jiang and Su set out to answer the following question:
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satisfactory classification of purely infinite separable nuclear C*-algebras (cf.
Kirchberg [33], Phillips [38]). Note that, if A # 0 is a unital simple nuclear C*-

algebra and A = A ® O, then A must be purely infinite [33]. In light of these
developments, it has become desirable to find an analog of O, for a broader
class of C*-algebras that includes some stably finite C*-algebras. As a test case,
we wish to include the class of AF algebras (of Bratteli [7]), which was the first

class of C*-algebras classified using K-theory (cf. Elliott [19]). Searching for an
analog of O, for this class leads quickly to the following modified version of
Question I:

Question 2. Is there a unital simple nuclear C*-algebra A, infinite-dimensional

and having a unique tracial state, such that Ky(A) = Kyp(C) as scaled ordered
groups and K (A) = K;(O)( = 0)?




Since C is certainly not infinite dimensional, this would imply that
Elliott’'s conjecture would obviously need to be reformulated so that
one only considers simple, separable, unital, nuclear, infinite
dimensional C*-algebras.

NBD, right?

But even for infinite-dimensional C*-algebras, such a C*-algebra £
would have further interesting implications.



For example, the Kunneth theorem tells us that
Ky(A® Z)= KyA) ® Ky(Z£) @ K(A) ® K((Z) = Ky(A),
and
Ki(A® Z)= KyA) Q Ki(Z£) D Ki(A) ® Ky(Z) = K (A).

We also have that the map

TA) > TAR %), i X T,

where 7 is the unique tracial state of £, gives us an affine
homeomorphism 7(A) = T(A Q® £)



Jiang and Su’s construction

# can be constructed as an inductive limit of dimension-drop algebras.

15.1.1. Definition. Let p, ¢, d € N\ {0} with both p and ¢ dividing d. The dimension-
drop algebra I(p,d, q) is defined to be

I(p,d,q) :={f € C(|0,1], Ma) | f(0) € M) @ 1ap, f(1) € Lajq @ Ma}.

If p and ¢ are relatively prime, then we call I(p,pq,q) a prime dimension-drop
algebra. In this case, we sometimes simply write I(p, q), since it is understood that

d = pq.




I(p,d,q):= {f = C([O, 1], M) ‘ f(0) € M, & ld/p,f(l) = ld/q X ]\/’[d}.

If p and ¢ are relatively prime, then we call I(p,pq,q) a prime dimension-drop
algebra. In this case, we sometimes simply write I(p, q), since it is understood that

d = pq.

Prime dimension-drop algebras contain only the trivial projections O and 1.

In fact,

LEMMA 2.3. Let A = llmgy,m,m|. Then:
(1) (Ko(A),K3(A), [14]) = (Z,N,r), where r = (mg, my) denotes the greatest

common divisor of mog and m,;
(2) K1(A) = Zp, where p = mr/(mom,).

In particular, prime dimension-drop algebras have vanishing K;.



Since K-theory is continuous with respect to inductive limits, an inductive limit
of prime dimension-drop algebras will already give us the K-theory we’re after.

To get something simple and monotracial, one has to make sure the matrix
sizes grow to infinity and that the connecting maps “shrink” the spectrum.

PROPOSITION 2.5. There exists an inductive sequence A 2, A» 2, A3 ¥,

.-, where each A, = 1| pn,d,, g, is a prime dimension drop algebra, such that each

connecting map Qmnp = Pp—1°0--+0 Pyl © Om: Am — A, is an injective morphism
of the form:

fOfl 0 0

0 fo& --- 0

(2.1) Gma(f) =u" u, VfeAn,

0 0 - fo&

where u is a continuous path in Uy, and {&;} is a sequence of continuous paths in
[0, 1], each of which satisfies the following:

(2.2) &i(x) — &(y)| < (1/2)"™,  Vx, y € [0,1].




That’s enough to show the following:

PROPOSITION 2.8. Let (A, om) be any sequence as in Proposition 2.5, then its

[imit, l_n_)n (A, Om), is a unital simple C*-algebra with a unique tracial state.

From which 1t follows that

THEOREM 2.9. There exists an infinite-dimensional unital simple limit Z of
dimension drop algebras, such that Z has a unique tracial state, Ko(Z) = Ky(C)

as scaled ordered groups, and K|(Z) = K;(C) = 0.

The £ of Theorem 2.9 is what we now call the Jiang—Su algebra!



A C*-algebra A is said to be £ -stable or £ -absorbing if A ~ A ® Z£.

Jiang and Su showed that

o if A is purely infinite, unital, simple and nuclear, then A is Z -stable
e if A is unital simple approximately finite (AF) then A is £ -stable
o £ is £ -stable



In fact, Z is strongly self-absorbing.

A unital C*-algebra Y is strongly self-absorbing if there exists a
*-Isomorphism .
»:D—> DRI

that Is approximately unitarily equivalent to the first factor embedding:

there exist unitaries (i), . C Y ® I s.t.

A strongly self-absorbing C*-algebra is automatically nuclear and simple.
The only other strongly self-absorbing C*-algebras in the UCT class are

M. . OO X Moo, and (5



For any strongly self-absorbing &), we have # ® Y = 9 while
0O, QD = 0,.

One can similarly talk about &J-stability with respect to these other
strongly self-absorbing C*-algebras. For example, if A is a UCT unital
purely infinite simple C*-algebrathen A ® O = O

m [ J

Indeed, finding a stably finite analogue to (O _, was one of Jiang and
Su’s motivations. K& XINHUI JIANG AND HONGBING SU
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We noted earlier that A and A ® £ have the same K-group, K;-group
and traces. But the Kunneth theorem doesn’t say anything about the order

structure on K.

An ordered abelian group (G, G ) is weakly unperforated if whenever x € G

and there is an integer n > 0 such that nx € G_, then we must have x > 0.

This provides an obstruction to £ -stability [Gong, Jiang, Su, '00]:

Theorem 1 Let A be a unital simple C*-algebra. Then:

(a) Ko(A @ Z) is weakly unperforated;

(b) ty: Ko(A) — Ko(A ® Z) is an isomorphism of pre-ordered groups if and only if Ko(A) is
weakly unperforated.




It follows that Elliott’s original conjecture predicts £ -stability for
any simple, separable, unital, nuclear, infinite-dimensional C*-

algebra A such that ((K,(A), Ky(A). ) is weakly unperforated.

In the presence of weak unperfoation, the pairing map
p:T(A) = S(Ky(A),[1,]) contains the same information as the

order structure on K(A) .

Some notable examples of “wild” simple, separable, unital and
nuclear C*-algebras, eg. Villadsen algebras, do not have weakly

unperforated K .



However, weak
unperforation in K is
not enough to
guarantee £ -stability.
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On the classification problem
for nuclear C*-algebras

By ANDREW S. ToOMS

Abstract

We exhibit a counterexample to Elliott’s classification conjecture for sim-
ple, separable, and nuclear C*-algebras whose construction is elementary, and
demonstrate the necessity of extremely fine invariants in distinguishing both
approximate unitary equivalence classes of automorphisms of such algebras
and isomorphism classes of the algebras themselves. The consequences for the
program to classify nuclear C*-algebras are far-reaching: one has, among other
things, that existing results on the classification of simple, unital AH algebras
via the Elliott invariant of K-theoretic data are the best possible, and that
these cannot be improved by the addition of continuous homotopy invariant
functors to the Elliott invariant.



Counterexamples that can’t easily be excluded.

Restrict to £ -stable C*-algebras;
try to characterize # -stability

| |

Cuntz semigroup Toms—Winter conjecture

Refine the Invariant



Let A be a C*-algebra and a, b € A,. We say that a is Cuntz
subequivalent to b, written a < b, if there exists a sequence (7). C A
such that ||r*br, — b|| = 0, n — .

Two positive elements a, b € A are Cuntz equivalent, written a ~ b, if
a<bandb < a.

The Cuntz semigroup of A is CU(A) := (A ® # )/ ~ , where addition is
la] + |b] = |diag (a, b)] . Cuntz subequivalent makes this into an ordered
semigroup.



One thinks of the Cuntz semigroup as a “Murray—von Neumann
semigroup” for positive elements, rather than just projections.

To the von Neumann algebraists in the crowd: remember, a C*-algebra
need not have any projections at all!

Indeed, £ contains only trivial projections 0, 1.

The Cuntz semigroup is the only invariant that can distinguish Toms’

examples.

The sequel clarifies the nature of the information not captured by the
Elliott invariant. We exhibit a pair of simple, separable, nuclear, and noniso-
morphic C*-algebras which agree not only on Ell(e), but also on a host of other
invariants including the res ak-and-sontinue with respect to inductive

equences) homotopy invariant functors. The Cuntz semigroup, employed
dlstmgmsh our algebras, is thus the minimum quantity by which the Elliott
lant must be enlarged in order to obtain a complete invaris Dut—we
shall see that the queéstion of Tange fc pigroup 1s out of reach. Any




The Cuntz semigroup of a

C*-algebra A can be pretty
wild.

However, A is £ -stable

the Cuntz semigroup is
almost unperforated.

A partially ordered abelian
semigroup P is almost

unperforated if x,y, € P
and there aren,m € N
with n > m and nx < my,
thenx < y.
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THE STABLE AND THE REAL RANK OF =z
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Abstract

Suppose that A is a C*-algebra for which A = A ® Z where 2 is the Jiang—Su
algebra: a unital, simple, stably finite, separable, nuclear, infinite-dimensional C*-

algebra with the same Elliott invariant as the complex numbers. We show that:

1) The Cuntz semigroup W(A) of equivalence classes of positive elements 1n

algebras over A 1s almost unperforated.



When A is £ -stable, then the Cuntz semigroup contains the same

Information as the Murray—von Neumann semigroup and the tracial state
space. So adding this to the invariant doesn’t give us anything new here.

Almost unperforation of the Cuntz semigroup of A implies that A has strict
comparison (of positive elements):

For any tracial state © € 1(A), define the dimension function d_
d(a) = limi z(@s RSN

n— o0

We say that A has strict comparison if, whenever d (a) < d_(b) for every
t€ T(A), thena < b.



This brings us to the Toms—Winter conjecture:

A.S. Toms, W. Winter / Journal of Functional Analvsis 256 (2009) 13111340

Theorem 3.4. Let A be a simple V1 algebra admitting a standard decomposition with seed space
a finite-dimensional CW complex. The following are equivalent:

1) Ais Z-stable;
(u) A has strict comparison of positive elements;,
wi) A has finite dec ompmmon rank;
(1v) A has STow , ‘ s an AH algebra);
(v) A has bounded dimension growth (as an AH algebra):
(vi) A is approximately divisible.

. onditions (1)—(111) should remain equivalent in much larger classes of simple, separabl¢:
. lear, and stably finite C*-algebras. Conditions (1v), (v). and (v1) cannot be expected t
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Decomposition rank Is a precursor to nuclear dimension. T'hey are the
same for stably finite C*-algebras. However a purely infinite C*-algebra
can have finite nuclear dimension, but will always have infinite

decomposition rank.

Slogan: Decomposition rank and nuclear dimension are noncommutative
covering dimensions.

In particular, if X is a locally compact metric space then
dimpyc(C(X)) = dr(C(X)) = dim(X) .



Both are given by refining the completely positive approximation property:

17.2.1. Definition. Let A be a separable C*-algebra. We say that A has nuclear
dimension d, written dimp,cA = d, if d 1s the least integer satisfying the following:
For every finite subset F C A and every € > ( there are a finite-dimensional,

C*-algebra with d + 1 ideals, F' = Fy & -+ & Fy4, and completely positive maps
Y A — Fand ¢ : F — Asuch that ¢ is contractive, |z are completely positive
contractive order zero maps and

lpoyla) — all < e for every a € F.

[f no such d exists, then we say dim,,.,A = o¢.
[f the © can always be chosen to be contractive, then we say that A has
¥ . -
decomposition rank d, written dr A = d.




C([0,1]) has nuclear dimension one:

I,'

TIII—S— “/\“ /\2. /\‘). (’\l"\“ /\’,)) *: 1"“ 4 I'Ql

Y

= “/\“ /\2. /\‘). (/\1./\{. /\’,)) *: 1““ (4 I:l

Here &# consists of a single
element, and ¢ Is pretty big.

The finite-dimensional C*-
algebrais I = F, D I
where both /-, and £/ are
three copies of C.



By now we have the following, under the assumption that the extreme
boundary of tracial state space is compact:

7 Aeoren

mw"’ are 9.3. For a separable, simple, unital, infinite dimensional and nuclear C*-algebra A,
the following are equivalent:

(1) A has finite nuclear dimension.
(1) A is Z-stable.
(111) A has strict comparison of positive elements.




We saw that the hyperfinite /I, factor &% can also be constructed, for

example, as L>(X) X Z. We also know that O is usually defined using

generators and relations. So one might ask if the Jiang—Su algebra might
appear in more “natural” settings, not just as an inductive limit.

eRordam—Winter: # can be written as a stable inductive limit of
generalized dimension drop algebras

F o g = If € CUO 1], Moe @ Moo [ fO) € 1 @ M., f(l) € M. @ 1},

where the connecting map is any trace-collapsing endomorphism.

eJacelon—Winter: £ is universal. £ can be realized as a universal C*-
algebra on countably many generators and relations.

eDeeley—Putnam—S.: £ can be realized as the orbit-breaking
equivalence relation of a minimal dynamical system.



oLi: Z can be realized as the C*-algebra of a principal groupoid C*-algebra
with 1-dimensional unit space.

(This along with Deeley—Putnam—S. shows that £ has a Cartan

subalgebra; in fact infinitely many Cartan subalgebras of arbitrarily high
dimension.)

e Ghasemi: £ can be realized as a Fraissé limit.

o(Since £ has an approximately inner half-flip, which follows from Jiang

and Su’s original paper, this gives another proof that £ is strongly self-
absorbing.)



