
The Jiang—Su algebra𝒵
After several successful classification results were obtained by 
lifting maps from the level of K-theory and tracial states, George 
Elliott conjectured that it might be possible to classify all simple, 
separable, unital, nuclear C*-algebras by the “Elliott Invariant’’:

Ell(A) := (K0(A), K0(A)+, [1A], K1(A), T(A), ρ : T(A) → S(K0(A), [1a]))

Karen Strung, Institute of Mathematics, Czech Academy of Sciences



Jiang and Su set out to answer the following question: 
Ell(ℂ) := (ℤ, ℤ>0, [1],0,{τ = id}, ρ(τ)(n) = n))

If , a perfectly nice simple, separable, unital, nuclear C*-algebra, 
then we have the following:

A ≅ ℂ



Since  is certainly not infinite dimensional, this would imply that 
Elliott’s conjecture would obviously need to be reformulated so that 
one only considers simple, separable, unital, nuclear, infinite 
dimensional C*-algebras. 

ℂ

NBD, right? 

But even for infinite-dimensional C*-algebras, such a C*-algebra 
would have further interesting implications.

𝒵



We also have that the map 

For example, the Künneth theorem tells us that 
K0(A ⊗ 𝒵)

and
K1(A ⊗ 𝒵)

≅ K0(A) ⊗ K0(𝒵) ⊕ K1(A) ⊗ K1(𝒵) ≅ K0(A),

≅ K0(A) ⊗ K1(𝒵) ⊕ K1(A) ⊗ K0(𝒵) ≅ K1(A) .

T(A) → T(A ⊗ 𝒵), τ ↦ τ ⊗ τ𝒵,

where  is the unique tracial state of , gives us an affine 
homeomorphism 

τ𝒵 𝒵
T(A) ≅ T(A ⊗ 𝒵)



Jiang and Su’s construction
 can be constructed as an inductive limit of dimension-drop algebras. 𝒵



Prime dimension-drop algebras contain only the trivial projections  and .  

In fact, 

0 1

In particular, prime dimension-drop algebras have vanishing .K1



Since K-theory is continuous with respect to inductive limits, an inductive limit 
of prime dimension-drop algebras will already give us the K-theory we’re after. 

To get something simple and monotracial, one has to make sure the matrix 
sizes grow to infinity and that the connecting maps “shrink” the spectrum. 



That’s enough to show the following:

From which it follows that

The  of Theorem 2.9 is what we now call the Jiang—Su algebra!𝒵



A C*-algebra  is said to be -stable or -absorbing if .A 𝒵 𝒵 A ≅ A ⊗ 𝒵

Jiang and Su showed that 

• if  is purely infinite, unital, simple and nuclear, then  is -stable 
• if  is unital simple approximately finite (AF) then  is -stable 
•  is -stable

A A 𝒵
A A 𝒵

𝒵 𝒵



In fact,  is strongly self-absorbing.𝒵

A unital C*-algebra  is strongly self-absorbing if there exists a 
*-isomorphism 

𝒟

φ : 𝒟 → 𝒟 ⊗ 𝒟
that is approximately unitarily equivalent to the first factor embedding:

there exist unitaries  s.t.(un)n∈ℕ ⊂ 𝒟 ⊗ 𝒟

∥unφ(a)u*n − a ⊗ 1𝒟∥ → 0, n → ∞ .

A strongly self-absorbing C*-algebra is automatically nuclear and simple.  
The only other strongly self-absorbing C*-algebras in the UCT class are 

 and .Mn∞, 𝒪∞, 𝒪∞ ⊗ Mn∞, 𝒪2



For any strongly self-absorbing , we have  while 
. 

One can similarly talk about -stability with respect to these other 
strongly self-absorbing C*-algebras. For example, if  is a UCT unital 
purely infinite simple C*-algebra then  

Indeed, finding a stably finite analogue to   was one of Jiang and 
Su’s motivations.

𝒟 𝒵 ⊗ 𝒟 ≅ 𝒟
𝒪2 ⊗ 𝒟 ≅ 𝒪2

𝒟
A

A ⊗ 𝒪∞ ≅ 𝒪∞ .

𝒪∞



We noted earlier that   and  have the same -group, -group 
and traces.  But the Künneth theorem doesn’t say anything about the order 
structure on .

A A ⊗ 𝒵 K0 K1

K0

An ordered abelian group  is weakly unperforated if whenever  
and there is an integer  such that , then we must have .

(G, G+) x ∈ G
n > 0 nx ∈ G+ x > 0

This provides an obstruction to -stability [Gong, Jiang, Su, ’00]:𝒵



It follows that Elliott’s original conjecture predicts -stability for 
any simple, separable, unital, nuclear, infinite-dimensional C*-
algebra  such that (  is weakly unperforated.

𝒵

A (K0(A), K0(A)+)

Some notable examples of “wild” simple, separable, unital and 
nuclear C*-algebras, eg. Villadsen algebras, do not have weakly 
unperforated  .K0

In the presence of weak unperfoation, the pairing map 
 contains the same information as the 

order structure on 
ρ : T(A) → S(K0(A), [1A])

K0(A) .



However, weak 
unperforation in  is 
not enough to 
guarantee -stability.

K0

𝒵



Counterexamples that can’t easily be excluded.

Restrict to -stable C*-algebras; 
try to characterize -stability 

𝒵
𝒵

Refine the invariant

Toms—Winter conjecture Cuntz semigroup



Let  be a C*-algebra and . We say that   is Cuntz 
subequivalent to , written , if there exists a sequence  
such that 

A a, b ∈ A+ a
b a ≾ b (rn)n∈ℕ ⊂ A

∥r*n brn − b∥ → 0, n → ∞ .

Two positive elements  are Cuntz equivalent, written  if 
 and 

a, b ∈ A a ∼ b,
a ≾ b b ≾ a .

The Cuntz semigroup of  is  where addition is  
 . Cuntz subequivalent makes this into an ordered 

semigroup. 

A CU(A) := (A ⊗ 𝒦)/ ∼ ,
[a] + [b] = [diag (a, b)]



One thinks of the Cuntz semigroup as a “Murray—von Neumann 
semigroup” for positive elements, rather than just projections.

To the von Neumann algebraists in the crowd: remember, a C*-algebra 
need not have any projections at all!

Indeed,  contains only trivial projections .𝒵 0,1

The Cuntz semigroup is the only invariant that can distinguish Toms’ 
examples. 



The Cuntz semigroup of a 
C*-algebra  can be pretty 
wild.  

However,  is -stable 
the Cuntz semigroup is 
almost unperforated. 

A partially ordered abelian 
semigroup  is almost 
unperforated if  
and there are  
with  and , 
then 

A

A 𝒵

P
x, y, ∈ P

n, m ∈ ℕ
n > m nx ≤ my
x ≤ y .

😢



Almost unperforation of the Cuntz semigroup of  implies that  has strict 
comparison (of positive elements): 

For any tracial state  define the dimension function   
 

A A

τ ∈ T(A), dτ
dτ(a) = lim

n→∞
τ(a1/n), a ∈ A+ .

We say that  has strict comparison if, whenever  for every 
, then 

A dτ(a) < dτ(b)
τ ∈ T(A) a ≾ b .

When  is -stable, then the Cuntz semigroup contains the same 
information as the Murray—von Neumann semigroup and the tracial state 
space.  So adding this to the invariant doesn’t give us anything new here.

A 𝒵



This brings us to the Toms—Winter conjecture:



Decomposition rank is a precursor to nuclear dimension. They are the 
same for stably finite C*-algebras. However a purely infinite C*-algebra 
can have finite nuclear dimension, but will always have infinite 
decomposition rank.

Slogan: Decomposition rank and nuclear dimension are noncommutative 
covering dimensions. 

In particular, if  is a locally compact metric space then 
 

X
dimnuc(C(X)) = dr(C(X)) = dim(X) .



Both are given by refining the completely positive approximation property:



 has nuclear dimension one:C([0,1])

Here  consists of a single 
element, and  is pretty big. 

The finite-dimensional C*-
algebra is  
where both  and  are 
three copies of .

ℱ
ϵ

F = F0 ⊕ F1
F0 F1

ℂ



Theorem

By now we have the following, under the assumption that the extreme 
boundary of tracial state space is compact:



We saw that the hyperfinite  factor  can also be constructed, for 
example, as .  We also know that   is usually defined using 
generators and relations. So one might ask if the Jiang—Su algebra might 
appear in more “natural” settings, not just as an inductive limit. 

II1 ℛ
L∞(X) ⋊ ℤ 𝒪∞

•Rørdam—Winter:  can be written as a stable inductive limit of 
generalized dimension drop algebras 

, 
where the connecting map is any trace-collapsing endomorphism.  

•Jacelon—Winter:  is universal.  can be realized as a universal C*-
algebra on countably many generators and relations.  

•Deeley—Putnam—S.:  can be realized as the orbit-breaking 
equivalence relation of a minimal dynamical system.

𝒵

𝒵p∞,q∞ = {f ∈ C([0,1], Mp∞ ⊗ Mq∞ ∣ f(0) ∈ 1 ⊗ Mq∞, f(1) ∈ Mp∞ ⊗ 1}

𝒵 𝒵

𝒵



•Li:  can be realized as the C*-algebra of a principal groupoid C*-algebra 
with 1-dimensional unit space. 

(This along with Deeley—Putnam—S. shows that  has a Cartan 
subalgebra; in fact infinitely many Cartan subalgebras of arbitrarily high 
dimension.) 

• Ghasemi:  can be realized as a Fraïssé limit.  

•(Since  has an approximately inner half-flip, which follows from Jiang 
and Su’s original paper, this gives another proof that  is strongly self-
absorbing.)

𝒵

𝒵

𝒵

𝒵
𝒵


