Heisenberg Pairs on Hilbert C^*-modules

Lara Ismert, Embry-Riddle Aeronautical University-Prescott
joint with Leonard Huang, University of Nevada-Reno

Actions of Tensor Categories on C^*-algebras @ IPAM

January 27, 2021
Heisenberg pairs on Hilbert spaces

Goal:
Classify pairs (A, B) of (possibly unbounded) self-adjoint operators with domains D_A, D_B, respectively, in a Hilbert space H that satisfy $D_A \cap D_B$ contains an (A, B)-invariant dense subspace $K \subseteq H$ and $[A, B]_h = ih$ for all $h \in K$. (Heisenberg Commutation Relation)

Let's call (A, B) a Heisenberg pair on K.

Example (Schrödinger Pair)
$Q = Mx$ and $P = -id_\mathbb{R}$ on $S(\mathbb{R}) \subseteq L^2(\mathbb{R})$ is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to $\oplus (P, Q)$?

von Neumann (1931): No \star.

January 27, 2021 2 / 11
Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(D_A, D_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

\[
[A, B]_h = ih \quad \text{for all } h \in K
\]

(Heisenberg Commutation Relation)

Let's call \((A, B)\) a Heisenberg pair on \(K\).

Example (Schrödinger Pair)

\[Q = M_x\quad \text{and} \quad P = -id\frac{d}{dx}\] on \(S(R) \subseteq L^2(R)\) is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to \(\oplus (P, Q)\)?

von Neumann (1931): No ⋆
Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(D_A, D_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

\[\mathcal{D}_A \cap \mathcal{D}_B \text{ contains an } (A, B)\text{-invariant dense subspace } K \subseteq \mathcal{H} \text{ and } \]

\[[A, B] = \imath h \text{ for all } h \in K. \]

Let's call \((A, B)\) a Heisenberg pair on \(K\).

Example (Schrödinger Pair)

\(Q = M_x\) and \(P = -\imath d/dx\) on \(\mathcal{S}(\mathbb{R}) \subseteq \mathcal{L}^2(\mathbb{R})\) is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to \(\oplus (P, Q)\)?

von Neumann (1931): No \(\star\).
Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(\mathcal{D}_A, \mathcal{D}_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

- \(\mathcal{D}_A \cap \mathcal{D}_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq \mathcal{H}\) and
- \([A, B]h = ih\) for all \(h \in K\). (Heisenberg Commutation Relation)
Heisenberg pairs on Hilbert spaces

Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(\mathcal{D}_A, \mathcal{D}_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

- \(\mathcal{D}_A \cap \mathcal{D}_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq \mathcal{H}\) and
- \([A, B]h = ih\) for all \(h \in K\). (Heisenberg Commutation Relation)

Let’s call \((A, B)\) a **Heisenberg pair** on \(K\).

Example (Schrödinger Pair)

\(Q = Mx\) and \(P = -id\frac{d}{dx}\) on \(S(R) \subseteq L^2(R)\) is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to \(\oplus (P, Q)\)?

von Neumann (1931): No \(\star\).
Heisenberg pairs on Hilbert spaces

Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(D_A, D_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

- \(D_A \cap D_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq \mathcal{H}\) and
- \([A, B]h = ih\) for all \(h \in K\). (Heisenberg Commutation Relation)

Let’s call \((A, B)\) a **Heisenberg pair** on \(K\).

Example (Schrödinger Pair)

\(Q = M_x\) and \(P = -i \frac{d}{dx}\) on \(S(\mathbb{R}) \subseteq L^2(\mathbb{R})\) is such a pair.
Heisenberg pairs on Hilbert spaces

Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(\mathcal{D}_A, \mathcal{D}_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

- \(\mathcal{D}_A \cap \mathcal{D}_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq \mathcal{H}\) and
- \([A, B]h = ih\) for all \(h \in K\). *(Heisenberg Commutation Relation)*

Let’s call \((A, B)\) a **Heisenberg pair** on \(K\).

Example (Schrödinger Pair)

\(Q = M_x\) and \(P = -i \frac{d}{dx}\) on \(S(\mathbb{R}) \subseteq L^2(\mathbb{R})\) is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to \(\oplus(P, Q)\)?
Heisenberg pairs on Hilbert spaces

Goal: Classify pairs (A, B) of (possibly unbounded) self-adjoint operators with domains $\mathcal{D}_A, \mathcal{D}_B$, respectively, in a Hilbert space \mathcal{H} that satisfy

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq \mathcal{H}$ and
- $[A, B]h = ih$ for all $h \in K$. *(Heisenberg Commutation Relation)*

Let’s call (A, B) a **Heisenberg pair** on K.

Example (Schrödinger Pair)

$Q = M_x$ and $P = -i \frac{d}{dx}$ on $S(\mathbb{R}) \subseteq L^2(\mathbb{R})$ is such a pair.

Stone (1930): Are all Heisenberg pairs unitarily equivalent to $\oplus(P, Q)$?

von Neumann (1931):
Heisenberg pairs on Hilbert spaces

Goal: Classify pairs \((A, B)\) of (possibly unbounded) self-adjoint operators with domains \(D_A, D_B\), respectively, in a Hilbert space \(\mathcal{H}\) that satisfy

- \(D_A \cap D_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq \mathcal{H}\) and
- \([A, B]h = ih\) for all \(h \in K\). *(Heisenberg Commutation Relation)*

Let’s call \((A, B)\) a **Heisenberg pair** on \(K\).

Example (Schrödinger Pair)

\[Q = M_x\text{ and } P = -i \frac{d}{dx}\text{ on } S(\mathbb{R}) \subseteq L^2(\mathbb{R})\text{ is such a pair.} \]

Stone (1930): Are all Heisenberg pairs unitarily equivalent to \(\oplus(P, Q)\)?

von Neumann (1931): No*.
von Neumann classified unitary representations related to Heisenberg pairs.
von Neumann classified unitary representations related to Heisenberg pairs.

Theorem (Stone-von Neumann, 1931)

If \((S, R)\) is a Heisenberg representation of a l.c.a. \(G\), then

\[(S, R) \sim_u \oplus (U, V)\.

Corollary

If \((A, B)\) is a Heisenberg pair on \(K \subseteq \mathcal{H}\) that integrates to a Heisenberg representation on \(\mathcal{H}\), then \((A, B) \sim_u \oplus (P, Q)\).
Applications of the Stone-von Neumann Theorem

Let \((A, B)\) be a Heisenberg pair on \(K\).
Let \((A, B)\) be a Heisenberg pair on \(K\).

- **Well-known:** \(A\) or \(B\) must be unbounded.
Applications of the Stone-von Neumann Theorem

Let \((A, B)\) be a Heisenberg pair on \(K\).

- **Well-known:** \(A\) or \(B\) must be unbounded.

- **I., 2019:** If \(K\) is a core for \(A\) or \(B\), then both \(A\) and \(B\) must be unbounded.
Let \((A, B)\) be a Heisenberg pair on \(K\).

- **Well-known**: \(A\) or \(B\) must be unbounded.

- **I., 2019**: If \(K\) is a core for \(A\) or \(B\), then both \(A\) and \(B\) must be unbounded.

- **Dixmier, 1958**: If \(A^2 + B^2\) is essentially self-adjoint on \(K\), then* \((A, B) \sim_u \oplus (P, Q)\).
Applications of the Stone-von Neumann Theorem

Let \((A, B)\) be a Heisenberg pair on \(K\).

- **Well-known**: \(A\) or \(B\) must be unbounded.

- **I., 2019**: If \(K\) is a core for \(A\) or \(B\), then both \(A\) and \(B\) must be unbounded.

- **Dixmier, 1958**: If \(A^2 + B^2\) is essentially self-adjoint on \(K\), then* \((A, B) \sim_u \oplus (P, Q)\).

- Rellich, Fuglede, Jorgensen, Moore, Muhly, Schmüdgen, Dorfmeister, ...
Let T be a linear operator on a Banach space X.

Theorem (Nelson, 1960) Suppose T is a closed symmetric operator on a Hilbert space H. Then T is self-adjoint if and only if A_T is dense in H.

Theorem (Flato-Simon-Snellman-Sternheimer (1972), Huang (2017)) Let (A, B) be a Heisenberg pair on $K \subseteq H$. If K consists of analytic vectors for both A and B, then $\star (A, B) \sim u \oplus (P, Q)$.
Let T be a linear operator on a Banach space X.

- $x \in X$ is **analytic for** T if $x \in D_{T^n}$ for all $n \in \mathbb{N}$ and $\exists t > 0$ such that
 \[
 \sum_{n=0}^{\infty} \frac{\|T^n x\|}{n!} t^n < \infty.
 \]
Let T be a linear operator on a Banach space X.

- $x \in X$ is **analytic for T** if $x \in D_{T^n}$ for all $n \in \mathbb{N}$ and $\exists t > 0$ such that

$$
\sum_{n=0}^{\infty} \frac{\|T^n x\|}{n!} t^n < \infty.
$$

Theorem (Nelson, 1960)

Suppose T is a closed symmetric operator on a Hilbert space \mathcal{H}. Then T is self-adjoint if and only if A_T is dense in \mathcal{H}.
Analytic Vectors and Integrability

Let T be a linear operator on a Banach space X.

- $x \in X$ is **analytic for** T if $x \in \mathcal{D}_{T^n}$ for all $n \in \mathbb{N}$ and $\exists t > 0$ such that

\[
\sum_{n=0}^{\infty} \frac{\|T^n x\|}{n!} t^n < \infty.
\]

Theorem (Nelson, 1960)

Suppose T is a closed symmetric operator on a Hilbert space \mathcal{H}. Then T is self-adjoint if and only if \mathcal{A}_T is dense in \mathcal{H}.

Theorem (Flato-Simon-Snellman-Sternheimer (1972), Huang (2017))

Let (A, B) be a Heisenberg pair on $K \subseteq \mathcal{H}$. If K consists of analytic vectors for both A and B, then

\[\star (A, B) \sim_u \oplus (P, Q)\]
Goal: Classify all pairs of self-adjoint operators \((A, B)\) on a Hilbert \(C^*\)-module \(X\) that satisfy:
\[D_A \cap D_B\]
contains an \((A, B)\)-invariant dense subspace \(K \subseteq X\) and
\[[A, B] = ih\]
for all \(h \in K\).

Why? How?
(1) Stone-von Neumann Theorem for Hilbert \(C^*\)-modules
(2) Integrability criterion for Heisenberg pairs on Hilbert \(C^*\)-modules
Goal: Classify all pairs of self-adjoint operators \((A, B)\) on a Hilbert \(C^*\)-module \(X\) that satisfy:

- \(\text{D} \cap \text{D} \cap \text{D} \text{B}\text{C} \subseteq \text{X}\text{D} \subseteq \text{X}\text{D}\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq X\)
- \([A, B]_h = ih\) for all \(h \in K\)
Heisenberg pairs on Hilbert C^*-modules

Goal: Classify all pairs of self-adjoint operators (A, B) on a Hilbert C^*-module X that satisfy:

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq X$ and
Heisenberg pairs on Hilbert C^*-modules

Goal: Classify all pairs of self-adjoint operators (A, B) on a Hilbert C^*-module X that satisfy:

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq X$ and
- $[A, B]h = ih$ for all $h \in K$.

Why? How?

1. Stone-von Neumann Theorem for Hilbert C^*-modules
2. Integrability criterion for Heisenberg pairs on Hilbert C^*-modules
Heisenberg pairs on Hilbert C^*-modules

Goal: Classify all pairs of self-adjoint operators (A, B) on a Hilbert C^*-module X that satisfy:

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq X$ and
- $[A, B]h = ih$ for all $h \in K$.

Why?

(1) Stone-von Neumann Theorem for Hilbert C^*-modules
(2) Integrability criterion for Heisenberg pairs on Hilbert C^*-modules
Heisenberg pairs on Hilbert C^*-modules

Goal: Classify all pairs of self-adjoint operators (A, B) on a Hilbert C^*-module X that satisfy:

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq X$ and
- $[A, B]h = ih$ for all $h \in K$.

Why?

How?
Heisenberg pairs on Hilbert C^*-modules

Goal: Classify all pairs of self-adjoint operators (A, B) on a Hilbert C^*-module X that satisfy:

- $\mathcal{D}_A \cap \mathcal{D}_B$ contains an (A, B)-invariant dense subspace $K \subseteq X$ and
- $[A, B]h = ih$ for all $h \in K$.

Why?

How?

(1) Stone-von Neumann Theorem for Hilbert C^*-modules
Goal: Classify all pairs of self-adjoint operators \((A, B)\) on a Hilbert \(C^*\)-module \(X\) that satisfy:

- \(\mathcal{D}_A \cap \mathcal{D}_B\) contains an \((A, B)\)-invariant dense subspace \(K \subseteq X\) and
- \([A, B]h = ih\) for all \(h \in K\).

Why?

How?

1. Stone-von Neumann Theorem for Hilbert \(C^*\)-modules
2. Integrability criterion for Heisenberg pairs on Hilbert \(C^*\)-modules
(1) Stone-von Neumann Theorem for Hilbert C^*-modules

Theorem (Huang-I., 2020)

Every $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Heisenberg representation on a Hilbert $\mathcal{K}(\mathcal{H})$-module is unitarily equivalent to a direct sum of copies of the $(G, \mathcal{K}(\mathcal{H}), \alpha)$-Schrödinger representation on $L^2(G, \mathcal{K}(\mathcal{H}), \alpha)$.
X Hilbert \mathcal{A}-module, \((T, \mathcal{D}_T)\) densely-defined operator on X.
X Hilbert \mathcal{A}-module, (T, \mathcal{D}_T) densely-defined operator on X.

- The domain of the adjoint of T is

$$\mathcal{D}_{T^*} = \{ \xi \in X : \exists \nu \text{ s.t. } \forall \eta \in \mathcal{D}_T, \langle T\eta, \xi \rangle = \langle \eta, \nu \rangle \}$$
X Hilbert \mathcal{A}-module, (T, \mathcal{D}_T) densely-defined operator on X.

- The domain of the adjoint of T is

$$\mathcal{D}_{T^*} = \{ \xi \in X : \exists \nu \text{ s.t. } \forall \eta \in \mathcal{D}_T, \langle T\eta, \xi \rangle = \langle \eta, \nu \rangle \}$$

- A symmetric operator T is self-adjoint if $\mathcal{D}_T = \mathcal{D}_{T^*}$
X Hilbert \mathcal{A}-module, (T, \mathcal{D}_T) densely-defined operator on X.

- The domain of the adjoint of T is

 $$\mathcal{D}_{T^*} = \{ \xi \in X : \exists \nu \text{ s.t. } \forall \eta \in \mathcal{D}_T, \langle T\eta, \xi \rangle = \langle \eta, \nu \rangle \}$$

- A symmetric operator T is self-adjoint if $\mathcal{D}_T = \mathcal{D}_{T^*}$

- An operator T on X is regular if $\text{ran}(I + T^*T)$ is dense in X.

Theorem (Woronowicz-Napiorkowski, 1992) Every regular self-adjoint operator on a Hilbert C^*-modules has a functional calculus.
Self-adjoint operators on Hilbert C^*-modules

X Hilbert $𝒜$-module, (T, \mathcal{D}_T) densely-defined operator on X.

- The domain of the adjoint of T is
 \[\mathcal{D}_{T^*} = \{ \xi \in X : \exists \nu \text{ s.t. } \forall \eta \in \mathcal{D}_T, \langle T\eta, \xi \rangle = \langle \eta, \nu \rangle \} \]

- A symmetric operator T is self-adjoint if $\mathcal{D}_T = \mathcal{D}_{T^*}$

- An operator T on X is regular if $\text{ran}(I + T^* T)$ is dense in X.

Theorem (Woronowicz-Napiorkowski, 1992)

Every regular self-adjoint operator on a Hilbert C^-modules has a functional calculus.*
Major theorems about self-adjoint operators
Major theorems about self-adjoint operators

Let \((T, \mathcal{D}_T)\) be a symmetric, densely-defined operator on a…

<table>
<thead>
<tr>
<th>Hilbert space</th>
<th>Hilbert (C^*)-module</th>
</tr>
</thead>
</table>

January 27, 2021 9 / 11
We needed these major tools for self-adjoint operators to obtain a statement about Heisenberg pairs on Hilbert C^*-modules.
We needed these major tools for self-adjoint operators to obtain a statement about Heisenberg pairs on Hilbert C^*-modules.

Theorem (Huang-I., 2020)

Let (A, B) be a Heisenberg pair on a dense submodule K of a Hilbert C^*-module. If K consists of analytic vectors for both A and B, then (A, B) integrates to a Heisenberg representation.
(2) Integrability criterion for Hilbert C^*-modules

We needed these major tools for self-adjoint operators to obtain a statement about Heisenberg pairs on Hilbert C^*-modules.

Theorem (Huang-I., 2020)

Let (A, B) be a Heisenberg pair on a dense submodule K of a Hilbert C^*-module. If K consists of analytic vectors for both A and B, then (A, B) integrates to a Heisenberg representation.

Corollary

Let X be a Hilbert $K(H)$-module, and suppose (A, B) is a Heisenberg pair on K. If K contains a dense set of analytic vectors for both A and B, then

$$(A, B) \sim_u \bigoplus (P, Q).$$
Thank you!