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Goal/Caveat

In these two expository talks, we aim to give participants working
primarily in quantum symmetries, subfactors, tensor categories, etc.
a working overview of the classification program in C∗-algebras:

I Capstone Results

I Key Ingredients

Our purpose is not to give a full account of the program or its
history but to prime the participants to ask questions and discuss
ideas in next week’s sessions.

Theorem (2015, Many hands)

Simple, separable, unital, nuclear, Z-stable C∗-algebras in the UCT
class are classified by K-theory and traces.



A tale of two algebras



C∗- and W∗-algebras

In the commutative case,

C∗-algebras
are C0(X ),
locally compact Hausdorff X .

W∗-algebras
are L∞(X ),
regular Borel measure space X .

Even in the noncommutative setting,

C∗-algebras
are more topological.

W∗-algebras
are more measure-theoretic.



Group Algebras

Given a discrete group Γ and its left regular representation
λ : Γ→ U(`2(Γ)), where λg (δh) = δgh for g , h ∈ Γ,

 C∗λ(Γ) := Cλ(Γ)
‖·‖

is the reduced group C∗-algebra.

 L(Γ) := Cλ(Γ)
SOT

is the group von Neumann algebra.

Example

If Γ is abelian, then C∗λ(Γ) = C (Γ̂) and L(Γ) = L∞(Γ̂).

• C∗λ(Z) = C (T) 6' C (T2) = C∗λ(Z2)

• L(Z) = L∞(T) ' L∞(T2) = L(Z2)



Crossed Products and Dynamics

Let X compact Hausdorff and Γ discrete with α : Γ y X by
homeomorphisms.

 Γ y C (X ) by g · f = f ◦ α−1
g , for g ∈ Γ, f ∈ C (X )

 Crossed product C∗-algebra C (X ) oλ,α Γ

• generated by copies of λ(Γ) and C (X ) (in B(L2(X )⊗ `2(Γ)))

• where α is implemented via conjugation:
λg f λ

∗
g = αg (f ) for g ∈ Γ, f ∈ C (X ).

A similar construction with a regular Borel probability space (Y , µ)
with probability measure preserving (pmp) β : Γ y Y yields
L∞(Y ) oβ Γ.

Example

Z y T by irrational rotation, θ : e2πit 7→ e2πi(θ+t).
 Irrational rotation algebras Aθ := C (T) oλ,θ Z and L∞(T) oθ Z.



Classification



Classification: Commutative Setting
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W∗-Classification: Factors

?

W∗-algebra
factors

Let’s focus on the story for II1-factors.



Examples of II1-factors

• L(Γ) for an infinite conjugacy class (ICC) group Γ

τ(x) := 〈xδe , δe〉

• L∞(X ) o Λ for a free, ergodic, pmp action Λ y X of a group
Λ on a probability space (X , µ)

τ
(∑

g∈Λ fgλg
)

:=
∫
X fe dµ

•
M2 M2 ⊗M2 ...

⊗∞
k=1M2

SOT

M2 M4 ...
⋃∞

k=1M2k
SOTa 7→a⊕a

The closure is with respect to the GNS representation for
τ := ⊗∞k=1τ2, with τ2 the normalized trace on M2.



W∗-Classification: II1-factors

Factors
?

II1

In general, this is still a lot to ask.
For instance, we still don’t know if L(F2) ' L(F3).

We need an additional “smallness criteria”.



Smallness Criteria 1: Approximately Finite
A separably acting von Neumann algebra is Approximately Finite
Dimensional (AFD) if it is the SOT closure of an increasing union
of finite dimensional subalgebras.
A tracial AFD von Neumann algebras is called hyperfinite.

Example

M2 M4 ...
⋃∞

k=1M2k
SOTa 7→a⊕a

Theorem (Murray, von Neumann)

There is a unique (separably acting) hyperfinite II1-factor.

We denote it by R.

Factors
{R}

Hyperfinite

II1



Smallness Criteria 2: Amenability

A group Γ is amenable if it admits a finitely additive left invariant
probability measure (a mean) on its subsets.

• Includes finite groups and abelian groups

• Closed under subgroups, quotients, extensions, direct limits.

• Does not include non-abelian free groups.

There exists an analogous property for von Neumann algebras,
which is more than an analogy for group von Neumann algebras:

L(Γ) is amenable ⇐⇒ Γ is amenable.

 L(Fn) are non-amenable.



Smallness Criteria 2: Amenability

It’s “easy” to show that

Hyperfinite (AFD) =⇒ Amenable.

But, amenability is often easier to verify.

Example

• Finite dimensional and commutative von Neumann algebras

• L(Γ) for an amenable group Γ

• L∞(X ) o Γ for Γ amenable

• R



Classification of Amenable II1-factors

Theorem (Connes)

A von Neumann algebra is hyperfinite (AFD) iff it is amenable.

With Murray and von Neumann’s classification of hyperfinite
II1-factors:

Amenable

Factors

II1
{R}



Ingredients, Scope, and Further Results

Some consequences:

I L(Γ) ' L(Λ) for all amenable ICC groups Γ,Λ.

I L∞(T) oθ Z is independent of θ /∈ Q.

I (Ornstein-Weiss) All free, ergodic, pmp actions of infinite
amenable groups are orbit equivalent.

Classification of amenable factors of other types was completed by
Connes and Haagerup.

An important factor in Connes work is the fact that any (separably
acting) amenable II1-factor M is McDuff, i.e.,

M'M⊗̄R.



From W∗- to C∗-Classification

With a striking and incredibly useful classification result for infinite
dimensional, separably acting (tracial) von Neumann factors
satisfying certain “smallness criteria,” we turn to ask the same for
comparable C∗-algebras.

We consider simple, separable, infinite dimensional C∗-algebras
(with tracial states), but how do the “smallness criteria” translate
to this setting?



Smallness Criteria 1: Approximately Finite

A C∗-algebra is called AF if it is the norm closure of an increasing
union of finite dimensional subalgebras, e.g., the CAR algebra

M2∞ :=
⋃∞

k=1M2k = ⊗∞k=1M2.

Unlike with hyperfinite II1-factors, simple AF algebras are not all
the same:

M2∞ 6'M3∞ := ⊗∞k=1M3.

Still, AF algebras can be classified by their (ordered) K0-groups.

ordered
abelian
groups

AF

-algebrasC∗



Smallness Criteria 2: Amenability
There is also a notion of amenability for C∗-algebras, which is also
more than an analogy for group C∗-algebras:

C∗λ(Γ) amenable ⇐⇒ Γ amenable.

We prefer one of the following two characterizations:

Definition
A is nuclear if given any C∗-algebra B, there is a unique way to
complete A⊗alg B to a C∗-algebra A⊗ B.

Definition
A satisfies the completely positive approximation property (CPAP)
if there exist completely positive contractive (cpc) maps

A
ψi−→Mni

ϕi−→ A so that

‖ϕi ◦ ψi (a)− a‖ → 0 ∀ a ∈ A.

A map φ : A→ B is completely positive if φ(n)(Mn(A)+) ⊂Mn(B)+ ∀ n.



Smallness Criteria 2: Amenability

Example

• Finite dimensional and commutative C∗-algebras

• C∗λ(Γ) for Γ amenable

• C (X ) oλ,α Γ for Γ amenable

• C∗-algebras that can be built from these via ideals, tensor
products, quotients, extensions, and direct limits:
I AF C∗-algebras
I Aθ for θ irrational

• Cuntz algebras On

Like with von Neumann algebras, AF implies amenability.
Unlike with von Neumann algebras, this class goes way beyond AF.



Classifying Simple Nuclear C∗-algebras?

I If we want to classify a larger class than simple AF
C∗-algebras, we need a larger invariant than the ordered
K0-group.

I A larger class of C∗-algebras, which includes Aθ, can be
distinguished by ordered K0-groups together with K1-groups.

I The final ingredient in the invariant is traces, i.e. the simplex
of tracial states T (A) of a C∗-algebra.

Together, these are referred to as “K-theory and traces”.



Classification by K-Theory and Traces?

What is the class of classifiable C∗-algebras, i.e., those that can be
classified by K-theory and traces?

Analogous to the von Neumann setting, we want

I Simple

I Separable

I Infinite dimensional

I Unital

We also want to stay in the realm of

I Nuclear
There are infinitely many simple, separable, unital, exact,
non-nuclear C∗-algebras that are indistinguishable from O2

using just K-theory and traces.

 We have to disregard commutative
and reduced group C∗-algebras.

But we keep simple AF, irrational rotation algebras, Cuntz algebras, and
crossed products with a free minimal action.



Is that it?

Can we classify simple, separable, infinite dimensional, unital,
nuclear C∗-algebras by K-theory and traces?

Still no.
Using higher dimensional topological phenomena one can construct
simple, separable, unital, nuclear C∗-algebras that cannot be
distinguished by K-theory and traces. (Villadsen, Rørdam, Toms)

In particular, Rørdam gives and example of a simple, separable, unital,
nuclear C∗-algebra that is finite but has no traces.

We need additional structural criteria.



Finite nuclear dimension:
Or how I learned to stop worrying and love Z



Classification: Finite nuclear dimension

Theorem (2015, Many hands)

Simple, separable, unital, infinite dimensional, nuclear C∗-algebras
with finite nuclear dimension in the UCT class are classified by
K-theory and traces.

Finite nuclear dimension is a refinement of the CPAP for
C∗-algebras that incorporates a generalized notion of Lebesgue
covering dimension, e.g., dimnuc(C (X )) = dim(X ).

Theorem (Castillejos, Evington, Tikuisis, White, Winter2)

A simple, separable, unital, infinite dimensional, nuclear C∗-algebra
A has finite nuclear dimension iff it is stable with respect to
tensoring with the Jiang-Su algebra Z, i.e.

A⊗Z ' A.



Classification: Z-stability

Theorem (2015, Many hands)

Simple, separable, unital, nuclear, Z-stable C∗-algebras in the UCT
class are classified by K-theory and traces.

simple

in the UCT class

C∗ -algebras
Z -stable

nuclear
unital

separable

K-theory
and
Traces



Tracial Dichotomy

Theorem (Kirchberg)

If A is simple, unital, and nuclear with T (A) = ∅, then Z-stability
implies pure infiniteness.

Classifiable
C∗-algebras

Purely
Infinite

T (A) 6= ∅ T (A) = ∅

Amenable

Factors
II1

Amenable

Factors
Type III

Finite



What is Z?

The Jiang-Su algebra Z is a simple, separable, unital, nuclear
C∗-algebra, which acts like an “infinite-dimensional version of C,”
in particular

• Z ⊗ Z ' Z
• Z has the same K-theory and traces as C.

Any unital C∗-algebra A has the same K-theory and traces as
A⊗Z.

 We can only classify up to Z-stability, i.e., Z-stability is
necessary for classification.



But what is Z??

Z can be constructed as the inductive limit of certain so-called
dimension drop algebras:

Zp,q = {f ∈ C ([0, 1],Mp ⊗Mq) : f (0) ∈Mp, f (1) ∈Mq},

with p, q co-prime.

But we are more interested in Z with regards to its role in
delineating classifiable C∗-algebras.

Actually, we are mostly interested in Z-stability.



What is Z-Stability?

In the tracial setting, Z-stability is the C∗-analogue to the McDuff
property (R-stability). In particular,

• McDuff characterized R-stability as having approximately
central matrix subalgebras.

• Whereas Z-stability is characterized by having “suitably
large” approximately central matrix cones (Rørdam-Winter).

Separable Z-stable C∗-algebras with ∗-homomorphisms up to
approximate unitary equivalence forms monoidal category whose
unit is Z.

 The class of simple, separable, unital, nuclear C∗-algebras
localized at Z yields the class of classifiable C∗-algebras
(modulo UCT).



About the UCT

We also require that a classifiable C∗-algebra satisfies the Universal
Coefficient Theorem (UCT).

• Essentially, this says K-theory of a C∗-algebra is enough to
describe its KK-theory.

• More formally, A satisfies the UCT iff KK (A,C ) = 0 whenever
K∗(C ) = 0 (equivalently A is KK-equivalent to a commutative
C∗-algebra).

The UCT Problem:

• Open Question: Does every separable, nuclear C∗-algebra
satisfy the UCT? What about every classifiable C∗-algebra?

• The answer is yes for virtually any example one can write
down.

• (Barlak-Li, Tu) A separable, nuclear C∗-algebra satisfies the
UCT if it has a Cartan subalgebra.



Classifiable C∗-algebras

Classifiable C∗-algebras include

• Simple, unital, infinite dimensional AF algebras,

• Irrational rotation algebras Aθ,

• Cuntz algebras On,

• Z-stabilization of Rørdam’s and Tom’s counterexamples.

• The C∗-algebra C∗π(Γ) generated by an irreducible unitary
representation π of a finitely generated nilpotent group,
(Eckhardt-Gillaspy)

• C (X ) oλ,α Γ arising from free minimal actions of groups with
local subexponential growth on finite-dimensional spaces
(Many Hands 6= the hands in the classification)

“I am prepared to stick my neck out and say that this
should hold for all amenable groups - though that’s still a
long way off.”– S. White.



Thanks!



Appendix



Operator K-theory: K0

Operator algebraic K-theory is the noncommutative extension of
topological K-theory of Atiyah and Hirzebruch.

Suppose A is a unital C∗-algebra.

K0(A) is an ordered abelian group which captures the structure of
projections in A and its matrix amplifications Mn(A).

More precisely, it is the Grothendieck group of its MvN semigroup
of projections:

{p ∈
⋃

nMn(A) : p a projection } / ∼MvN .



Operator K-theory: K1

Suppose A is a unital C∗-algebra.

K1(A) is an abelian group which captures the structure of unitaries
in C∗-algebra A and its matrix amplifications Mn(A).

More precisely, writing U∞(A) :=
⋃

n Un(A),

K1(A) := U∞(A)/ ∼h .

For n ≥ 0, we have Kn(A) ' Kn+2(SA) where SA := C0(0, 1)⊗A.

Bott Periodicity: K1(A) ' K0(SA) and K0(A) ' K1(SA).
 higher K-groups are redundant.



KK-Theory

Kasparov’s KK (·, ·) is a bivariant functor on separable C∗-algebras,
generalizing both K-homology and K-theory.

Think of KK-equivalence as a loose notion of homotopy
equivalence.

(Cuntz) KK (A,B) is an abelian group consisting of homotopy
classes of pairs of ∗-homomorphisms A→ M(B ⊗K) who agree
modulo B ⊗K.

 We can consider a category whose objects are separable
C∗-algebras and whose morphisms are KK -elements, i.e. Cuntz
pairs. Here KK (A,B) are Hom sets, and isomorphisms are
KK-equivalences.



Rørdam’s Examples

Rørdam constructs

• A simple, separable, unital, nuclear, UCT-class that contains a
(nonzero) finite projection and an infinite projection.

• B simple, separable, unital, nuclear, UCT-class such that B is
finite but M2(B) is (properly) infinite (in particular B is finite
but not stably finite).

• Moreover, B is finite but has no traces.
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